JPH017701Y2 - - Google Patents

Info

Publication number
JPH017701Y2
JPH017701Y2 JP1982086210U JP8621082U JPH017701Y2 JP H017701 Y2 JPH017701 Y2 JP H017701Y2 JP 1982086210 U JP1982086210 U JP 1982086210U JP 8621082 U JP8621082 U JP 8621082U JP H017701 Y2 JPH017701 Y2 JP H017701Y2
Authority
JP
Japan
Prior art keywords
desorption
carbon monoxide
gas
tower
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982086210U
Other languages
Japanese (ja)
Other versions
JPS58189137U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982086210U priority Critical patent/JPS58189137U/en
Publication of JPS58189137U publication Critical patent/JPS58189137U/en
Application granted granted Critical
Publication of JPH017701Y2 publication Critical patent/JPH017701Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【考案の詳細な説明】 この考案は、一酸化炭素(以下、COと称する
ことがある)の回収装置に関し、特にCO吸収後
の吸収液よりCOを脱離させる工程に設けられる
放散塔の改善に関するものである。
[Detailed description of the invention] This invention relates to a carbon monoxide (hereinafter sometimes referred to as CO) recovery device, and in particular improves the stripping tower installed in the process of desorbing CO from the absorption liquid after absorbing CO. It is related to.

化学工業においては、近年、COおよびH2が化
学原料として注目を集め、それらの分離、濃縮方
法が大きな関心となつている。また、化学量論的
にCOとH2の比が一定のものに調節すること即ち
濃度のコントロールも重要な意義をもつている。
In the chemical industry, CO and H 2 have recently attracted attention as chemical raw materials, and methods for separating and concentrating them have been of great interest. Furthermore, controlling the stoichiometric ratio of CO and H 2 to a constant value, that is, controlling the concentration, also has important significance.

従来、吸収法によるCOの分離、濃縮プロセス
において、COを吸収した液からのCOの脱離方法
としては、放散塔において吸収液の温度を高める
かあるいは減圧することにより吸収液を構成する
溶剤等を蒸発させ、吸収されたCOを溶剤の蒸気
とともに放散させる操作が行われている。
Conventionally, in the CO separation and concentration process using the absorption method, the method for desorbing CO from the liquid that has absorbed CO is to increase the temperature or reduce the pressure of the absorption liquid in a stripping tower, and then remove the solvent, etc. that makes up the absorption liquid. The operation is carried out to evaporate the CO and dissipate the absorbed CO along with the solvent vapor.

上記COの吸収液としては、例えば特願昭55−
21708号に開示された塩化第1銅のトリス(ジメ
チルアミノ)ホスフインオキシド溶液(以下、
HMPA液と称することがある)が優れているが、
この液の常圧における沸点は235℃と比較的高温
である。このため、放散塔でHMPA液の蒸気を
得るためには、HMPAの沸点(235℃)以上の温
度を与える高圧スチームを要し、そのため、所要
熱エネルギが大となる上、COの回収効率は必ず
しも高くない等の欠点がある。さらに、このよう
にして回収したCOをH2と反応させて例えばメタ
ノールあるいは酢酸等を合成する場合、別途CO
とH2の混合装置が必要となる等の欠点もある。
As the above-mentioned CO absorption liquid, for example,
21708, a solution of cuprous chloride in tris(dimethylamino)phosphine oxide (hereinafter referred to as
(sometimes called HMPA liquid) is superior, but
The boiling point of this liquid at normal pressure is 235°C, which is relatively high. For this reason, in order to obtain vapor from HMPA liquid in a stripping tower, high-pressure steam that provides a temperature above the boiling point of HMPA (235°C) is required, which requires a large amount of thermal energy and reduces CO recovery efficiency. It has drawbacks such as not necessarily being expensive. Furthermore, when the CO recovered in this way is reacted with H 2 to synthesize, for example, methanol or acetic acid, the CO
There are also disadvantages such as the need for a mixing device for H 2 and H 2 .

本発明の目的は、吸収液の沸点が高いかまたは
その蒸発潜熱が大きい場合であつても所要熱量が
少くかつ高効率下にCOを分離することができる
COの回収装置を提供することにある。
An object of the present invention is to be able to separate CO with high efficiency and with a small amount of heat required even when the boiling point of the absorption liquid is high or its latent heat of vaporization is large.
Our goal is to provide CO recovery equipment.

上記目的を達成するため、この考案は、吸収液
との接触によりCOを吸収させるための吸収塔と、
CO吸収後の吸収液からCOを脱離させるための放
散塔とを備えたCO回収装置において、上記放散
塔にCO脱離促進用気体の供給系統を設けたこと
を特徴とする。
In order to achieve the above object, this invention includes an absorption tower for absorbing CO through contact with an absorption liquid;
A CO recovery apparatus equipped with a stripping tower for desorbing CO from an absorption liquid after absorbing CO, characterized in that the stripping tower is provided with a supply system for a gas for promoting CO desorption.

この考案において、COの吸収液は、従来公知
のものが広く適用されるが、既述した塩化第1銅
のHMPA液が特に好ましい。
In this invention, conventionally known CO absorption liquids are widely applicable, but the above-mentioned cuprous chloride HMPA liquid is particularly preferred.

CO脱離促進用の気体(以下、脱離媒体と称す
ることがある)は、常態で気相を示しかつ吸収液
に溶解させたり反応することのない気体またはそ
の混合物であれば特に制限はないが、CO回収後
の混合状態においてCOと反応して有用な物質を
生成することのできるH2や塩素(以下、Ll2と称
することがある)ガスが好ましい。
The gas for promoting CO desorption (hereinafter sometimes referred to as desorption medium) is not particularly limited as long as it is a gas or a mixture thereof that normally exhibits a gas phase and does not dissolve or react with the absorption liquid. However, H 2 or chlorine (hereinafter sometimes referred to as Ll 2 ) gas, which can react with CO to produce useful substances in the mixed state after CO recovery, is preferable.

以下、図面に示す実施例によりこの考案をさら
に詳しく説明する。
This invention will be explained in more detail below with reference to embodiments shown in the drawings.

第1図に示す装置は、吸収液の循環系統により
結ばれた主として吸収塔2および放散塔3からな
る従来部分と、上記放散塔3に特徴的に設けられ
た脱離媒体の供給系統から構成されている。な
お、上記脱離媒体の供給系統は、脱離媒体用貯蔵
タンク5と、これに連通する脱離媒体の供給配管
61と、該配管61の途中に設けられた調節弁7
と、配管61を通つて送られる脱離媒体を放散塔
3内に供給するため放散塔3の下部に設けられた
脱離媒体噴出ノズル10から主に構成されてい
る。また、6は放散塔3の上部より排出される
CO脱離ガス中の各種成分濃度を測定するための
検知器であり、得られる信号はライン101によ
り送られ、これにより調節弁7が操作される。
The apparatus shown in FIG. 1 consists of a conventional part mainly consisting of an absorption tower 2 and a stripping tower 3 connected by an absorption liquid circulation system, and a desorption medium supply system characteristically provided in the stripping tower 3. has been done. The desorption medium supply system includes a desorption medium storage tank 5, a desorption medium supply pipe 61 communicating with the desorption medium storage tank 5, and a control valve 7 provided in the middle of the pipe 61.
and a desorption medium spouting nozzle 10 provided at the lower part of the stripping tower 3 for supplying the desorption medium sent through the pipe 61 into the stripping tower 3. In addition, 6 is discharged from the upper part of the stripping tower 3.
This is a detector for measuring the concentration of various components in the CO desorbed gas, and the signals obtained are sent through line 101, thereby operating the control valve 7.

上記構成の装置において、ライン11を経て送
られるCOを含む原料ガスは必要に応じて前処理
装置1で前処理されたのち、原料ガスライン12
を通じて吸収塔2の下部に入り、吸収塔内の吸収
液である塩化第1銅のHMPA溶液と接触し、CO
が選択的に吸収される。CO吸収後の排ガスは適
宜、飛沫同伴成分を除去されたのち吸収塔上部の
排ガスライン21を経て大気中に放出される。一
方、COを吸収した液は、ポンプ8Aの作動によ
り吸収塔底部の吸収液ライン31から熱交換器4
に送られて加熱され、さらに脱離塔3の頭部に送
られる。脱離塔3内を流下する吸収液は脱離媒体
タンク5から配管61をへて脱離塔内に導入され
る脱離媒体のH2ガスとほぼ120℃の昇温下で接触
する。これにより、吸収液のまわりのCOガス濃
度が下がり、COの脱離速度が促進されるととも
に、吸収液中のCOはほぼ完全に分離する。COと
H2および吸収液溶媒蒸気を含むガスは脱離塔3
上部のガスライン41を経たのち冷却塔9に導か
れ、ここで溶媒蒸気が回収される。回収された溶
媒はライン71を通り、脱離塔の下部へ環流され
る。COを分離された吸収液はポンプ8Bの作動
により脱離塔3底部のライン51から熱交換器4
に送られて冷却され、次いで吸収塔2の上部へも
どり循環使用される。脱離塔3の上部から排出さ
れるガスはCOおよびH2を含有するが、これらの
濃度は検知器6によりモニタリングされ、この信
号に基ずき所定のH2濃度を保つべく調節弁7が
操作される。上記濃度は化学合成用原料ガスに適
するものとすることが望ましい。すなわち、例え
ばメタノール合成用においては、COとH2のモル
比が1:2になるようにすることが好ましい。
In the apparatus configured as described above, the raw material gas containing CO sent through the line 11 is pretreated in the pretreatment device 1 as necessary, and then
The CO2 enters the lower part of the absorption tower 2 through the CO
is selectively absorbed. The exhaust gas after CO absorption is appropriately removed from entrained components and then released into the atmosphere through the exhaust gas line 21 at the top of the absorption tower. On the other hand, the liquid that has absorbed CO is transferred from the absorption liquid line 31 at the bottom of the absorption tower to the heat exchanger 4 by the operation of the pump 8A.
It is sent to the top of the desorption column 3, where it is heated. The absorption liquid flowing down in the desorption tower 3 comes into contact with H 2 gas, which is a desorption medium, introduced into the desorption tower from the desorption medium tank 5 through a pipe 61 at an elevated temperature of approximately 120°C. This reduces the CO gas concentration around the absorption liquid, accelerates the rate of CO desorption, and almost completely separates the CO in the absorption liquid. CO and
The gas containing H 2 and absorbent solvent vapor is transferred to the desorption column 3.
After passing through the upper gas line 41, it is led to the cooling tower 9, where the solvent vapor is recovered. The recovered solvent passes through line 71 and is refluxed to the bottom of the desorption column. The absorption liquid from which CO has been separated is transferred from the line 51 at the bottom of the desorption tower 3 to the heat exchanger 4 by the operation of the pump 8B.
It is sent to the upper part of the absorption tower 2 to be cooled, and then returned to the upper part of the absorption tower 2 for circulation. The gas discharged from the upper part of the desorption column 3 contains CO and H 2 , and the concentration of these is monitored by the detector 6 , and based on this signal, the control valve 7 is operated to maintain a predetermined H 2 concentration. Be manipulated. It is desirable that the above concentration be suitable for a raw material gas for chemical synthesis. That is, for example, for methanol synthesis, it is preferable that the molar ratio of CO and H 2 is 1:2.

以上の実施例は、脱離媒体としてH2を使用し、
メタノールあるいは酢酸の合成用原料ガスを得る
場合について説明したものであるが、他の脱離媒
体、例えばCl2を使用する場合でも同様に実施で
きることは云うまでもない。
The above examples use H2 as the desorption medium,
Although the case of obtaining a raw material gas for synthesis of methanol or acetic acid has been described, it goes without saying that the same process can be carried out using other desorption media, such as Cl 2 .

この場合、COとCl2の比を1:1に設定するこ
とにより、下記(1)式に示すホスゲン合成に適した
合成用ガス原料が好適に得られる。
In this case, by setting the ratio of CO and Cl 2 to 1:1, a synthesis gas raw material suitable for phosgene synthesis represented by the following formula (1) can be suitably obtained.

CO+Cl2→COCl2 ……(1) 上記の各実施例は、いずれも常圧処理について
示したものであるが、COの放散速度は下記(2)式
に示すごとく圧力の関数として把握できることが
知られており、従つて、吹込む脱離媒体量を増加
させることにより放散速度を高め得ることは云う
までもない。
CO + Cl 2 → COCl 2 ...(1) The above examples all show normal pressure treatment, but it is clear that the CO diffusion rate can be understood as a function of pressure as shown in equation (2) below. It goes without saying that the rate of desorption can be increased by increasing the amount of desorption medium injected.

CO放散速度∝k・PT・Lco ……(2) (式中、kは速度定数、PTは操作圧力、Lcoは
液中のCO濃度である) 以上、この考案によれば、放散塔に脱離媒体の
供給系統を設けたことにより、吸収液からのCO
の脱離を吸収液の沸点以下の低温下であつても効
率よく実施することが可能となり、これにより所
要熱量は低減されることとなつた。
CO emission rate ∝k・P T・Lco ...(2) (In the formula, k is the rate constant, P T is the operating pressure, and Lco is the CO concentration in the liquid.) As described above, according to this invention, the stripping tower By installing a desorption medium supply system in the
It has become possible to efficiently desorb the absorbent even at a low temperature below the boiling point of the absorbent, thereby reducing the amount of heat required.

さらに、脱離媒体の種類の選択と吹込み量の制
御を好適に行うことにより、化学合成用の原料ガ
スを直接生産することが可能となり、工程省略に
ともなう経済性の向上も達成されることとなつ
た。
Furthermore, by appropriately selecting the type of desorption medium and controlling the amount of injection, it is possible to directly produce raw material gas for chemical synthesis, and economic efficiency can be improved by omitting processes. It became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この考案の実施例を示すCO回収装
置の系統図である。 3……放散塔、5……脱離媒体貯蔵タンク、6
……濃度検知器、7……調節弁、10……脱離媒
体噴出ノズル、61……脱離媒体供給配管。
FIG. 1 is a system diagram of a CO recovery device showing an embodiment of this invention. 3...Diffusion tower, 5...Desorption medium storage tank, 6
... Concentration detector, 7 ... Control valve, 10 ... Desorption medium spout nozzle, 61 ... Desorption medium supply piping.

Claims (1)

【実用新案登録請求の範囲】 (1) 吸収液との接触により一酸化炭素を吸収させ
るための吸収塔と、一酸化炭素吸収後の吸収液
から一酸化炭素を脱離させるための放散塔とを
備えた一酸化炭素回収装置において、上記放散
塔に一酸化炭素脱離促進用気体の供給系統を設
けたことを特徴とする一酸化炭素回収装置。 (2) 実用新案登録請求の範囲第1項において、一
酸化炭素脱離促進用の気体は水素ガスであるこ
とを特徴とする一酸化炭素回収装置。 (3) 実用新案登録請求の範囲第1項において、一
酸化炭素脱離促進用の気体は塩素ガスであるこ
とを特徴とする一酸化炭素回収装置。
[Claims for Utility Model Registration] (1) An absorption tower for absorbing carbon monoxide through contact with an absorption liquid, and a stripping tower for desorbing carbon monoxide from the absorption liquid after absorbing carbon monoxide. A carbon monoxide recovery device comprising: a carbon monoxide recovery device, characterized in that the stripping tower is provided with a supply system for a gas for promoting carbon monoxide desorption. (2) A carbon monoxide recovery device according to claim 1 of the utility model registration, characterized in that the gas for promoting carbon monoxide desorption is hydrogen gas. (3) The carbon monoxide recovery device according to claim 1 of the utility model registration, characterized in that the gas for promoting carbon monoxide desorption is chlorine gas.
JP1982086210U 1982-06-11 1982-06-11 Carbon monoxide recovery equipment Granted JPS58189137U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982086210U JPS58189137U (en) 1982-06-11 1982-06-11 Carbon monoxide recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982086210U JPS58189137U (en) 1982-06-11 1982-06-11 Carbon monoxide recovery equipment

Publications (2)

Publication Number Publication Date
JPS58189137U JPS58189137U (en) 1983-12-15
JPH017701Y2 true JPH017701Y2 (en) 1989-03-01

Family

ID=30095039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982086210U Granted JPS58189137U (en) 1982-06-11 1982-06-11 Carbon monoxide recovery equipment

Country Status (1)

Country Link
JP (1) JPS58189137U (en)

Also Published As

Publication number Publication date
JPS58189137U (en) 1983-12-15

Similar Documents

Publication Publication Date Title
EP0469781B1 (en) Separation of carbon dioxide and nitrogen from combustion exhaust gas with nitrogen and argon by-product recovery
US6235091B1 (en) Systems for selectively separating CO2 from a multi-component gaseous stream
KR20010049513A (en) Carbon dioxide recovery with composite amine blends
JPS5918092B2 (en) Acid gas removal method
US3217466A (en) Recovery of ethylene oxide
JP2005507844A5 (en)
KR20010070022A (en) Nitrogen system for regenerating chemical solvent
JPH017701Y2 (en)
US4186181A (en) Process for the production of hydrogen
US7461521B2 (en) System unit for desorbing carbon dioxide from methanol
JP3322923B2 (en) Method for producing carbon monoxide and hydrogen
GB2123027A (en) Process for producing a synthesis gas having an enriched content of carbon oxides
JP2948846B2 (en) Method for removing hydrogen sulfide from gas mixtures
JPH03242302A (en) Production of hydrogen and carbon monoxide
JPH0761843B2 (en) Pressure swing type gas separator for methanol cracker
JP2001097905A (en) Method for producing methanol
JPS6058744B2 (en) Method for producing urea solution from NH↓3 and CO↓2
JP3924669B2 (en) Method for producing aqueous ammonia solution
JP2000272905A (en) Removal of organic impurity in methanol degradation gas by closed tsa method
JPS62143808A (en) Separation and recovery of carbon monoxide
JPH08127573A (en) Recovery of ethylene oxide
JPS63242318A (en) Carbon monoxide separation/concentration device
JP2001039911A (en) Production of methanol
JPS63260801A (en) Humidification of hydrocarbon gas for reforming
JPS6236003A (en) Cleaning method for adsorption device in hydrogen production