JPH0161202B2 - - Google Patents

Info

Publication number
JPH0161202B2
JPH0161202B2 JP10558883A JP10558883A JPH0161202B2 JP H0161202 B2 JPH0161202 B2 JP H0161202B2 JP 10558883 A JP10558883 A JP 10558883A JP 10558883 A JP10558883 A JP 10558883A JP H0161202 B2 JPH0161202 B2 JP H0161202B2
Authority
JP
Japan
Prior art keywords
copolymer
propylene
weight
ethylene
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10558883A
Other languages
Japanese (ja)
Other versions
JPS59230205A (en
Inventor
Yoshikazu Kutsuwa
Koji Kitahara
Toshuki Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP10558883A priority Critical patent/JPS59230205A/en
Priority to EP83112638A priority patent/EP0129617B1/en
Priority to DE8383112638T priority patent/DE3375619D1/en
Priority to US06/562,727 priority patent/US4526707A/en
Priority to KR1019830006159A priority patent/KR900007127B1/en
Publication of JPS59230205A publication Critical patent/JPS59230205A/en
Priority to US06/723,293 priority patent/US4588855A/en
Publication of JPH0161202B2 publication Critical patent/JPH0161202B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、半導電性組成物に関する。曎に詳し
くは、高電圧甚架橋ポリ゚チレンに絶瞁電力ケヌ
ブルの倖郚半導電局圢成材料などずしお奜適に䜿
甚される半導電性組成物に関する。 埓来、高電圧甚架橋ポリ゚チレン絶瞁電力ケヌ
ブルにおいおは、䞭心導䜓ず架橋ポリ゚チレン絶
瞁局ずの間および架橋ポリ゚チレン絶瞁局ず遮蔜
局ずの間に生ずる空隙で発生するコロナ攟電によ
る劣化を防止するために、架橋ポリ゚チレン絶瞁
局の内、倖局に、それぞれ内郚および倖郚半導電
局を蚭けるこずが行われおいる。 この半導電局は、その蚭眮の目的からい぀お、
架橋ポリ゚チレン絶瞁局ず良奜に密着しか぀衚面
平滑性にすぐれおいるこずが必芁であり、このた
めに、最近はこの局ずポリ゚チレン絶瞁局ずを同
時に抌出す、いわゆる倚局同時抌出法によ぀お成
圢される傟向にな぀おきおいる。 このようにしお圢成される内、倖郚半導電局の
うち、倖郚半導電局は、ケヌブルの接続および端
末凊理に際し、架橋ポリ゚チレン絶瞁局から剥ぎ
ずられるが、このずき䞡局間の接着が匷固である
ず、剥離䜜業が困難ずな぀たり、あるいは無理な
剥離を行なうず、剥離䜜業䞭に架橋ポリ゚チレン
絶瞁局に傷を生ぜしめたりしお奜たしくない。 埓来、この皮の半導電局圢成材料ずしおは、゚
チレン−酢酞ビニル共重合䜓、゚チレン−゚チル
アクリレヌト共重合䜓などに導電性カヌボンブラ
ツクを配合した組成物が甚いられおきたが、これ
らの゚チレン系暹脂をベヌスにした組成物は、䞀
般に架橋ポリ゚チレン絶瞁局に匷固に接着し、そ
のためその絶瞁局から半導電局を剥離させるこず
が著しく困難であり、ケヌブルの端末凊理䜜業に
も著しい支障を生ぜしめおいた。 こうした欠点を避けるために、埓来から皮々の
半導電局圢成材料が提案されおいる。䟋えば、酢
酞ビニル含有量80重量以䞊の゚チレン−酢酞ビ
ニル共重合䜓、゚チレン−酢酞ビニル共重合䜓に
スチレン系重合䜓、ニトリルゎム、スチレン系ゎ
ム、ポリ塩化ビニル、塩玠化ポリ゚チレンなどを
ブレンドしたもの、゚チレン−酢酞ビニル共重合
䜓を塩玠化したりたたはスチレンをグラフト共重
合させたものなどの䜿甚が提案されおいるが、こ
れらはいずれも可撓性に乏しい、䜎枩においお脆
匱である。あるいは架橋工皋で分解し易いなどの
他の問題点を有しおいる。 特に、最近は氎トリヌなどによる絶瞁劣化を防
止するために、ポリ゚チレンの也匏架橋法が採甚
される傟向にあるが、この也匏架橋法は架橋枩床
が高いため、䞊蚘圢成材料のいく぀かは、架橋工
皋䞭にハロゲンやシアンなどのガスを発生させ、
ケヌブル性胜を䜎䞋させるなどの問題を生じさせ
おいる。 本発明者らは、可撓性、䜎枩非脆化性、熱安定
性および抌出成圢性にすぐれ、しかも必芁に応じ
お架橋ポリ゚チレン絶瞁局からの容易な剥離を可
胜ずさせる半導電局圢成材料を求めお皮々怜蚎の
結果、プロピレンずC4以䞊のα−オレフむンず
のランダム共重合䜓たたはそれに゚チレン−ビニ
ル゚ステル共重合䜓をブレンドしたものがきわめ
お有効であるこずを、先に芋出しおいる特願昭
57−126029号特開昭59−16206号公報参照。 本発明者らは、その埌曎に怜蚎を続けた結果、
それぞれ特定のメルトフロヌレヌトを有するこれ
ら゚チレン系共重合䜓の混合物に、特定の導電性
カヌボンブラツクを組合せお配合するこずによ
り、最適の剥離性、可撓性、抌出成圢性を䞎え埗
る半導電性組成物を埗られるこずを芋出した。 埓぀お、本発明は半導電性組成物に係り、この
組成物は、(A)メルトフロヌレヌトが玄〜
10dg分でビニル゚ステル含有量が16モル以
䞊の゚チレン−ビニル゚ステル共重合䜓玄60〜80
重量郚および(B)メルトフロヌレヌトが玄10〜
50dg分でプロピレン含有量が50〜87モルの
プロピレンずC4以䞊のα−オレフむンずのラン
ダム共重合䜓玄40〜20重量郚よりなるオレフむン
系共重合䜓混合物に、(C)アセチレンブラツク玄30
〜50重量郚および(D)フアヌネスブラツク玄20〜40
重量郚よりなる導電性カヌボンブラツクを配合し
おなる。 ゚チレン−ビニル゚ステル共重合䜓ずしおは、
゚チレンず酢酞ビニル、プロピオン酞ビニルなど
のビニル゚ステルを、䞀般に呚知の方法、即ち高
圧䞋でのラゞカル重合、䞭圧乃至垞圧䞋での溶液
たたは乳化重合などによ぀お共重合させお埗られ
る共重合䜓であ぀お、架橋ポリ゚チレン局ずの剥
離性の点から、メルトフロヌレヌトJIS −
7210の衚、条件によるが玄〜10dg分、
奜たしくは玄〜5dg分で、ビニル゚ステル含
有量が16モル以䞊酢酞ビニルでは玄重量
以䞊のものが甚いられる。 プロピレンずC4以䞊のα−オレフむンずのラ
ンダム共重合䜓ずしおは、プレピレンず−ブテ
ン、−メチル−−ベンテン、−ヘキセン、
−オクテンなどずの共重合䜓あるいは曎に少量
の゚チレンを含んだ共重合䜓であ぀お、架橋ポリ
゚チレン局ずの剥離性および抌出成圢性の点から
メルトフロヌレヌトJIS −7210の衚、条件
によるが玄10〜50dg分で、プロピレン含
有量が50〜87モルのものが甚いられる。 かかる共重合䜓は、それ自䜓公知の立䜓芏則性
觊媒、奜適にはアむ゜タクチツクポリプロピレン
の補造に甚いられるような立䜓芏則性觊媒を甚
い、プロピレンずα−オレフむンずを共重合させ
るこずによ぀お補造するこずができる。奜たしい
共重合䜓は、プロピレン−−ブテンランダム共
重合䜓であり、それに぀いおは、䟋えば特公昭57
−11322号公報、特開昭50−128781号公報、同55
−748号公報などに蚘茉されおいる。 甚いられるプロピレン−α−オレフむンランダ
ム共重合䜓の融点Tmは、䞀般に玄75〜140
℃の範囲内にある。プロピレン含有量が87モル
を超えるず、融点がこれ以䞊に高くなり、導電性
カヌボンブラツクの配合時、特に架橋剀を甚いお
配合䜜業を行なう堎合、あるいは組成物の抌出成
圢時に支障を生ずるようになる。䞀方、プロピレ
ン含有量が50モル以䞋ずなり、融点がこれ以䞋
に䜎くなるず、匕匵匷床が䜎䞋し、匕匵匷床の倀
が剥離匷床の倀に接近しお剥離䜜業を困難にする
ばかりではなく、組成物自䜓がべず぀くようにな
るため奜たしくない。このような芳点から、最も
奜たしい共重合䜓はプロピレン含有量が60〜85モ
ルのものである。 たた、結晶化床に぀いおは、それがあたり倧き
いず混緎配合および抌出成圢が困難ずなり、䞀方
あたり小さいず組成物の匕匵匷床が䜎䞋し、ベず
぀いた感じずなるため䜿甚できない。埓぀お、結
晶融解熱量で衚瀺される結晶化床が、玄10〜80ã‚ž
ナヌルの範囲内にあるこずが望たしい。 ゚チレン−ビニル゚ステル共重合䜓ずプロピレ
ン−α−オレフむンランダム共重合䜓は、前者が
箄60〜80重量郚、奜たしくは玄65〜75重量郚に察
し埌者が玄40〜20重量郚、奜たしくは玄35〜25重
量郚の割合で甚いられる。かかる混合割合でこれ
らの゚チレン系共重合䜓が甚いられたずき、最適
の架橋ポリ゚チレン局に察する剥離性ず抌出成圢
性ずが䞎えられる。 ここで、最適の抌出成圢性ずは、ブラベンダ
ヌ・プラストグラフでの混緎時の溶融トルクが
3.5Kg・以䞋、奜たしくは3.0Kg以䞋のこず
を指しおいる。溶融トルクの倀がこれ以䞊でも抌
出成圢は可胜であるが、その堎合には分解枩床の
高い架橋剀を遞択するなどの工倫が必芁ずな぀お
くる。 このオレフむン系共重合䜓混合物には、混合物
100重量郚圓り玄30〜50重量郚のアセチレンブラ
ツクおよび玄20〜40重量郚のフアヌネスブラツク
からなる導電性カヌボンブラツクが配合される。
フアヌネスブラツクの䜿甚割合が玄20重量郚以䞊
甚いられるず、組成物の溶融粘床が倧きくなら
ず、たた抌出成圢性も良奜ずなる。䞀方、玄40重
量以䞊の割合で甚いられるず、抌出物の倖芳が
損われるようになる。 これらの各成分よりなる本発明の半導電性組成
物は、架橋剀、䟋えば有機過酞化物を適宜配合し
お、架橋しお䜿甚するこずができる。架橋剀ずし
おは、ゞクミルパヌオキサむド、−ゞメチ
ル−−ビス第ブチルパヌオキシヘキ
シン−、−ビス第ブチルパヌオキシ
む゜プロピルベンれンなどを䜿甚するこずがで
きる。 曎に、この組成物から埗られる成圢品の匷床を
䞊げるために、組成物䞭に架橋助剀を配合するこ
ずが望たしい。架橋助剀ずしおは、呚知の倚官胜
性モノマヌ、䟋えばトリアリルシアヌレヌト、ト
リアリルむ゜シアヌレヌト、トリアリルトリメリ
テヌトや倚官胜性ポリマヌ、䟋えばポリブタゞ゚
ンなどが甚いられる。 組成物䞭には、この他に必芁に応じお安定剀、
加工助剀などを配合するこずができる。安定剀ず
しおは、ポリオレフむン甚安定剀ずしお呚知の
−チオビス−第ブチルメタクレゟヌ
ル、高分子プノヌル系安定剀、䟋えばオクタ
デシル−−−ゞ第ブチル−−ヒド
ロキシプニルプロピオネヌトず脂肪族カルボ
ン酞チオ゚ステル、䟋えばゞラりリルゞプロピオ
ネヌトずの組合せなどが有効であり、特にこの組
合せは架橋床に悪圱響を䞎えないので奜たしい。
たた、加工助剀ずしおは、䟋えばポリ゚チレンワ
ツクス、パラフむンワツクス、カルボン酞ワツク
スなどの䜎分子量物などが甚いられ、これらは組
成物の粘床の調敎剀や分散剀などずしお有効に䜿
甚される。 組成物の調補は、これらの各成分を同時的にた
たは遂次的に、ミキシングロヌル、バンバリヌミ
キサヌ、ブラベンダヌブラストグラフ、加圧型ニ
ヌダヌなどのバツチ匏混緎機や単軞たたは軞抌
出機を甚いお、メルトブレンドするこずによ぀お
行われる。遂次的にブレンドする堎合には、゚チ
レン−ビニル゚ステル共重合䜓ず導電性カヌボン
ブラツクずをメルトブレンドしたものに、プロピ
レン−α−オレフむンランダム共重合䜓をドラむ
ブレンドし、それを抌出すこずにより、最終組成
の半導電局を圢成させるこずもできる。 本発明に係る半導電性組成物は、面発熱䜓など
にも甚いられるものの、䞻ずしお高電圧甚架橋ポ
リ゚チレン絶瞁電力ケヌブルの倖郚半導電局圢成
甚などに甚いられ、この堎合には、内郚半導電局
甚組成物および絶瞁局甚組成物ず共に䞭心導䜓䞊
に同時抌出成圢したり、あるいは内郚半導電局を
介しお䞭心導䜓䞊に絶瞁局甚組成物ず共に同時抌
出成圢したりしお加工に䟛される。 次に、実斜䟋に぀いお本発明を説明する。 実斜䟋 組成物各成分 ゚チレン−酢酞ビニル共重合䜓
The present invention relates to semiconducting compositions. More specifically, the present invention relates to a semiconductive composition suitable for use as a material for forming an external semiconductive layer of an insulated power cable on crosslinked polyethylene for high voltage use. Conventionally, in high-voltage cross-linked polyethylene insulated power cables, in order to prevent deterioration due to corona discharge that occurs in the gaps between the center conductor and the cross-linked polyethylene insulation layer and between the cross-linked polyethylene insulation layer and the shielding layer, Inner and outer semiconductive layers are provided on the inner and outer layers of the crosslinked polyethylene insulating layer, respectively. Due to the purpose of its installation, this semiconducting layer is
It is necessary to have good adhesion to the cross-linked polyethylene insulating layer and excellent surface smoothness.For this reason, recently, this layer and the polyethylene insulating layer are extruded at the same time, a so-called multilayer coextrusion method. This is becoming a trend. Among the outer semiconducting layers formed in this way, the outer semiconducting layer is peeled off from the crosslinked polyethylene insulating layer during cable connection and terminal processing, but at this time, the adhesion between both layers is strong. If this makes the peeling operation difficult, or if the peeling is performed forcefully, the crosslinked polyethylene insulating layer may be damaged during the peeling process, which is undesirable. Conventionally, compositions in which conductive carbon black is blended with ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, etc. have been used as materials for forming this type of semiconductive layer. Resin-based compositions generally adhere strongly to crosslinked polyethylene insulating layers, making it extremely difficult to peel the semiconducting layer from the insulating layer and causing significant problems in cable termination operations. there was. In order to avoid these drawbacks, various semiconducting layer forming materials have been proposed. For example, ethylene-vinyl acetate copolymer containing 80% by weight or more of vinyl acetate, ethylene-vinyl acetate copolymer blended with styrene polymer, nitrile rubber, styrene rubber, polyvinyl chloride, chlorinated polyethylene, etc. The use of chlorinated ethylene-vinyl acetate copolymers, or graft copolymerized styrene has been proposed, but these all have poor flexibility and are brittle at low temperatures. Alternatively, they have other problems such as being easy to decompose during the crosslinking process. In particular, recently there has been a tendency to adopt polyethylene dry crosslinking to prevent insulation deterioration due to water trees, etc. However, since this dry crosslinking method requires a high crosslinking temperature, some of the above-mentioned forming materials cannot be crosslinked. Gases such as halogen and cyanogen are generated during the process,
This causes problems such as deterioration of cable performance. The present inventors have developed a semiconducting layer-forming material that has excellent flexibility, low-temperature non-embrittlement, thermal stability, and extrudability, and also allows for easy peeling from a crosslinked polyethylene insulating layer when necessary. As a result of various studies, we have previously discovered that a random copolymer of propylene and an α-olefin with C4 or more, or a blend of it with an ethylene-vinyl ester copolymer, is extremely effective (especially Hope
No. 57-126029 (see Japanese Unexamined Patent Publication No. 59-16206)). As a result of further investigation, the inventors found that
By blending a mixture of these ethylene-based copolymers, each with a specific melt flow rate, with a specific conductive carbon black, a semiconducting material that can provide optimal peelability, flexibility, and extrudability. It has been found that a composition can be obtained. Accordingly, the present invention relates to a semiconducting composition, which composition has (A) a melt flow rate of about 1 to
Ethylene-vinyl ester copolymer with vinyl ester content of 16 mol% or more at 10 dg/min approximately 60-80
Part by weight and (B) melt flow rate is approximately 10~
(C) Acetylene black is added to an olefinic copolymer mixture consisting of about 40 to 20 parts by weight of a random copolymer of propylene with a propylene content of 50 to 87 mol% and an α-olefin of C4 or more at 50 dg/min. about 30
~50 parts by weight and (D) Furnace Black approx. 20-40
% by weight of conductive carbon black. As an ethylene-vinyl ester copolymer,
A copolymer obtained by copolymerizing ethylene and a vinyl ester such as vinyl acetate or vinyl propionate by generally known methods, such as radical polymerization under high pressure, solution or emulsion polymerization under medium to normal pressure, etc. Melt flow rate (JIS K-
7210 Table 1, Condition 4) is approximately 1 to 10 dg/min,
Preferably about 2 to 5 dg/min and a vinyl ester content of 16 mol% or more (about 7% by weight for vinyl acetate)
(above) are used. Random copolymers of propylene and α-olefin with C4 or more include propylene and 1-butene, 4-methyl-1-bentene, 1-hexene,
It is a copolymer with 1-octene or the like or a copolymer containing a small amount of ethylene, and has a melt flow rate (JIS K-7210 Table 1, According to condition 4) is about 10 to 50 dg/min and the propylene content is 50 to 87 mol%. Such copolymers can be prepared by copolymerizing propylene and α-olefin using stereoregular catalysts known per se, preferably those used for the production of isotactic polypropylene. can be manufactured. A preferred copolymer is a propylene-1-butene random copolymer, which is described, for example, in Japanese Patent Publication No. 57
-11322 Publication, JP-A-50-128781, JP-A No. 55
-Described in Publication No. 748, etc. The melting point (Tm) of the propylene-α-olefin random copolymer used is generally about 75 to 140.
within the range of ℃. Propylene content is 87 mol%
If it exceeds this range, the melting point will become higher than this, which will cause problems when compounding conductive carbon black, especially when compounding using a crosslinking agent, or when extruding the composition. On the other hand, when the propylene content is less than 50 mol% and the melting point is lower than this, the tensile strength decreases and the tensile strength value approaches the peel strength value, which not only makes peeling work difficult, but also makes the composition This is not desirable because the product itself becomes sticky. From this point of view, the most preferred copolymer has a propylene content of 60 to 85 mol%. Regarding crystallinity, if it is too high, kneading and blending and extrusion molding become difficult, while if it is too low, the tensile strength of the composition decreases and it becomes sticky, making it unusable. Therefore, it is desirable that the degree of crystallinity expressed as the heat of crystal fusion is within the range of about 10 to 80 Joule/g. The ethylene-vinyl ester copolymer and the propylene-α-olefin random copolymer are about 60 to 80 parts by weight, preferably about 65 to 75 parts by weight of the former, and about 40 to 20 parts by weight, preferably about 20 parts by weight of the latter. It is used in a proportion of 35 to 25 parts by weight. When these ethylene copolymers are used in such a mixing ratio, optimum peelability and extrusion moldability for the crosslinked polyethylene layer are provided. Here, optimal extrusion moldability means that the melting torque during kneading with the Brabender Plastograph is
It means 3.5Kg/m or less, preferably 3.0Kg/m or less. Extrusion molding is possible even if the melting torque value is higher than this, but in that case, it becomes necessary to take measures such as selecting a crosslinking agent with a high decomposition temperature. This olefinic copolymer mixture contains a mixture of
A conductive carbon black consisting of about 30 to 50 parts by weight of acetylene black and about 20 to 40 parts by weight of furnace black is incorporated per 100 parts by weight.
If the proportion of furnace black used is about 20 parts by weight or more, the melt viscosity of the composition will not increase and the extrusion moldability will also be good. On the other hand, if it is used in a proportion of about 40% by weight or more, the appearance of the extrudate will be impaired. The semiconductive composition of the present invention comprising each of these components can be crosslinked and used by appropriately blending a crosslinking agent such as an organic peroxide. As a crosslinking agent, dicumyl peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexyne-3,1,3-bis(tert-butylperoxyisopropyl)benzene, etc. are used. be able to. Furthermore, in order to increase the strength of molded articles obtained from this composition, it is desirable to incorporate a crosslinking aid into the composition. As the crosslinking aid, well-known polyfunctional monomers such as triallyl cyanurate, triallyl isocyanurate, triallyl trimellitate, and polyfunctional polymers such as polybutadiene are used. In addition to this, the composition may contain stabilizers,
Processing aids and the like can be added. Examples of the stabilizer include 4,4-thiobis(6-tert-butylmetacresol), which is well known as a stabilizer for polyolefins, and polymeric phenolic stabilizers such as octadecyl-3-(3,5-di-tert-butyl-4). A combination of -hydroxyphenyl)propionate and an aliphatic carboxylic acid thioester, such as dilauryl dipropionate, is effective, and is particularly preferred since this combination does not adversely affect the degree of crosslinking.
Further, as processing aids, for example, low molecular weight substances such as polyethylene wax, paraffin wax, and carboxylic acid wax are used, and these are effectively used as viscosity regulators and dispersants of the composition. The composition can be prepared by adding these components simultaneously or sequentially using a batch kneader such as a mixing roll, a Banbury mixer, a Brabender blastograph, or a pressure kneader, or a single-screw or twin-screw extruder. This is done by melt blending. In the case of sequential blending, a propylene-α-olefin random copolymer is dry blended with a melt blend of an ethylene-vinyl ester copolymer and a conductive carbon black, and then extruded. , a semiconducting layer of the final composition can also be formed. Although the semiconductive composition according to the present invention is also used for surface heating elements, it is mainly used for forming an external semiconductive layer of high-voltage crosslinked polyethylene insulated power cables, and in this case, it is used for forming internal semiconductive layers. It is processed by co-extrusion molding with the layer composition and the insulation layer composition onto the center conductor, or by co-extrusion molding with the insulation layer composition onto the center conductor via an internal semiconducting layer. Ru. Next, the present invention will be explained with reference to examples. Examples (Composition components) Ethylene-vinyl acetate copolymer:

【衚】 プロピレン−−ブテン共重合䜓【table】 Propylene-1-butene copolymer:

【衚】 アセチレンブラツク電気化孊補品デンカブラツ
ク フアヌネスブラツク日鉄化孊補品ニテロン10 ゞクミルパヌオキサむド䞉井石油化孊補品䞉井
DCP ペシノツクスSR安定剀、吉富補薬補品 むルガノツクス1076安定剀、日本チバガむギヌ
補品 DLTDPゞラりリルチオゞプロピオネヌト TAICトリアリルむ゜シアヌレヌト 組成物の調補 埌蚘衚に瀺される配合物を、衚面枩床を120℃
に調敎したむンチミキシングロヌル䞊で混緎
し、半導電性組成物を調補した。 性状の枬定たたは評䟡方法 溶融トルク詊隓 配合物詊料55を、130℃、30rpmでブラベン
ダヌ・ブラストグラフを甚いお混緎し、その溶融
トルクを求め、抌出成圢性の指暙ずした。 ゲル分率 半導電性組成物を、170℃、100Kgcm2、10分間
の条件䞋でプレス成圢し、厚さmmの詊料を䜜補
した。 この詊料0.7を、110℃のキシレン100ml䞭に
24時間浞挬し、未溶解分の割合を求めた。 抌出物倖芳 半導電性組成物を、30mm埄抌出機を甚い、130
℃で幅25mmのテヌプ状に抌出し、テヌプの倖芳を
目芖で刀定し、衚面の平滑なものを良、ザラツキ
のあるものを䞍良ずした。 剥離力 䜎密床ポリ゚チレン䞉井ポリケミカル補品ミ
ラ゜ン、密床0.921cm3、メルトフロレヌト
1.5dg分100重量郚に、ゞクミルパヌオキサむ
ド重量郚および安定剀ペシノツクスSR0.2
重量郚を加えおむンチロヌルで混緎し、絶瞁局
甚組成物を調補した。 この絶瞁局甚組成物および前蚘半導電性組成物
を、それぞれプレス成圢機を甚いお120℃で成圢
し、厚さmmのプレスシヌトを埗、これらのシヌ
トを重ねお120℃で分間予熱した埌、30Kgcm2
の加圧䞋で分間プレスし、仮接着させた。この
仮接着シヌトを、170℃、30Kgcm2、10分間の条
件䞋でプレス成圢を行ない、架橋された貌り合せ
詊料を䜜補した。 この詊料を25mm幅に切断し、絶瞁局ず半導電局
ずの間を匕匵詊隓機で100mm分の速床で剥離さ
せ、それに芁する力を求めた。 䞊蚘各性状に぀いおの結果は、䞋蚘衚〜に
瀺される。この結果からも刀るように、本発明に
係る半導電性組成物から圢成される局は、架橋ポ
リ゚チレン絶瞁局ず容易に剥離可胜であり、抌出
成圢性、抌出物倖芳も良奜なので、高電圧甚架橋
ポリ゚チレン絶瞁電力ケヌブルの倖郚半導電局圢
成材料ずしおすぐれた特性を有しおいる。 衚に瀺される結果に぀いお、曎に詳现に考察す
るず、本発明に係る組成物を甚いた堎合には、良
奜なる抌出成圢性、剥離性および抌出物倖芳が埗
られる。これに察しお、 メルトフロヌレヌトの䜎い゚チレン−ビニル゚
ステル共重合䜓およびプロピレン−α−オレフむ
ン共重合䜓を甚いた堎合には、溶融トルクが倧き
くなり過ぎお、抌出成圢に適さなくなる比范䟋
。たた、これら各共重合䜓の䞀方にメルトフ
ロヌレヌトの倧きなものを甚いた堎合には、溶融
トルクは䜎䞋するが、剥離力が倧きくなり過ぎお
奜たしくない比范䟋および。䞀般に剥離
力は、玄〜20N25mm幅皋床の倀が適圓であ
り、これ以䞋では半導電局が架橋ポリ゚チレン局
から経時的に自然剥離するおそれがあり、逆にこ
れより剥離力が倧きくなるず、剥離に倧きな力を
必芁ずし、剥離が困難な堎合が発生する。 曎に、゚チレン−ビニル゚ステル共重合䜓䞭の
ビニル゚ステル含有量が16モルより少なくなる
ず、剥離力が倧きくなる比范䟋。たた、プ
ロピレン−α−オレフむン共重合䜓の配合量が少
ない堎合には剥離力が倧き過ぎ比范䟋、逆
に倚い堎合には剥離力が小さくなり過ぎる比范
䟋。ゲル分率ずの関係からは、それが60以
䞊、奜たしくは70以䞊であるこずが望たしく、
それ以䞋になるず半導電局の耐熱性および匷床の
点で満足されなくなる比范䟋。 カヌボンブラツクずしお、アセチレンブラツク
のみを甚いるず、溶融トルクが倧きくなる傟向が
あり、剥離力の点でも十分ではない比范䟋。
たた、フアヌネスブラツクのみあるいはそれの混
合割合を倚くするず、抌出物の倖芳にザラツキが
生ずるようになるので、奜たしくない比范䟋
〜。
[Table] Acetylene black: Electrochemical products Denka black Furnace black: Nippon Steel Chemicals Niteron 10 Dicumyl peroxide: Mitsui Petrochemicals Mitsui
DCP Yoshinox SR: Stabilizer, Yoshitomi Pharmaceutical product Irganox 1076: Stabilizer, Nippon Ciba Geigy product DLTDP: Dilauryl thiodipropionate TAIC: Triallyl isocyanurate (Preparation of composition) The formulation shown in the table below was heated at the surface temperature. 120℃
The mixture was kneaded on a 6-inch mixing roll adjusted to give a semiconductive composition. (Property measurement or evaluation method) Melting torque test: 55 g of the blend sample was kneaded at 130° C. and 30 rpm using a Brabender blastograph, and the melting torque was determined and used as an index of extrudability. Gel fraction: The semiconductive composition was press-molded under the conditions of 170° C., 100 Kg/cm 2 and 10 minutes to prepare a sample with a thickness of 2 mm. Add 0.7g of this sample to 100ml of xylene at 110℃.
After soaking for 24 hours, the proportion of undissolved matter was determined. Appearance of extrudate: The semiconductive composition was extruded using a 30 mm diameter extruder,
It was extruded into a tape shape with a width of 25 mm at ℃, and the appearance of the tape was visually judged, and those with a smooth surface were judged as good, and those with rough surfaces were judged as bad. Peeling force: Low density polyethylene (Mitsui Polychemical product Mirason 9, density 0.921g/cm 3 , melt fluorate
1.5dg/min) 100 parts by weight, 2 parts by weight of dicumyl peroxide and 0.2 parts by weight of stabilizer (Yoshinox SR)
Parts by weight were added and kneaded using a 6-inch roll to prepare a composition for an insulating layer. This insulating layer composition and the semiconductive composition were each molded at 120°C using a press molding machine to obtain a press sheet with a thickness of 1 mm, and these sheets were stacked and preheated at 120°C for 3 minutes. After, 30Kg/cm 2
Pressing was carried out for 3 minutes under the pressure of This temporary adhesive sheet was press-molded under conditions of 170° C., 30 kg/cm 2 , and 10 minutes to produce a crosslinked bonded sample. This sample was cut to a width of 25 mm, and the insulating layer and semiconducting layer were peeled off at a rate of 100 mm/min using a tensile testing machine, and the force required for this was determined. The results for each of the above properties are shown in Tables 1 and 2 below. As can be seen from this result, the layer formed from the semiconductive composition according to the present invention can be easily peeled from the crosslinked polyethylene insulating layer, and has good extrusion moldability and extrudate appearance, so it is suitable for high voltage applications. It has excellent properties as a material for forming the outer semiconducting layer of cross-linked polyethylene insulated power cables. Considering the results shown in the table in more detail, when using the composition according to the present invention, good extrudability, peelability and appearance of the extrudates are obtained. On the other hand, when an ethylene-vinyl ester copolymer and a propylene-α-olefin copolymer with low melt flow rates are used, the melting torque becomes too large and becomes unsuitable for extrusion molding (Comparative Example 1). ). Furthermore, when one of these copolymers has a high melt flow rate, the melting torque is reduced, but the peeling force becomes too large, which is not preferable (Comparative Examples 2 and 3). Generally, a value of about 8 to 20 N/25 mm width is appropriate for the peeling force; if the peeling force is less than this, the semiconductive layer may naturally peel off from the crosslinked polyethylene layer over time, and conversely, if the peeling force is greater than this, , a large force is required for peeling, and peeling may be difficult. Furthermore, when the vinyl ester content in the ethylene-vinyl ester copolymer is less than 16 mol%, the peeling force increases (Comparative Example 3). Further, when the amount of the propylene-α-olefin copolymer blended is small, the peeling force is too large (Comparative Example 4), and when it is too large, the peeling force is too small (Comparative Example 5). From the relationship with the gel fraction, it is desirable that it is 60% or more, preferably 70% or more,
If it is less than that, the heat resistance and strength of the semiconductive layer will not be satisfied (Comparative Example 5). When only acetylene black is used as the carbon black, the melting torque tends to increase, and the peeling force is not sufficient (Comparative Example 7).
Furthermore, if only the furnace black or the mixing ratio of the furnace black is increased, the appearance of the extrudate becomes rough, which is not preferable (Comparative Example 8).
~9).

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  (A)メルトフロヌレヌトが玄〜10dg分で
ビニル゚ステル含有量が16モル以䞊の゚チレン
−ビニル゚ステル共重合䜓玄60〜80重量郚および
(B)メルトフロヌレヌトが玄10〜50dg分でプロ
ピレン含有量が50〜87モルのプロピレンずC4
以䞊のα−オレフむンずのランダム共重合䜓玄40
〜20重量郚よりなるオレフむン系共重合䜓混合物
に、(C)アセチレンブラツク玄30〜50重量郚および
(D)フアヌネスブラツク玄20〜40重量郚よりなる導
電性カヌボンブラツクを配合しおなる半導電性組
成物。  ゚チレン−ビニル゚ステル共重合䜓が゚チレ
ン−酢酞ビニル共重合䜓である特蚱請求の範囲第
項蚘茉の半導電性組成物。  プロピレン−α−オレフむンランダム共重合
䜓がプロピレン−−ブテンランダム共重合䜓で
ある特蚱請求の範囲第項蚘茉の半導電性組成
物。  高電圧甚架橋ポリ゚チレン絶瞁電力ケヌブル
の倖郚半導電局圢成材料ずしお甚いられる特蚱請
求の範囲第項蚘茉の半導電性組成物。
[Scope of Claims] 1 (A) about 60 to 80 parts by weight of an ethylene-vinyl ester copolymer having a melt flow rate of about 1 to 10 dg/min and a vinyl ester content of 16 mol% or more;
(B) Propylene and C 4 with a melt flow rate of approximately 10 to 50 dg/min and a propylene content of 50 to 87 mol%
Random copolymer with more than 40 α-olefins
About 30 to 50 parts by weight of (C) acetylene black and
(D) A semiconductive composition containing conductive carbon black comprising about 20 to 40 parts by weight of furnace black. 2. The semiconductive composition according to claim 1, wherein the ethylene-vinyl ester copolymer is an ethylene-vinyl acetate copolymer. 3. The semiconductive composition according to claim 1, wherein the propylene-α-olefin random copolymer is a propylene-1-butene random copolymer. 4. The semiconductive composition according to claim 1, which is used as an outer semiconductive layer forming material of a high voltage crosslinked polyethylene insulated power cable.
JP10558883A 1983-06-13 1983-06-13 Semiconductive composition Granted JPS59230205A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10558883A JPS59230205A (en) 1983-06-13 1983-06-13 Semiconductive composition
EP83112638A EP0129617B1 (en) 1983-06-13 1983-12-15 Semiconducting compositions and wires and cables using the same
DE8383112638T DE3375619D1 (en) 1983-06-13 1983-12-15 Semiconducting compositions and wires and cables using the same
US06/562,727 US4526707A (en) 1983-06-13 1983-12-19 Semiconducting compositions and wires and cables using the same
KR1019830006159A KR900007127B1 (en) 1983-06-13 1983-12-24 Semiconducting compositions and wires and cables using thesame
US06/723,293 US4588855A (en) 1983-06-13 1985-04-15 Semiconducting compositions and wires and cables using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10558883A JPS59230205A (en) 1983-06-13 1983-06-13 Semiconductive composition

Publications (2)

Publication Number Publication Date
JPS59230205A JPS59230205A (en) 1984-12-24
JPH0161202B2 true JPH0161202B2 (en) 1989-12-27

Family

ID=14411655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10558883A Granted JPS59230205A (en) 1983-06-13 1983-06-13 Semiconductive composition

Country Status (1)

Country Link
JP (1) JPS59230205A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110052A (en) * 1984-11-02 1986-05-28 Tokyo Gas Co Ltd Automatic flaw detection system

Also Published As

Publication number Publication date
JPS59230205A (en) 1984-12-24

Similar Documents

Publication Publication Date Title
EP0129617B1 (en) Semiconducting compositions and wires and cables using the same
US5076988A (en) Process for the extrusion of low density polyethylene
JP3334052B2 (en) Compounded ethylene / α-olefin elastomer compound
EP2226355B1 (en) Moisture-crosslinked polyolefin compositions
JPH07116332B2 (en) Method for manufacturing products from polyolefin blends
CN1856844B (en) Insulating shielding composition, electric cable comprising the composition and its preparation method
US20230192969A1 (en) Reactive compounding of ethylene vinyl acetate
JPH0161202B2 (en)
JPH024962B2 (en)
JP3290396B2 (en) Method for producing silane-crosslinked polyolefin
JPS6347202B2 (en)
JPS645064B2 (en)
JPS6215963B2 (en)
JP3231414B2 (en) Semiconductive composition
JPH0639555B2 (en) Thermoplastic polymer composition
JPS6215244A (en) Semiconductive resin composition
CA2382762C (en) Crosslinked compositions containing silane-modified polyolefin blends
JPH0873670A (en) Crosslinkable polyethylene composition and electric wire and cable
JP2003338220A (en) Electric wire and cable
JPH0820691A (en) Flexible silane graftmer and production of insulated electric wire
JP2972400B2 (en) Metallized polyolefin film
CN111117135A (en) Silane crosslinked cable material for oil well and preparation method thereof
JPH02272032A (en) Produciton of crosslinked film
JPH04216840A (en) Semiconductive composition
JPH0820703A (en) Soft silane graftmer and production of insulated wire