JPH019132Y2 - - Google Patents

Info

Publication number
JPH019132Y2
JPH019132Y2 JP1980051235U JP5123580U JPH019132Y2 JP H019132 Y2 JPH019132 Y2 JP H019132Y2 JP 1980051235 U JP1980051235 U JP 1980051235U JP 5123580 U JP5123580 U JP 5123580U JP H019132 Y2 JPH019132 Y2 JP H019132Y2
Authority
JP
Japan
Prior art keywords
excitation coil
connecting member
movable connecting
fixed
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980051235U
Other languages
Japanese (ja)
Other versions
JPS56154120U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980051235U priority Critical patent/JPH019132Y2/ja
Publication of JPS56154120U publication Critical patent/JPS56154120U/ja
Application granted granted Critical
Publication of JPH019132Y2 publication Critical patent/JPH019132Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Description

【考案の詳細な説明】 本考案は、電磁作用によつて可動連結部材を直
進往復運動せしめて二動作を行なわせると共に、
いずれかの動作状態で無励磁のまま自己保持する
ようにした往復自己保持型直流ソレノイドに係る
ものである。
[Detailed Description of the Invention] The present invention causes the movable connecting member to move in a straight line and reciprocate by electromagnetic action to perform two operations.
This relates to a reciprocating self-holding type DC solenoid that is self-holding in a non-energized state in any operating state.

従来の直流ソレノイドには第1図に示すよう
に、励磁コイル1内の可動鉄心2が励磁コイル1
の通電時に継鉄筒3内に引込まれる吸引作用と、
無通電時にバネ4の反発力による反発作用とを組
合せたものがある。
As shown in FIG. 1, in a conventional DC solenoid, a movable iron core 2 within an excitation coil 1 is
the suction action that is drawn into the yoke tube 3 when energized;
Some devices combine the repulsion effect due to the repulsion force of the spring 4 when no current is applied.

しかしながら、第1図に示すソレノイドにおい
ては、電磁作用による吸引力をバネ4の反発力に
抗して作用させるのみで入力電気エネルギーとバ
ネ4の反発力の差のみが運動エネルギーに変換さ
れるにすぎず効率が悪く、また、吸引状態で保持
するためには、継続的に励磁しなければならず当
然その間は電力を必要とし、この間の発熱等に対
しても考慮を払わなければならない。さらに、バ
ネを使用するため寿命が短かく、かつ、安定性に
乏しいという欠点があつた。
However, in the solenoid shown in Fig. 1, only the electromagnetic attraction force acts against the repulsive force of the spring 4, and only the difference between the input electrical energy and the repulsive force of the spring 4 is converted into kinetic energy. In addition, in order to maintain the magnet in the attracted state, it must be continuously excited, which naturally requires electric power, and consideration must also be given to heat generation during this time. Furthermore, since a spring is used, the service life is short and stability is poor.

本考案は上述の欠点に解決を与えるもので、励
磁コイルによつて可動連結部材を二動作させると
共に、無励磁の状態で自己保持させるようにした
小型の往復自己保持型の直流ソレノイドを提供す
ることを目的とし、その一実施例を第2図イ,ロ
および第3図によつて詳細に説明する。5は非磁
性材料からなり励磁コイル6を囲繞するように設
けた可動連結部材、前記励磁コイル6は、極性切
換手段Tを有する直流電源E(第3図参照)と電
気的に接続する。7,8は可動連結部材5の両端
において、励磁コイル6に距離を設けて該可動連
結部材5にそれぞれ固着されている永久磁石で、
例えば異方性フエライト磁石からなり、図示した
極性に着磁されている。9,9′は磁性材料から
なる緩衝板、10は磁性材料からなる固定継鉄
板、11は絶縁材料からなる基板で、該基板11
の中央に図示のように励磁コイル6が固着されて
おり、両端部には摺動可能に前記可動連結部材5
に固着された永久磁石7,8が配設されている。
なお、第2図イ・ロは、可動連結部材5が、永久
磁石7,8の外側面を囲むように構成した例であ
り、図の右側の永久磁石7の外側面と可動連結部
材5の一辺とで形成される間隙は、例えば接続機
器(図示せず)の接続部分を挿入係止するための
取付手段として使用することができる。
The present invention provides a solution to the above-mentioned drawbacks, and provides a small reciprocating self-holding type DC solenoid in which a movable connecting member is operated twice by an excitation coil and is self-maintained in a non-excited state. For this purpose, one embodiment will be explained in detail with reference to FIGS. 2A and 2B and FIG. 3. Reference numeral 5 denotes a movable connecting member made of a non-magnetic material and provided so as to surround an excitation coil 6. The excitation coil 6 is electrically connected to a DC power source E having a polarity switching means T (see FIG. 3). Permanent magnets 7 and 8 are respectively fixed to the movable coupling member 5 at both ends of the movable coupling member 5 with a distance from the excitation coil 6;
For example, it is made of an anisotropic ferrite magnet, and is magnetized with the polarity shown. Reference numerals 9 and 9' denote buffer plates made of a magnetic material, 10 a fixed yoke plate made of a magnetic material, and 11 a substrate made of an insulating material;
As shown in the figure, an excitation coil 6 is fixed to the center of the movable connecting member 5, and the movable connecting member 5 is slidably attached to both ends.
Permanent magnets 7, 8 fixed to are disposed.
2A and 2B are examples in which the movable connecting member 5 is configured to surround the outer surfaces of the permanent magnets 7 and 8, and the outer surface of the permanent magnet 7 and the movable connecting member 5 on the right side of the figure are The gap formed by one side can be used, for example, as a mounting means for inserting and locking a connecting portion of a connecting device (not shown).

上述のような構成の往復自己保持型直流ソレノ
イドについて、その動作を説明すると、今、無通
電時に図示のように可動連結部材5に固着されて
いる図中右側に配設された永久磁石7が、緩衝板
9を介して励磁コイル6の固定継鉄板10に吸着
している状態を考えると、励磁コイル6に対する
前記図中右側に配設した永久磁石7と左側の永久
磁石8との磁束密度の大きさは励磁コイル6に吸
着している右側の永久磁石7の磁束密度の方が左
側の永久磁石8の磁束密度より大きく、吸引力は
磁束密度の2乗に比例するため前記吸着状態が安
定に保持される。
To explain the operation of the reciprocating self-holding type DC solenoid having the above-mentioned configuration, when the current is not energized, the permanent magnet 7 disposed on the right side of the figure, which is fixed to the movable connecting member 5 as shown in the figure, moves. , considering the state in which the excitation coil 6 is attracted to the fixed yoke plate 10 via the buffer plate 9, the magnetic flux density of the permanent magnet 7 disposed on the right side and the permanent magnet 8 on the left side in the figure with respect to the excitation coil 6 is The magnetic flux density of the right permanent magnet 7 that is attracted to the excitation coil 6 is larger than the magnetic flux density of the left permanent magnet 8, and the attractive force is proportional to the square of the magnetic flux density, so the attracted state is Maintained stably.

そして、励磁コイル6に直流電源E(第3図参
照)からの電流を、可動連結部材5を前記左側の
永久磁石8の方向に駆動するように流すと、第2
図中破線矢印の向きに磁束が発生する。この磁束
によつて右側の永久磁石7から発生している磁束
が打ち消され、励磁コイル6と磁石7とが反撥す
ることになるが、左側の永久磁石8から発生して
いる磁束は励磁コイル6によつて発生した磁束と
重ね合せた磁束密度となつて吸引力が増加し、可
動連結部材5に固着された左側の永久磁石8が基
板11上を摺動して励磁コイル6の方向へ吸引さ
れ、緩衝板9′を介して励磁コイル6に吸着され
る。この通電時の磁路は励磁コイルの中心軸→上
部固定継鉄板→上部緩衝板→永久磁石→下部緩衝
板→下部固定継鉄板となり、励磁コイル6と左側
の永久磁石8との磁束は重ね合わされ吸引力は強
いものである。さらに励磁コイル6を囲繞してい
る可動および固定の継鉄板によつて永久磁石の外
部への漏れ磁束が少ないために磁気効率は非常に
よい。そして、励磁コイル6への通電を止めても
上述と同じく永久磁石8のもつ磁束によつて吸着
の状態は保持される。また、励磁コイル6に前記
とは逆方向の電流を流すと、可動連結部材5が逆
方向に駆動され励磁を止めても安定に保持される
ことは明白である。
Then, when a current from the DC power source E (see FIG. 3) is applied to the excitation coil 6 so as to drive the movable connecting member 5 in the direction of the left permanent magnet 8, the second
Magnetic flux is generated in the direction of the dashed arrow in the figure. This magnetic flux cancels out the magnetic flux generated from the right permanent magnet 7, causing the excitation coil 6 and magnet 7 to repel each other, but the magnetic flux generated from the left permanent magnet 8 is canceled out by the excitation coil 6. The magnetic flux generated by this and the superimposed magnetic flux density increase the attractive force, and the left permanent magnet 8 fixed to the movable connecting member 5 slides on the substrate 11 and is attracted in the direction of the excitation coil 6. and is attracted to the excitation coil 6 via the buffer plate 9'. The magnetic path during this energization is the central axis of the excitation coil → upper fixed yoke plate → upper buffer plate → permanent magnet → lower buffer plate → lower fixed yoke plate, and the magnetic fluxes of the excitation coil 6 and the left permanent magnet 8 are superimposed. The suction power is strong. Furthermore, the movable and fixed yoke plates surrounding the excitation coil 6 reduce leakage of magnetic flux to the outside of the permanent magnet, resulting in very high magnetic efficiency. Even if the excitation coil 6 is no longer energized, the attracted state is maintained by the magnetic flux of the permanent magnet 8, as described above. Furthermore, it is clear that when a current is applied in the opposite direction to the excitation coil 6, the movable connecting member 5 is driven in the opposite direction and is stably held even when the excitation is stopped.

このように、本考案の直流ソレノイドにおいて
は、上述のように励磁コイルに流す電流の向きを
換えることによつて、可動連結部材5および永久
磁石7,8を直線的に両方向に往復二動作を行な
わせると共に、動作後、通電を止めて無励磁の状
態としても両端部に配設した永久磁石によつて自
己保持がなされるものであり、下記の効果を奏し
得る。
In this way, in the DC solenoid of the present invention, by changing the direction of the current flowing through the excitation coil as described above, the movable connecting member 5 and the permanent magnets 7 and 8 can be linearly moved back and forth in both directions. At the same time, even when the current is turned off after the operation and the magnet is not energized, it is self-retained by the permanent magnets disposed at both ends, and the following effects can be achieved.

(1) 励磁コイルに流す直流の極性を換えるのみで
往復動作直流ソレノイドが製作できる。
(1) A reciprocating DC solenoid can be manufactured by simply changing the polarity of the DC flowing through the excitation coil.

(2) 無通電状態において自己保持ができるため電
力消費、発熱等への考慮は必要としない。
(2) There is no need to consider power consumption, heat generation, etc. as it can self-maintain in a non-energized state.

(3) 発熱の心配がないため励磁コイルの電流密度
を大きくとることができるためかつ、可動連結
部材が励磁コイルの外側を摺動するため励磁コ
イルは小さくなり、ソレノイドを小型化でき
る。
(3) Since there is no fear of heat generation, the current density of the excitation coil can be increased, and since the movable connecting member slides on the outside of the excitation coil, the excitation coil can be made smaller, making it possible to downsize the solenoid.

(4) バネを用いていないため寿命が長い。(4) Long lifespan because no springs are used.

また、永久磁石7,8を弾性のあるもので形
成するならば、緩衝板9,9′は不用となる。
Furthermore, if the permanent magnets 7 and 8 are made of elastic material, the buffer plates 9 and 9' are unnecessary.

(5) 可動連結部材の一辺を取付手段として利用で
きるので、多様な取付方法に対応できかつ取付
の安定性が増す。
(5) Since one side of the movable connecting member can be used as a mounting means, various mounting methods can be supported and mounting stability is increased.

なお、本考案は前述した実施例に限定されず、
要旨を変更しない範囲で種々変形して実施できる
ことは無論である。
Note that the present invention is not limited to the above-mentioned embodiments,
It goes without saying that various modifications can be made without changing the gist.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流ソレノイドの一例を示す断
面図、第2図イは本考案の一実施例を示す断面
図、ロは同平面図、第3図は駆動直流電源との結
線図を示す。 5……可動連結部材、6……励磁コイル、7,
8……永久磁石、9,9′……緩衝板、10……
固定継鉄板、11……基板。
Fig. 1 is a sectional view showing an example of a conventional DC solenoid, Fig. 2 A is a sectional view showing an embodiment of the present invention, B is a plan view of the same, and Fig. 3 is a connection diagram with a driving DC power source. . 5...Movable connection member, 6...Exciting coil, 7,
8...Permanent magnet, 9,9'...Buffer plate, 10...
Fixed yoke plate, 11... board.

Claims (1)

【実用新案登録請求の範囲】 (1) 固定継鉄板を設けた励磁コイルと、該励磁コ
イルを囲繞するように設けた可動連結部材と、
該可動連結部材の上記励磁コイルを挾む2辺
に、該励磁コイルと所定の距離を設けてそれぞ
れ固着した永久磁石と、該永久磁石に固着され
上記固定継鉄板と磁路を形成する緩衝板とを具
備し、前記可動連結部材に固着された永久磁石
の吸引力によつて前記可動連結部材が前記励磁
コイルに沿つて上記所定の距離を摺動すること
で前記励磁コイルと前記永久磁石の一方とを吸
着状態に保持させるようにした往復自己保持型
直流ソレノイド。 (2) 励磁コイルの中心軸を、可動連結部材の摺動
方向に対して直角に配設したことを特徴とする
実用新案登録請求の範囲(1)記載の往復自己保持
型直流ソレノイド。
[Scope of Claim for Utility Model Registration] (1) An excitation coil provided with a fixed yoke plate, a movable connecting member provided so as to surround the excitation coil,
Permanent magnets fixed to two sides of the movable connecting member sandwiching the excitation coil at a predetermined distance from the excitation coil, and a buffer plate fixed to the permanent magnets and forming a magnetic path with the fixed yoke plate. The movable connecting member slides the predetermined distance along the excitation coil due to the attractive force of the permanent magnet fixed to the movable connecting member, so that the excitation coil and the permanent magnet are connected to each other. A reciprocating self-holding DC solenoid that holds one side in an adsorbed state. (2) The reciprocating self-retaining DC solenoid according to claim (1), wherein the central axis of the excitation coil is arranged perpendicular to the sliding direction of the movable connecting member.
JP1980051235U 1980-04-16 1980-04-16 Expired JPH019132Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980051235U JPH019132Y2 (en) 1980-04-16 1980-04-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980051235U JPH019132Y2 (en) 1980-04-16 1980-04-16

Publications (2)

Publication Number Publication Date
JPS56154120U JPS56154120U (en) 1981-11-18
JPH019132Y2 true JPH019132Y2 (en) 1989-03-13

Family

ID=29646147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980051235U Expired JPH019132Y2 (en) 1980-04-16 1980-04-16

Country Status (1)

Country Link
JP (1) JPH019132Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833352A (en) * 1971-09-02 1973-05-09
JPS55159531A (en) * 1979-05-31 1980-12-11 Nippon Electric Co Transfer type electromagnetic relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833352A (en) * 1971-09-02 1973-05-09
JPS55159531A (en) * 1979-05-31 1980-12-11 Nippon Electric Co Transfer type electromagnetic relay

Also Published As

Publication number Publication date
JPS56154120U (en) 1981-11-18

Similar Documents

Publication Publication Date Title
JPH0461305A (en) Bistable solenoid and knitting machine using the same
JP4667664B2 (en) Power switchgear
JPH0239846B2 (en)
WO2019181359A1 (en) Electromagnetic relay
JPH08180785A (en) Electromagnetic relay
JPH019132Y2 (en)
JPS60123005A (en) Polarized bistable solenoid
JPS63133604A (en) Polarized electromagnet
JPH0117799Y2 (en)
JPH0481843B2 (en)
JP2004172516A (en) Polarized electromagnet device
JPS5814699Y2 (en) Reciprocating drive device
JPH0260020A (en) Polar electromagnet device
JPH0446357Y2 (en)
JP2007129120A (en) Magnetic circuit
JP2017079106A (en) Electromagnetic relay
JPH0225204Y2 (en)
JPH0343683Y2 (en)
JPH0347294Y2 (en)
JPH0316264Y2 (en)
JPH0226005A (en) Monostable electromagnet
JPS6350819Y2 (en)
JPS63133605A (en) Polarized electromagnet device
JPH0347297Y2 (en)
JPS582149Y2 (en) Reciprocating drive device