JPH017941Y2 - - Google Patents

Info

Publication number
JPH017941Y2
JPH017941Y2 JP6854483U JP6854483U JPH017941Y2 JP H017941 Y2 JPH017941 Y2 JP H017941Y2 JP 6854483 U JP6854483 U JP 6854483U JP 6854483 U JP6854483 U JP 6854483U JP H017941 Y2 JPH017941 Y2 JP H017941Y2
Authority
JP
Japan
Prior art keywords
insulator
insulators
insulator device
series
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6854483U
Other languages
Japanese (ja)
Other versions
JPS59173940U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6854483U priority Critical patent/JPS59173940U/en
Publication of JPS59173940U publication Critical patent/JPS59173940U/en
Application granted granted Critical
Publication of JPH017941Y2 publication Critical patent/JPH017941Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)

Description

【考案の詳細な説明】 本考案は複数連碍子装置の汚損耐電圧の向上に
関するものである。
[Detailed Description of the Invention] The present invention relates to improving the contamination withstand voltage of a multiple insulator device.

275KV以上の電圧階級の電力系統においては、
電界強度の低減によるコロナ損失の低減や、線路
リアクタンス分の低減による安定度の向上などを
目的として、一般に電圧に応じて一相当りの導体
数を2,4,6,8本などとする所謂複導体方式
が採用される。この場合導体数が多くなるに伴い
その重量も大となることから、これを鉄塔に絶縁
して懸垂する碍子連に必要とされる機械的強度も
大とならざるを得ない。そこで第1図に示すよう
に碍子1として高強度なものを使用すると同時
に、これを系統電圧に対応して所要の絶縁距離が
得られるように、所要複数箇連結して作られた単
連碍子2を、その各構成碍子1がそれぞれ同一の
線L上において揃い、かつ間隔lをもつように上
下留金具3,4により複数連組合せた所謂複数連
碍子装置が使用される。
In power systems with a voltage class of 275KV or higher,
In order to reduce corona loss by reducing electric field strength and improve stability by reducing line reactance, the number of conductors per line is generally set to 2, 4, 6, 8, etc. depending on the voltage. A multi-conductor method is adopted. In this case, as the number of conductors increases, their weight also increases, so the mechanical strength required for the insulator chain that insulates and suspends them from the steel tower must also increase. Therefore, as shown in Figure 1, a high-strength insulator is used as the insulator 1, and at the same time, a plurality of single insulators are made by connecting the required number of insulators to obtain the required insulation distance according to the system voltage. A so-called multiple insulator device is used in which a plurality of insulators 1 are assembled together using upper and lower fasteners 3 and 4 so that each component insulator 1 is aligned on the same line L and is spaced apart from each other by l.

ところで一般に碍子の汚損湿潤、例えば塩害に
よる汚損湿潤時、碍子の耐電圧が低下することは
よく知られるところであるが、特に第1図に示し
たような従来の複数連碍子装置の場合には、一つ
の碍子連において局部的に発生したアークが他の
隣接する碍子連に絡み合つて、その低抵抗部分に
おいてアークを発生させ、これが更に他の隣接す
る碍子連に波及することになるため、汚損耐電圧
は同一連結長をもつ単連碍子装置に比べて低下す
る。第2図はその測定結果の一例であつて、54ト
ンの高強度懸垂碍子(笠径380mm、漏れ距離670
mm)を38箇連結して形成した単連碍子を、645mm
の間隔l(第1図参照)をもたせて2連吊りした
ものと4連吊りしたものについて、汚損液(塩
分)の導電度を変えながら、等価霧中5%フラツ
シオーバ電圧を測定した結果である。
By the way, it is generally well known that the withstand voltage of an insulator decreases when an insulator becomes dirty or wet, for example, when it becomes dirty or wet due to salt damage. Particularly in the case of a conventional multiple insulator device as shown in FIG. An arc that occurs locally in one insulator strand becomes intertwined with other adjacent insulator strands, generating an arc in the low resistance part, which further spreads to other adjacent insulator strands, resulting in contamination. The withstand voltage is lower than that of a single insulator device with the same connection length. Figure 2 shows an example of the measurement results for a 54-ton high-strength suspension insulator (shade diameter 380 mm, leakage distance 670 mm).
645 mm)
These are the results of measuring the equivalent 5% flashover voltage in fog while changing the conductivity of the soiling liquid (salt) for two and four hanging systems with an interval l (see Figure 1).

これから明らかなようにフラツシオーバ電圧は
汚損量に関係なく、2連吊りbの場合単連aに対
して約5%、4連吊りcの場合は単連aのものに
対して約10%低下する。また計算によれば連数の
増加に比例して汚損耐電圧は低下する。従つて送
電損失の一層の低減による効率のよい送電を目指
して現在研究が行われている超々高圧送電例えば
1000KV送電のように、1相当りの導体数の必然
的な増大から、連碍子数が多くなるのを避けられ
ない場合には、その対策が必要であり例えば次の
ような方法が考えられる。その一つは一連当りの
碍子の連結数を増すことにより耐電圧を大とする
方法であり、他の一つは連碍子間の間隔を広くと
るようにして、隣接連碍子間における局部アーク
の絡み合いを防ぐ方法である。しかし碍子の連結
箇数の増大が、仮に塩害を受け易い海岸線に沿つ
た線路のみであつて全線に及ばないとしても、送
電系統の建設費を高くする結果となる。また間隔
を広げることによつて汚損耐電圧に低下を満足す
べき程度に防ぐためには、間隔を相当広くせざる
を得ない結果となる。このため鉄塔の構造を従来
と大きく変えなければならないなどの新しい難点
を生むため、その実現は極めて難かしい。
As is clear from this, regardless of the amount of contamination, the flashover voltage decreases by about 5% compared to single station A in the case of 2-station B, and about 10% compared to single station A in the case of 4-station C. . Also, according to calculations, the contamination withstand voltage decreases in proportion to the increase in the number of stations. Therefore, for example, ultra-high voltage power transmission, which is currently being researched with the aim of efficient power transmission by further reducing power transmission losses, is
When it is unavoidable to increase the number of insulators due to the inevitable increase in the number of conductors per unit, such as in 1000KV power transmission, countermeasures are necessary, and the following methods may be considered, for example. One method is to increase the withstand voltage by increasing the number of connected insulators per series, and the other method is to increase the distance between the insulators to prevent local arcs between adjacent series. This is a way to prevent entanglement. However, an increase in the number of insulator connections will result in higher construction costs for the power transmission system, even if only the lines along the coastline, which are susceptible to salt damage, do not cover the entire line. Furthermore, in order to prevent the contamination withstand voltage from decreasing to a satisfactory extent by increasing the interval, the interval must be made considerably wider. This creates new difficulties, such as requiring major changes to the structure of the steel tower, making it extremely difficult to realize.

本考案は従来と同一連間隔の下に連数とほゞ関
係なく、碍子の連結箇数が同一の単連碍子装置と
ほゞ同等の汚損耐電圧特性をもたせ得る複数連碍
子装置の提供を目的としてなされたもので、次に
図面を用いてその詳細を説明する。
The present invention aims to provide a multi-row insulator device which can have almost the same stain resistance voltage characteristics as a conventional single-row insulator device with the same number of connected insulators, regardless of the number of rows, under the same series spacing. This was developed for this purpose, and the details will be explained below using the drawings.

複数連碍子装置における汚損耐電圧の低下が、
単連碍子装置によつては見られない状態、即ち1
箇の碍子連において発生した局部アークが、隣接
する他の碍子連に絡み合うことにより新しい局部
アークを発生させ、これが他の隣接碍子連に順次
波及することによるものであることは前記した通
りである。
Decrease in the contamination withstand voltage in multiple insulator equipment
Conditions not seen in single insulator devices, i.e. 1
As mentioned above, a local arc generated in a particular insulator strand generates a new local arc by intertwining with other adjacent insulator strands, and this successively spreads to other adjacent insulator strands. .

本考案者は従来の複数連碍子装置の単連碍子装
置に対する汚損耐電圧特性の低下が、単連碍子を
複数箇組合せたことによる電界分布の変化にあ
り、これが局部アークの発生を招き易くすること
にあるとする観点から、単連碍子装置の上下吊り
金具による組合せ構造について実験を繰返した。
その結果第1図により前記した従来の複数連碍子
装置のように、各単連碍子2を構成する各碍子1
を、それぞれ同一位置において隣接するように配
置することなく、複数連碍子装置を構成する各単
連碍子2の位置を交互に上下方向にずらせて位置
させることにより、汚損耐電圧特性の向上が見ら
れることを明らかにした。
The present inventor believes that the decrease in the contamination withstand voltage characteristics of conventional multiple insulator devices compared to single insulator devices is due to changes in electric field distribution due to the combination of multiple single insulators, which makes local arcs more likely to occur. From this viewpoint, we repeated experiments on a combination structure using upper and lower hanging metal fittings of a single insulator device.
As a result, as in the conventional multiple insulator device described above with reference to FIG.
By arranging the single insulators 2 constituting the multiple insulator device so as to alternately shift them in the vertical direction instead of arranging them adjacent to each other in the same position, the contamination withstand voltage characteristics can be improved. It was made clear that it would be possible.

本考案は以上の研究結果からなされたものであ
つて、その特徴とするところは、第3図に示すよ
うに各単連碍子2を構成する各碍子1が、隣接す
る各単連碍子2を構成する碍子1間、即ち磁器部
1aが隣接する碍子1の連結金具1bに対応して
位置するようにして、図中に点線によつて図示す
るように、千鳥形配置になるようにしたものであ
る。
The present invention was developed based on the above research results, and its characteristics are as shown in FIG. As shown by the dotted lines in the figure, the porcelain parts 1a are located between the constituent insulators 1, that is, the porcelain parts 1a correspond to the connecting fittings 1b of the adjacent insulators 1, so that they are arranged in a staggered manner. It is.

第4図は以上の実験結果を示すもので、54トン
の高強力碍子(笠径380mm、漏れ距離670mm)を33
箇連結して構成された単連碍子装置Aと、これを
千鳥形となるように間隔645mmをおいて4連吊り
して構成した本考案複数連碍子装置B、および同
一単連碍子装置を同一間隔、かつ従来と同様な配
置で4連吊りして構成した複数連碍子装置Cとに
ついて、塩分付着密度を変えながら等価霧中5%
フラツシユオーバ電圧を求めたものである。
Figure 4 shows the above experimental results. A 54-ton high-strength insulator (shade diameter 380 mm, leakage distance 670 mm) was
A single series insulator device A constructed by connecting multiple series insulators, a multiple series insulator device B of the present invention constructed by suspending four series insulators at intervals of 645 mm so as to form a staggered pattern, and the same single series insulator device A. 5% in the equivalent fog while changing the salt adhesion density for the multiple insulator device C, which is configured by hanging four insulators with the same spacing and arrangement as before.
This is the result of determining the flashover voltage.

これから明らかなように、本考案複数連碍子装
置Bの汚損耐電圧特性は、図中実線曲線によつて
示すように、図中に点線曲線で示す従来の複数連
碍子装置Cのそれに比べて向上し、塩分付着密度
に関係なく単連碍子装置Aの汚損耐電圧特性と一
致する。従つて第3図に示すように、ほゞ碍子半
箇分だけ連方向の長さを長くするのみで、一連当
りの碍子の連結箇数、各連の間隔を従来と全く同
一としたまゝ、単連碍子装置と同等の汚損耐電圧
特性をもつた複数連碍子装置を提供でき、従来の
汚損耐電圧特性の改善方法のように、送電線の建
設費を高くしたりすることがない。
As is clear from this, the contamination withstand voltage characteristics of the inventive multiple insulator device B, as shown by the solid line curve in the figure, are improved compared to those of the conventional multiple insulator device C, shown by the dotted line curve in the figure. However, regardless of the salt adhesion density, the contamination withstand voltage characteristics match those of the single insulator device A. Therefore, as shown in Figure 3, by only increasing the length in the chain direction by approximately half the length of the insulator, the number of connected insulators per series and the spacing between each series remain exactly the same as before. , it is possible to provide a multi-row insulator device that has the same contamination withstand voltage characteristics as a single-row insulator device, and does not increase the construction cost of the power transmission line, unlike conventional methods for improving the contamination withstand voltage characteristics.

なお以上のように連を構成する各碍子が、隣接
する連の各碍子間に入るようにして千鳥形にする
場合、厳密には碍子の形状、特に磁器部の形状に
よつて汚損耐電圧が変るので、碍子1間に入る隣
接碍子1の上下位置の調整を必要とする場合があ
る。また以上では懸垂用について説明したが、耐
張用の場合にも適用できることはいうまでもな
い。また本考案のように単連碍子を、連方向に交
互に位置を異ならせて吊るために使用する、第3
図の上下吊り金具3,4は、従来の複数連碍子装
置のものに比べて稍形状が異なり価額も稍高くな
るが、碍子装置全体の価額に対して殆ど問題にな
らない程度である。
In addition, when creating a staggered shape in which each insulator constituting a series is inserted between each insulator of an adjacent series as described above, strictly speaking, the contamination withstand voltage depends on the shape of the insulators, especially the shape of the porcelain part. Therefore, it may be necessary to adjust the vertical position of the adjacent insulators 1 between the insulators 1. Furthermore, although the explanation has been given above for use in suspension, it goes without saying that it can also be applied to use in tension. In addition, as in the present invention, a third type of insulator is used for hanging single-strand insulators at different positions alternately in the chain direction.
The upper and lower hanging fittings 3 and 4 shown in the figure have a slightly different shape and are slightly more expensive than those of the conventional multiple insulator device, but this is hardly a problem with respect to the price of the entire insulator device.

以上の説明から明らかなように、隣接する単連
碍子を連方向に位置を異ならせて配置するのみの
簡単な構成により、単連碍子装置と同等の汚損耐
電圧特性をもつた複数連碍子装置を提供しうるも
ので、その実用上の効果は大きい。
As is clear from the above explanation, a multi-row insulator device with a contamination withstand voltage characteristic equivalent to that of a single-row insulator device can be achieved by simply arranging adjacent single-row insulators at different positions in the row direction. The practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の複数連碍子装置を示す図、第2
図は単連碍子装置と従来の複数連碍子装置の汚損
耐電圧特性図、第3図は本考案複数連碍子装置の
一実施例図、第4図は単連碍子装置と本考案複数
連碍子装置の汚損耐電圧特性図である。 1……碍子、1a……その磁器部、1b……連
結金具、2……単連碍子。
Figure 1 shows a conventional multiple insulator device, Figure 2
The figure shows the contamination withstand voltage characteristics of a single insulator device and a conventional multiple insulator device, Figure 3 is an example of the multiple insulator device of the present invention, and Figure 4 shows a single insulator device and a multiple insulator device of the present invention. FIG. 3 is a diagram showing the contamination withstand voltage characteristics of the device. 1...Insulator, 1a...The porcelain part, 1b...Connection fittings, 2...Single insulator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数連碍子装置を形成する各単連碍子が、隣接
する単連碍子との間で千鳥形配置となるように連
方向に位置をずらせて配置されたことを特徴とす
る複数連碍子装置。
A multiple series insulator device, characterized in that each single series insulator forming the multiple series insulator device is arranged with its position shifted in the series direction so as to form a staggered arrangement between adjacent single series insulators.
JP6854483U 1983-05-10 1983-05-10 Multiple insulator device Granted JPS59173940U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6854483U JPS59173940U (en) 1983-05-10 1983-05-10 Multiple insulator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6854483U JPS59173940U (en) 1983-05-10 1983-05-10 Multiple insulator device

Publications (2)

Publication Number Publication Date
JPS59173940U JPS59173940U (en) 1984-11-20
JPH017941Y2 true JPH017941Y2 (en) 1989-03-02

Family

ID=30198714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6854483U Granted JPS59173940U (en) 1983-05-10 1983-05-10 Multiple insulator device

Country Status (1)

Country Link
JP (1) JPS59173940U (en)

Also Published As

Publication number Publication date
JPS59173940U (en) 1984-11-20

Similar Documents

Publication Publication Date Title
US2820083A (en) Aerial cable
US4323722A (en) Overhead electric power transmission line jumpering system for bundles of five or more subconductors
AU755659B2 (en) High voltage direct current (HVDC) cables and subsea installation of same
JPH017941Y2 (en)
US2039025A (en) Electrical conductor
CN107394737B (en) Transmission line of alternation current intersects crossing structure
CN207319788U (en) A kind of parallel conductor cable
US2084580A (en) Bus bar supporting means in bus duct
FI115091B (en) Three-phase wiring arrangement
RU97203U1 (en) Uninsulated wire
CN204215742U (en) A kind of multilayer super-huge cross section milliken conductor
US3249773A (en) Optimization of open-wire transmission lines
CN107386771A (en) Cable type double back steel pipe rod-type terminal tower before and after a kind of 110kV overhead transmission lines
US3248475A (en) Antenna insulator
JPH038022Y2 (en)
US4086425A (en) Three-phase cable system with compensation of longitudinal voltages induced in accompanying return-flow pipes for cooling water
RU2460654C1 (en) Cross bonding configuration of overhead hv supply line wires with hyper symmetry of linear electric parameters of line operated at intensive interferences of railway ac contact system electromagnetic field
CN114336398B (en) Grounding device for split-phase main transformer of nuclear power station
CA2077421A1 (en) Installation path network for distribution areas
CN212406301U (en) 750kV transmission of electricity single gyration angle tower
FI71032C (en) FITTING CABLE ELLER
RU64812U1 (en) CONDUCTING VEIN
CN208347419U (en) A kind of novel three back transmission lines steel tower
JPH03117315A (en) Multiconductor transmission line
CN211125148U (en) Power cable insulated wire core with five-division conductor without central unit