JPH0191678A - Speed controller for ultrasonic wave motor - Google Patents

Speed controller for ultrasonic wave motor

Info

Publication number
JPH0191678A
JPH0191678A JP62246450A JP24645087A JPH0191678A JP H0191678 A JPH0191678 A JP H0191678A JP 62246450 A JP62246450 A JP 62246450A JP 24645087 A JP24645087 A JP 24645087A JP H0191678 A JPH0191678 A JP H0191678A
Authority
JP
Japan
Prior art keywords
speed
moving
frequency
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62246450A
Other languages
Japanese (ja)
Inventor
Masaru Nakahama
中濱 勝
Hiroyoshi Nomura
博義 野村
Kunikazu Ozawa
小沢 邦一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62246450A priority Critical patent/JPH0191678A/en
Publication of JPH0191678A publication Critical patent/JPH0191678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a speed controller for moving a mover stably at a specified speed, by detecting the moving speed of the moving body, and by setting a speed detecting means for generating the output of signal in proportion to a moving speed. CONSTITUTION:When a variable oscillation circuit 1 is worked and AC voltage is applied to an ultrasonic wave motor 5 via a 90 deg. phase-shifting circuit 2 and power amplifying circuits 3, 4, then a moved 14 is rotationally driven. The speed of the mover 14 is converted to the pulse signal of frequency in proportion to the speed, by a frequency generator (FG) 6, and the pulse signal is converted to DC voltage in proportion to its frequency, by an F-V converter circuit 7, and the input of this DC voltage to the circuit 1 via a compensating filter 8 is provided. The oscillatory frequency of the circuit 1 is controlled according to this veltage. Then, by the circuit 1, the oscillator frequency is changed in proportion to a speed difference between the moving speed of the mover 14 and a specified speed, and by controlling mechanical arm current, the speed of the moving body 14 is controlled to be constant.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
の速度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a speed control device for an ultrasonic motor that generates driving force using a piezoelectric body.

従来の技術 近年圧電セラミック等の圧電体を用いた振動体に例えば
数10KHzの駆動電圧加えて弾性振動を励振し、この
振動体を伸縮振動又は厚み振動さ°せ、この振動を駆動
力としてロータ等の被駆動体(移動体)を押圧駆動する
ことにより、移動体を回転又は直線運動させるようにし
た超音波モータが注目されている。
BACKGROUND OF THE INVENTION In recent years, a driving voltage of several tens of kHz is applied to a vibrating body using a piezoelectric material such as piezoelectric ceramic to excite elastic vibration, causing the vibrating body to undergo stretching vibration or thickness vibration, and this vibration is used as a driving force to drive a rotor. An ultrasonic motor that rotates or linearly moves a driven body (moving body) by pressing and driving the driven body (moving body) is attracting attention.

以下、図面を参照しながら超音波モータの従来技術につ
いて説明を行う。
Hereinafter, the conventional technology of an ultrasonic motor will be explained with reference to the drawings.

第3図は円環型超音波モータ5の斜視図であり、円環型
の弾性体10に円環型圧電体9を貼り合わせて振動体1
1を構成している。12は耐摩耗性材料の摩擦材、13
は弾性体であり、互いに貼り合わせられて移動体14を
構成している。移動体14は摩擦材12を介して振動体
11と接触している。圧電体9に電圧を印加すると振動
体11の周方向に曲げ振動が励起され、これが進行波と
なることにより、移動体14を駆動する。尚、同図中の
振動体11には、機械出力取り出し用の突起体15が設
置されている。
FIG. 3 is a perspective view of the annular ultrasonic motor 5, in which an annular piezoelectric material 9 is bonded to an annular elastic body 10 to create a vibrating body 1.
1. 12 is a friction material made of wear-resistant material, 13
are elastic bodies, and are bonded together to form the moving body 14. The moving body 14 is in contact with the vibrating body 11 via the friction material 12. When a voltage is applied to the piezoelectric body 9, bending vibration is excited in the circumferential direction of the vibrating body 11, and this becomes a traveling wave, thereby driving the movable body 14. Note that a protrusion 15 for extracting mechanical output is installed on the vibrating body 11 in the figure.

第4図は第3図の超音波モータに使用した圧電体9の電
極構造の一例を示している。同図では円周方向に9個の
弾性波がのるように構成されている。同図において、A
およびBはそれぞれ2分の1波長相当の小領域から成る
電極群で、Cは4分の3波長、Dは4分の1波長相当の
電極である。
FIG. 4 shows an example of the electrode structure of the piezoelectric body 9 used in the ultrasonic motor of FIG. In the figure, the structure is such that nine elastic waves are placed in the circumferential direction. In the same figure, A
and B are electrode groups each consisting of a small region corresponding to a half wavelength, C is an electrode group corresponding to a three-quarter wavelength, and D is an electrode group corresponding to a quarter wavelength.

電極CおよびDは電極群AとBに位置的に4分の1波長
く=90°)の位相差を作っている。電極AとB内の隣
合う小電極部は圧電体9を分極する際に用いる電極で、
圧電体9の弾性体10の接着面は、第4図に示された面
と反対の面であり、その面の電極は全面平面電極である
。使用時には、電極群AおよびBは第4図の斜線で示さ
れたように、それぞれ短絡して用いられる。
Electrodes C and D create a positional phase difference of 1/4 wave length (90°) between electrode groups A and B. Adjacent small electrode parts in electrodes A and B are electrodes used when polarizing the piezoelectric body 9,
The adhesive surface of the elastic body 10 of the piezoelectric body 9 is the surface opposite to the surface shown in FIG. 4, and the electrodes on that surface are entirely flat electrodes. During use, electrode groups A and B are short-circuited, as indicated by diagonal lines in FIG. 4.

以上のように構成された超音波モータの圧電体9の電極
AおよびBに V1=V□ −5in(ll、Jt)        
−−−(1)V2=V、) −cos(ωt)    
    −−−(2>ただし、■o:電圧の瞬時値 ω :角周波数 t −時間 で表される電圧■1および■2をそれぞれ印加すれば、
振動体には ξ=ξo ・(cos(ωt) ・cos(kX)+5
in(ωt) −5in(kX) )=ξO・cos(
ωt−kX)      −−−(3)ただし、ξ :
曲げ振動の振幅値 ξ0:曲げ振動の瞬時値 に:波数(2π/λ) λ :波長 X:位置 で表せる、円周方向に進行する曲げ振動が励起される。
V1=V□-5in (ll, Jt) for the electrodes A and B of the piezoelectric body 9 of the ultrasonic motor configured as above.
---(1) V2=V, ) -cos(ωt)
---(2> However, ■o: Instantaneous value of voltage ω: Angular frequency t - If voltages ■1 and ■2 expressed in time are applied, respectively,
The vibrating body has ξ=ξo ・(cos(ωt) ・cos(kX)+5
in(ωt) −5in(kX) )=ξO・cos(
ωt−kX) ---(3) However, ξ:
Bending vibration amplitude value ξ0: Instantaneous value of bending vibration: Wave number (2π/λ) λ: Wavelength

第5図は振動体11の表面のA点が進行波の励起によっ
て、長軸2W、短軸2Uの楕円運動をし、振動体11上
に加圧して設置された移動体14が、楕円の頂点近傍で
接触することにより、摩擦力により波の進行方向とは逆
方向に■・ωxUの回転速度で運動する様子を示してい
る。また、この速度は振動体11と移動体14の間にス
ベリがあるときは、上記の■より小さくなる。同図の矢
印Bは、移動体14の進行方向を示し、矢印Aは、この
進行波の進行方向を示す、また、上記した移動体14の
速度■は、この曲げ振動の瞬時値ξ0に比例する。
FIG. 5 shows that point A on the surface of the vibrating body 11 moves in an ellipse with a long axis 2W and a short axis 2U due to the excitation of the traveling wave, and the movable body 14 placed under pressure on the vibrating body 11 moves in an ellipse. The figure shows how the waves move at a rotational speed of .omega..omega.xU in the opposite direction to the direction of wave propagation due to frictional force due to contact near the apex. Further, when there is slippage between the vibrating body 11 and the movable body 14, this speed becomes smaller than the above-mentioned (2). Arrow B in the same figure shows the traveling direction of the moving body 14, and arrow A shows the traveling direction of this traveling wave. Also, the speed ■ of the moving body 14 mentioned above is proportional to the instantaneous value ξ0 of this bending vibration. do.

ところで、この超音波モータ5を等価回路で示すと第6
図のようになることが知られている。同図においてC8
は振動体11の電気的な静電容量で、C1は振動体11
のコンプライアンス、Llは質量、R1は制動係数及び
負荷に相当するものである。このC1、L、、R,で構
成された回路は振動等の機械的動作に関係するもので機
械椀と呼び、圧電体9の電極に供給される電流iのうち
この機械椀に流れる電流i、を機械腕電流と呼ぶ。この
機械腕電流i、の大きさは先述したように振動体11の
振動振幅と比例関係にあり、従って移動体14の移動速
度に比例することになる。
By the way, if this ultrasonic motor 5 is shown as an equivalent circuit, the sixth
It is known that the result will be as shown in the figure. In the same figure, C8
is the electrical capacitance of the vibrating body 11, and C1 is the electric capacitance of the vibrating body 11.
, Ll corresponds to the mass, and R1 corresponds to the braking coefficient and load. This circuit composed of C1, L, , R, is related to mechanical operations such as vibration, and is called a mechanical bowl, and the current i flowing through this mechanical bowl out of the current i supplied to the electrodes of the piezoelectric body 9. , is called the mechanical arm current. As described above, the magnitude of this mechanical arm current i is proportional to the vibration amplitude of the vibrating body 11, and therefore proportional to the moving speed of the moving body 14.

さて上記のように構成された超音波モータ5を駆動し、
移動体14の移動速度を所定の一定値に制御する場合、
先に述べたように機械腕電流i、が移動速度に比例する
ことから、従来この機械腕電流i□の値を周知の技術で
検出し、この値が一定になるように印加する電圧を制御
し、移動体14の移動速度を一定に保とうとしていた。
Now, drive the ultrasonic motor 5 configured as above,
When controlling the moving speed of the moving body 14 to a predetermined constant value,
As mentioned earlier, the mechanical arm current i is proportional to the moving speed, so conventionally the value of this mechanical arm current i is detected using well-known technology and the applied voltage is controlled so that this value remains constant. However, an attempt was made to keep the moving speed of the moving body 14 constant.

発明が解決しようとする問題点 しかしながら上記のような構成では、移動体14と振動
体11の接触状態や外部から受ける負荷状態が常に一定
であれば移動体14の移動速度も一定になるが、この機
械腕電流17一定力式は移動速度に対してはオーブンル
ープであるので、移動体14と振動体11の接触状態は
温湿度等の変化によって変動したり、外部から受ける負
荷が変動すれば、これらの変動によって移動速度と機械
腕電流i、の比例状態が変化するため、移動体14の移
動速度はこの変動に応じて変化することになる。従って
、機械腕電流i、を一定の設定値にのみ制御する従来の
方式では移動体14の移動速度を所定の一定値に制御す
ることは困難であった。
Problems to be Solved by the Invention However, in the above configuration, if the contact state between the movable body 14 and the vibrating body 11 and the load state received from the outside are always constant, the moving speed of the movable body 14 will also be constant; This mechanical arm current 17 constant force type is an oven loop for the moving speed, so the contact state between the moving body 14 and the vibrating body 11 may fluctuate due to changes in temperature and humidity, or if the external load changes. , the proportional state between the moving speed and the mechanical arm current i changes due to these fluctuations, so the moving speed of the moving body 14 changes in accordance with these fluctuations. Therefore, it is difficult to control the moving speed of the moving body 14 to a predetermined constant value using the conventional method in which the mechanical arm current i is controlled only to a constant set value.

本発明はかかる点に鑑み、常に所定の一定速度で移動体
を移動させる超音波モータの速度制御装置を提供するこ
とを目的とする。
In view of this, an object of the present invention is to provide a speed control device for an ultrasonic motor that always moves a moving body at a predetermined constant speed.

問題点を解決するための手段 本発明は圧電体を交流電圧で駆動して、前記圧電体と弾
性体とから構成される振動体に弾性波を励振することに
より前記振動体上に接触して設置された移動体を移動さ
せる超音波モータと、前記移動体の移動速度を検出し前
記移動速度に比例した信号を出力する速度検出手段と、
前記交流電圧の周波数を制御する可変発振手段とを有し
た超音波モータの速度制御装置である。
Means for Solving the Problems The present invention drives a piezoelectric body with an alternating current voltage to excite an elastic wave in a vibrating body composed of the piezoelectric body and an elastic body, thereby bringing the piezoelectric body into contact with the vibrating body. an ultrasonic motor that moves an installed moving object; a speed detection means that detects the moving speed of the moving object and outputs a signal proportional to the moving speed;
A speed control device for an ultrasonic motor includes variable oscillation means for controlling the frequency of the alternating voltage.

作  用 本発明は前記した構成により、速度検出手段の出力によ
ってその出力周波数が制御される可変発振手段により印
加交流電圧の周波数を変化させて移動体の速度を制御す
る。
Operation According to the above-described configuration, the present invention controls the speed of the moving body by changing the frequency of the applied AC voltage using the variable oscillation means whose output frequency is controlled by the output of the speed detection means.

実施例 本発明の実施例を述べる前に超音波モータ5の特徴につ
いてつけ加える。
Embodiment Before describing the embodiment of the present invention, the characteristics of the ultrasonic motor 5 will be added.

超音波モータ5に印加する交流電圧のレベルを一定にし
、その周波数を変化させた時機械腕電流i、の大きさは
第2図に示すような周波数特性を示す。この図から解る
ように共振点(特性曲線のピークのところ)より高い周
波数では周波数の値によってlti腕電流11の大きさ
が1対1に対応しており、共振点近傍の不安定領域を除
いて周波数f1をf、、、からf+a2の範囲を変化さ
せればそれに応じて機械腕電流iユはiユ1から1+a
2の範囲変化する。
When the level of the alternating voltage applied to the ultrasonic motor 5 is kept constant and its frequency is varied, the magnitude of the mechanical arm current i exhibits a frequency characteristic as shown in FIG. 2. As can be seen from this figure, at frequencies higher than the resonance point (the peak of the characteristic curve), the magnitude of the lti arm current 11 corresponds one-to-one depending on the frequency value, except for the unstable region near the resonance point. If the frequency f1 is changed from f, . . . to f + a2, the mechanical arm current i will change from i to 1 + a
2 range changes.

また先に述べたようにこの機械腕電流11を変化させれ
ば移動体14の速度が変化することから、速度の変動に
応じて駆動電圧の周波数f、を変化させることで速度制
御を行なうことができる。
Furthermore, as mentioned earlier, changing the mechanical arm current 11 changes the speed of the moving body 14, so speed control is performed by changing the frequency f of the drive voltage in accordance with the fluctuation in speed. Can be done.

第1図は本発明の第1の実施例における超音波モータの
速度制御装置のブロック図を示すものである。第1図に
おいて、1は入力される電圧値によって出力周波数が制
御された交流信号を発生する可変発振回路、2は可変発
振回路1の出力から90°位相の異なった二つの信号を
発生させる90°移相回路、3.4はこの90°位相の
異なった各々の信号を超音波モータ5を駆動するのに十
分な電圧レベルまで増幅して圧電体9の各々の電極に印
加するための電力増幅回路、6は移動体14の周囲に貼
付され着磁されたプラスチック状のマグネットから移動
速度に比例した磁束の変化を磁気抵抗素子で検出しパル
ス状の信号を出力する周知の周波数発電11f!l (
FG)、7はFGの出力周波数に比例した電圧を出力す
る周波数−電圧(F−V)変換回路、8は速度制御ルー
プを安定にするための補償フィルタでその出力は可変発
振回路1の入力に接続される。
FIG. 1 shows a block diagram of a speed control device for an ultrasonic motor according to a first embodiment of the present invention. In Figure 1, 1 is a variable oscillation circuit that generates an AC signal whose output frequency is controlled by the input voltage value, and 2 is a variable oscillation circuit 90 that generates two signals with a 90° phase difference from the output of the variable oscillation circuit 1. The phase shift circuit 3.4 amplifies each signal with a 90° phase difference to a voltage level sufficient to drive the ultrasonic motor 5 and applies the power to each electrode of the piezoelectric body 9. The amplifier circuit 6 is a well-known frequency power generator 11f that detects changes in magnetic flux proportional to the moving speed from a magnetized plastic magnet attached around the moving object 14 using a magnetoresistive element and outputs a pulsed signal! l (
FG), 7 is a frequency-voltage (F-V) conversion circuit that outputs a voltage proportional to the output frequency of FG, 8 is a compensation filter to stabilize the speed control loop, and its output is the input of variable oscillation circuit 1 connected to.

以上のように構成された本実施例の超音波モータの速度
制御装置について、以下その動作を説明する。
The operation of the ultrasonic motor speed control device of this embodiment configured as described above will be described below.

可変発振器1が動作して90°移相器および電力増幅器
3.4を通じて交流電圧が超音波モータ5(圧電体9)
に印加されると移動体14が回転駆動される。この回転
駆動された移動体14の速度はFG6によって速度に比
例した周波数のパルス信号に変換され、このパルス信号
はF−V変換回路7でその周波数に比例した直流電圧に
変換され、この直流電圧は補償フィルタを介して可変発
振回路1に入力される。可変発振回路1はこの入力され
る電圧に応じてその発振周波数が制御される。
The variable oscillator 1 operates and AC voltage is applied to the ultrasonic motor 5 (piezoelectric body 9) through the 90° phase shifter and power amplifier 3.4.
When applied, the movable body 14 is rotationally driven. The speed of the rotationally driven moving body 14 is converted by the FG 6 into a pulse signal with a frequency proportional to the speed, and this pulse signal is converted into a DC voltage proportional to the frequency by the F-V conversion circuit 7, and this DC voltage is input to the variable oscillation circuit 1 via the compensation filter. The oscillation frequency of the variable oscillation circuit 1 is controlled according to this input voltage.

ここで、可変発振回路1は、F−V変換回路7(補償フ
ィルタ8)によって出力される移動体14の移動速度に
比例した信号によって、その速度が所定速度よりも遅け
れば機械腕電流i、を増すべくその発振周波数をfml
を越えない範囲で低くするように、逆に速度が速ければ
機械腕電流をisを減らすべく発振周波数を高くするよ
うに動作する。このように可変発振回路1が所定速度と
の速度差に比例して発振周波数を変え、機械腕電流を制
御することによって移動体14の速度が一定にせいぎょ
される。
Here, the variable oscillation circuit 1 uses a signal proportional to the moving speed of the moving body 14 outputted by the F-V conversion circuit 7 (compensation filter 8) to generate a mechanical arm current i if the speed is lower than a predetermined speed. To increase the oscillation frequency, fml
conversely, if the speed is high, the oscillation frequency is increased to reduce the mechanical arm current is. In this way, the variable oscillation circuit 1 changes the oscillation frequency in proportion to the speed difference from the predetermined speed, and controls the mechanical arm current, so that the speed of the moving body 14 is kept constant.

以上のように本実施例によれば、移動体14の速度情報
をもとに所定速度になるように駆動周波数を制御するの
で安定でかつ常に所定速度で動作することが出来、さら
に上記したように電圧のレベルによって機械腕電流を変
えるのではなく、周波数を変えて機械腕電流を変えるの
で、従来に比べて高い電圧を印加する必要のない超音波
モータの速度制御装置が実現できる。
As described above, according to this embodiment, the drive frequency is controlled to a predetermined speed based on the speed information of the moving body 14, so that it can operate stably and always at a predetermined speed. Instead of changing the mechanical arm current depending on the voltage level, the mechanical arm current is changed by changing the frequency, so it is possible to realize an ultrasonic motor speed control device that does not require the application of a higher voltage than in the past.

発明の詳細 な説明したように、本発明によれば、移動体と弾性体と
の接触状態の変化による負荷変動や外部負荷の変動等が
あっても移動体の移動速度を所定の速度で安定に駆動す
る超音波モータの速度制御装置を提供することができ、
その実用的効果は大きい。
As described in detail, according to the present invention, the moving speed of the movable body can be stabilized at a predetermined speed even if there are load fluctuations due to changes in the contact state between the movable body and the elastic body or external load fluctuations. We can provide speed control device for ultrasonic motor to drive,
Its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における一実施例の超音波モータの速度
制御装置のブロック図、第2図は機械腕電流の周波数特
性図、第3図は円環型超音波モータの切り欠き斜視図、
第4図は第3図の超音波モータに用いた圧電体の形状と
電極構造を示す平面図、第5図は超音波モータの動作原
理の説明図、第6図は超音波モータの等価回路図である
。 1・・・可変発振回路、2・・・90°移相回路、3・
4・・・電力増幅回路、 5・・・超音波モータ、6・
・・FG、7・・・F−V変換回路、8・・・補償フィ
ルタ。 代理人の氏名 弁理士 中尾敏男 はか1名第3図 第4図
FIG. 1 is a block diagram of a speed control device for an ultrasonic motor according to an embodiment of the present invention, FIG. 2 is a frequency characteristic diagram of mechanical arm current, and FIG. 3 is a cutaway perspective view of an annular ultrasonic motor.
Figure 4 is a plan view showing the shape and electrode structure of the piezoelectric body used in the ultrasonic motor in Figure 3, Figure 5 is an explanatory diagram of the operating principle of the ultrasonic motor, and Figure 6 is an equivalent circuit of the ultrasonic motor. It is a diagram. 1... variable oscillation circuit, 2... 90° phase shift circuit, 3...
4... Power amplifier circuit, 5... Ultrasonic motor, 6...
...FG, 7...F-V conversion circuit, 8...compensation filter. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)圧電体を交流電圧で駆動して、前記圧電体と弾性
体とから構成される振動体に弾性波を励振することによ
り前記振動体上に接触して設置された移動体を移動させ
る超音波モータと、前記移動体の移動速度を検出し前記
移動速度に比例した信号を出力する速度検出手段と、前
記速度検出手段の出力によって前記交流電圧の周波数を
制御する可変発振手段を具備したことを特徴とした超音
波モータの速度制御装置。
(1) A piezoelectric body is driven with an alternating current voltage to excite an elastic wave in a vibrating body composed of the piezoelectric body and an elastic body, thereby moving a movable body placed in contact with the vibrating body. It comprises an ultrasonic motor, a speed detection means for detecting the moving speed of the moving body and outputting a signal proportional to the moving speed, and a variable oscillation means for controlling the frequency of the alternating voltage according to the output of the speed detecting means. A speed control device for an ultrasonic motor characterized by:
JP62246450A 1987-09-30 1987-09-30 Speed controller for ultrasonic wave motor Pending JPH0191678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62246450A JPH0191678A (en) 1987-09-30 1987-09-30 Speed controller for ultrasonic wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62246450A JPH0191678A (en) 1987-09-30 1987-09-30 Speed controller for ultrasonic wave motor

Publications (1)

Publication Number Publication Date
JPH0191678A true JPH0191678A (en) 1989-04-11

Family

ID=17148618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62246450A Pending JPH0191678A (en) 1987-09-30 1987-09-30 Speed controller for ultrasonic wave motor

Country Status (1)

Country Link
JP (1) JPH0191678A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139870A (en) * 1984-07-27 1986-02-26 Marcon Electronics Co Ltd Piezoelectric linear motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139870A (en) * 1984-07-27 1986-02-26 Marcon Electronics Co Ltd Piezoelectric linear motor

Similar Documents

Publication Publication Date Title
JPH0322881A (en) Method and circuit for controlling ultrasonic motor
JP5792951B2 (en) Control device for vibration actuator
JPS6356178A (en) Driving of ultrasonic motor
JP2663380B2 (en) Piezoelectric ultrasonic linear motor
JPS622869A (en) Supersonic motor drive device
JPS6139870A (en) Piezoelectric linear motor
JPH0191678A (en) Speed controller for ultrasonic wave motor
JP2506895B2 (en) Ultrasonic motor controller
JPS61221584A (en) Drive circuit of vibration wave motor
JPH01298967A (en) Driver for ultrasonic actuator
JPH01148080A (en) Controller for ultrasonic motor
JPS63299788A (en) Ultrasonic motor driving device
JP2574293B2 (en) Ultrasonic motor driving method
JP2689435B2 (en) Ultrasonic motor drive
JP2636280B2 (en) Driving method of ultrasonic motor
JPS6292782A (en) Ultrasonic motor device
JP2636366B2 (en) Ultrasonic actuator control device
JPH02101975A (en) Drive circuit for ultrasonic motor
JPS6292781A (en) Ultrasonic motor device
JPH01148079A (en) Driver for ultrasonic motor
JPS627379A (en) Ultrasonic wave motor apparatus
JPH02142364A (en) Control device of ultrasonic actuator
JPH01214276A (en) Controller for ultrasonic motor
JPH01136575A (en) Supersonic motor driving device
JPH0241679A (en) Driving gear of ultrasonic actuator