JPH0160907B2 - - Google Patents

Info

Publication number
JPH0160907B2
JPH0160907B2 JP58087714A JP8771483A JPH0160907B2 JP H0160907 B2 JPH0160907 B2 JP H0160907B2 JP 58087714 A JP58087714 A JP 58087714A JP 8771483 A JP8771483 A JP 8771483A JP H0160907 B2 JPH0160907 B2 JP H0160907B2
Authority
JP
Japan
Prior art keywords
cooler
manifold
stacked
insulating
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58087714A
Other languages
Japanese (ja)
Other versions
JPS59214169A (en
Inventor
Masamitsu Nakazawa
Seiichiro Ono
Takumi Ishama
Yasuyuki Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58087714A priority Critical patent/JPS59214169A/en
Publication of JPS59214169A publication Critical patent/JPS59214169A/en
Publication of JPH0160907B2 publication Critical patent/JPH0160907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、燃料電池の電気絶縁に係り、特に単
位電池を複数段積層して成る高電圧出力の積層形
燃料電池の電気絶縁構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to electrical insulation of a fuel cell, and particularly to an electrical insulation structure of a stacked fuel cell having a high voltage output and having a plurality of stacked unit cells.

〔発明の背景〕[Background of the invention]

従来、この種の積層形燃料電池として、第1図
に示す構成のものが知られている。第1図aは正
面断面図、第1図bは平面断面図である。第1図
に示すように、単位電池1を複数段積層して成る
発電部2をさらに複数段積層し、且つ発電部2の
熱損失を外部に取出すため、各発電部2間に冷却
器3とクーラホルダ4を組合せたものが挿入配置
されている。この上下両側にシール板5及び集電
板6a,6b、絶縁板7を順次配置し、全体を締
付金具8a,8b、と締付ロツド9で締付けるこ
とにより固定している。発電部2に対し反応ガス
の供給、又は排出を行うマニホルド10は、反応
ガスの漏れを防止するシール材11を介して、発
電部2の各側面を包囲するように設けられてい
る。このマニホルド10は絶縁継手12aを介し
て、圧力容器13に連結された反応ガス給排管に
接続されており、この管を介して外部から反応ガ
スの供給又は排出ができるようになつている。同
様に、冷却器3と圧力容器13の外部に連通され
た冷媒管との間に絶縁継手12bが設けられてい
る。また、締付金具8bと圧力容器13には絶縁
支持台14が設けられている。このようにして接
地電位である圧力容器13と、高電位である発電
部2又はマニホルド10、冷却器3、締付金具8
bとの間は電気的にそれぞれ絶縁されている。発
電部2で発生した電気エネルギーはリード線15
a,15b、及びブツシング形の端子16a,1
6bを介して外部に取出されるようになつてい
る。また、マニホルド10及び冷却器3、締付金
具8a,8bは、接続線19によつてリード線1
5bに接続され、積層電池の一方の電極電位と同
電位に保持されるようになつている。
Conventionally, as this type of stacked fuel cell, one having the configuration shown in FIG. 1 is known. FIG. 1a is a front sectional view, and FIG. 1b is a plan sectional view. As shown in FIG. 1, a plurality of power generation sections 2 each formed by stacking a plurality of unit batteries 1 are further stacked in a plurality of stages, and a cooler 3 is installed between each power generation section 2 in order to extract heat loss from the power generation section 2 to the outside. A combination of a cooler holder 4 and a cooler holder 4 are inserted and arranged. A sealing plate 5, current collecting plates 6a, 6b, and insulating plate 7 are arranged in this order on both upper and lower sides, and the whole is fixed by tightening with tightening fittings 8a, 8b and a tightening rod 9. A manifold 10 that supplies or discharges a reactive gas to the power generating section 2 is provided so as to surround each side of the power generating section 2 via a sealing material 11 that prevents leakage of the reactive gas. This manifold 10 is connected to a reaction gas supply/discharge pipe connected to a pressure vessel 13 via an insulating joint 12a, so that reaction gas can be supplied or discharged from the outside via this pipe. Similarly, an insulating joint 12b is provided between the cooler 3 and a refrigerant pipe communicating with the outside of the pressure vessel 13. Furthermore, an insulating support stand 14 is provided on the clamping fitting 8b and the pressure vessel 13. In this way, the pressure vessel 13 that is at ground potential, the power generation section 2 or manifold 10 that is at high potential, the cooler 3, and the clamping fittings 8
b are electrically insulated from each other. The electrical energy generated in the power generation section 2 is transferred to the lead wire 15.
a, 15b, and bushing type terminals 16a, 1
It is adapted to be taken out to the outside via 6b. Further, the manifold 10, the cooler 3, and the clamping fittings 8a, 8b are connected to the lead wire 1 by a connecting wire 19.
5b, and is maintained at the same potential as one electrode potential of the stacked battery.

ところが、上記構成のものにあつて単位電池1
の積層段数が多くなると、第2図に示すように、
リード線15aと15b間の電位差は、単位電池
1個当りの発生電圧をE0、積層段数をNとする
とN・E0となり、段数Nに比例して増大する。
例えば250kWの直流出力を発生する場合のN・
E0は約500Vの高電位差となる。そこでこの電位
差によるN個の単位電池の短絡を防止するため、
マニホルド10と発電部2又はシール板5との間
に設けられたシール材11は、絶縁部材を兼ねた
ものとなつている。一方、第3図に示すように、
冷却器3とクーラホルダ4間にも、絶縁部材とし
ての絶縁材17が設けられている。これらのシー
ル材11や絶縁材17の絶縁耐圧は十分N・E0
を満足するものでなければならない。しかし、単
位電池1の電解質としてリン酸が使用されている
場合や、電池運転時の動作温度が200℃前後と高
い場合にあつては、酸や熱によりシール材11又
は絶縁材17の絶縁性が劣化したり、あるいは熱
変形によりシール材11の厚さが減少したり、さ
らには割れ等により、初期の絶縁耐圧を保つこと
ができず、電位差N・E0によつて絶縁破壊を起
すことがある。例えばシール材11部分で絶縁破
壊が生じると、積層された単位電池1はマニホル
ド10と接続線19を介して、短絡回路が形成さ
れ、電池の出力が低下したり出力が零となり、運
転不能になつてしまうという欠点がある。
However, with the above configuration, the unit battery 1
As the number of stacked layers increases, as shown in Figure 2,
The potential difference between the lead wires 15a and 15b is N·E 0 where E 0 is the generated voltage per unit battery and N is the number of stacked layers, and increases in proportion to the number of layers N.
For example, when generating a DC output of 250kW, N.
E 0 is a high potential difference of about 500V. Therefore, in order to prevent short-circuiting of N unit batteries due to this potential difference,
A sealing material 11 provided between the manifold 10 and the power generation section 2 or the sealing plate 5 also serves as an insulating member. On the other hand, as shown in Figure 3,
An insulating material 17 as an insulating member is also provided between the cooler 3 and the cooler holder 4. The dielectric strength of these sealing materials 11 and insulating materials 17 is sufficient N・E 0
must satisfy. However, when phosphoric acid is used as the electrolyte in the unit battery 1, or when the operating temperature during battery operation is high, around 200°C, the insulation of the sealing material 11 or the insulating material 17 may be damaged by acid or heat. may deteriorate, or the thickness of the sealing material 11 may decrease due to thermal deformation, or cracking may occur, making it impossible to maintain the initial dielectric strength voltage and causing dielectric breakdown due to the potential difference N・E 0 . There is. For example, if dielectric breakdown occurs in the sealing material 11, a short circuit will be formed in the stacked unit batteries 1 via the manifold 10 and the connecting wire 19, and the output of the battery will decrease or become zero, making it impossible to operate. It has the disadvantage of getting used to it.

そこで、シール材11や絶縁材17の厚みを増
やして、劣化や熱変形による絶縁耐圧低下を防止
しようとする方法が考えられる。しかし、それら
の部材の厚みを増すことは不経済であるばかりで
なく、絶縁材17を厚くすると冷却器3と単位電
池1間の熱伝導が悪くなり、冷却性能を低下させ
てしまうという欠点が生じる。
Therefore, a method can be considered in which the thickness of the sealing material 11 and the insulating material 17 is increased to prevent a decrease in dielectric strength voltage due to deterioration or thermal deformation. However, increasing the thickness of these members is not only uneconomical, but also has the drawback that increasing the thickness of the insulating material 17 deteriorates heat conduction between the cooler 3 and the unit battery 1, reducing cooling performance. arise.

また、従来の電気絶縁構造にあつては、絶縁部
材の厚み等の制限や、その絶縁耐力の劣下により
最大積層段数Nnax即ち最大出力電圧が制限され
てしまうという欠点がある。
Furthermore, the conventional electrical insulation structure has the disadvantage that the maximum number of stacked layers Nnax , that is, the maximum output voltage, is limited due to limitations on the thickness of the insulating member and deterioration of its dielectric strength.

〔発明の目的〕 本発明の目的は、絶縁部材の厚みを低減でき、
しかも劣化又は熱変形等により絶縁耐力が低下し
ても十分絶縁性を保持することができ、且つ積層
段数を増大させることができる電気絶縁構造を具
えた積層形燃料電池を提供することにある。
[Object of the invention] An object of the invention is to reduce the thickness of an insulating member,
Moreover, it is an object of the present invention to provide a stacked fuel cell having an electrically insulating structure that can maintain sufficient insulation even if the dielectric strength decreases due to deterioration or thermal deformation, and can increase the number of stacked layers.

〔発明の概要〕[Summary of the invention]

本発明は、積層された中心段の単位電池の一方
の電極と、マニホールド及び冷却器とを電気的に
接続して同電位とし、これによつて、絶縁部材に
印加される電位差を最大出力電圧の1/2以下に低
減したものとすることにより、絶縁部材の厚みを
低減させるとともに所要の絶縁耐力を軽減し、さ
らに積層段数を増大させようとするものである。
The present invention electrically connects one electrode of the stacked central unit cells to the manifold and the cooler to have the same potential, thereby reducing the potential difference applied to the insulating member to the maximum output voltage. By reducing the thickness to 1/2 or less, the thickness of the insulating member is reduced, the required dielectric strength is reduced, and the number of stacked layers is increased.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

第4図に本発明の一実施例の全体構成図が示さ
れており、同図a,bはそれぞれ正面断面図、平
面断面図である。第1図図示従来例と同一機能・
同一構成を有するものには、同一符号を付して説
明を省略する。
FIG. 4 shows an overall configuration diagram of an embodiment of the present invention, and FIG. 4 a and b are a front sectional view and a plan sectional view, respectively. Same functions as the conventional example shown in Figure 1.
Components having the same configuration are given the same reference numerals and description thereof will be omitted.

第4図aにおいて、第1図a図示従来例と異な
る点は、集電板6bと締付金具8b間に、絶縁板
18が挿入され、これによつて締付金具8bが集
電板6bから絶縁されている点と、第1図aに示
されたリード線15bとマニホールド10とを同
電位にする接続線19が取り外されている点と、
第5図に示すように、マニホールド10はリード
15b側から第N1番目の単位電池1の+電極に
接続線19aによつて連結され、マニホールド1
0と冷却器3及び締付金具8aとはそれぞれ接続
線19b,19cによつて連結されている点にあ
る。
In FIG. 4a, the difference from the conventional example shown in FIG. and that the connecting wire 19 that brings the lead wire 15b and the manifold 10 to the same potential shown in FIG. 1a is removed.
As shown in FIG. 5, the manifold 10 is connected from the lead 15b side to the + electrode of the N -th unit battery 1 by a connecting wire 19a.
0, the cooler 3, and the clamping fitting 8a are connected by connection lines 19b and 19c, respectively.

このように構成されるものであることから、第
N1番目より図において下側部の絶縁部材、即ち
シール材11又は絶縁材17、絶縁板7,18等
に印加される最大電位差はN1E0となり、同様に
上側部の絶縁部材に印加される最大電位差は(N
―N1)E0に低減される。このとき、最大電位差
N1E0又は(N―N1)E0は、パツシエンの法則に
基づいた気体の最小火花電圧以下になるように
N1を選定する。この最小火花電圧は、例えば反
応ガスの空気中では330V、水素ガス中では
270V、圧力容器13内の窒素ガス中では250Vと
されている。一般には、N1=(N―N1)即ちN1
=1/2Nに選定すれば、上側又は下側の絶縁部材 に印加される最大電位差が同一になり、両側の絶
縁耐圧を最小化することができる。一具体例とし
て250kWの直流出力を発生する積層形燃料電池
を考えると、単位電池1の積層段数は約500個と
なり、N・E0は約500Vとなる。従つて、接続線
19aを中心段の単位電池1の+電極に接続すれ
ば、前記絶縁部材に印加される最大電位差は約
250VV以下にすることができ、上記いずれのガ
ス中においても火花放電の発生を抑止することが
できることになる。
Since it is structured in this way, the
N From the first figure, the maximum potential difference applied to the lower insulating members, that is, the sealing material 11 or the insulating material 17, the insulating plates 7, 18, etc., is N 1 E 0 , and the same applies to the upper insulating members. The maximum potential difference is (N
-N 1 ) is reduced to E 0 . At this time, the maximum potential difference
N 1 E 0 or (N-N 1 ) E 0 is set so that it is less than the minimum spark voltage of gas based on Patsien's law.
Select N 1 . This minimum spark voltage is, for example, 330 V in air as a reaction gas, and 330 V in hydrogen gas.
270V, and 250V in the nitrogen gas inside the pressure vessel 13. In general, N 1 = (N-N 1 ) or N 1
If =1/2N is selected, the maximum potential difference applied to the upper or lower insulating member becomes the same, and the dielectric strength voltage on both sides can be minimized. As a specific example, considering a stacked fuel cell that generates a DC output of 250 kW, the number of stacked layers of the unit cell 1 is approximately 500, and N·E 0 is approximately 500V. Therefore, if the connecting wire 19a is connected to the + electrode of the central unit battery 1, the maximum potential difference applied to the insulating member will be approximately
This means that it is possible to suppress the generation of spark discharge in any of the above gases.

従つて、本実施例によれば、マニホールド10
と発電部2又はシール板5との間、及び冷却器3
とクーラホルダー4との間に印加される電位差
を、最大出力電位差の1/2とすることができるこ
とから、それらの間に形成される微小ギヤツプや
空隙における火花放電の発生を防止でき、絶縁耐
圧が安定に保持される。また、絶縁部材の厚み等
を含めた構造が簡単化でき、特に冷却器3とクー
ラホルダ4間の絶縁材17を薄くすることができ
ることから、冷却効率が向上されるという効果が
ある。
Therefore, according to this embodiment, the manifold 10
and the power generation section 2 or the seal plate 5, and the cooler 3
Since the potential difference applied between the is maintained stably. Furthermore, the structure including the thickness of the insulating member can be simplified, and in particular, the insulating material 17 between the cooler 3 and the cooler holder 4 can be made thinner, which has the effect of improving cooling efficiency.

なお、上記実施例における中心段の単位電池1
とマニホールド10との電気的接続部の詳細構造
図が、第6図a,b、第7図及び第8図に示され
ている。単位電池1は第6図aの斜視図に示され
たように、電極20とマトリツクス21、セパレ
ータ22とを積層して形成され、セパレータ22
の相対する角部に、接線19aを連結する端子2
3が形成されている。マニホールド10は第6図
a図中二点鎖線で示されたように取付けられるよ
うになつている。このマニホールド10には第6
図bの平図に示されたように、接続線19aが連
結される端子が形成されている。また、上記第7
図に示されたようにマニホールド10間及びセパ
レータ22とを接続しても効果は同一である。な
お、図示してないが、冷却器3又は締付金具8
a,8bとマニホールド10との接続も同様に形
成すればよい。
In addition, the center stage unit battery 1 in the above embodiment
Detailed structural diagrams of the electrical connection between the manifold 10 and the manifold 10 are shown in FIGS. 6a and 6b, FIGS. 7 and 8. As shown in the perspective view of FIG. 6a, the unit battery 1 is formed by laminating an electrode 20, a matrix 21, and a separator 22.
Terminal 2 connecting the tangent line 19a to opposite corners of
3 is formed. The manifold 10 is designed to be installed as shown by the two-dot chain line in FIG. 6a. This manifold 10 has a sixth
As shown in the plan view of FIG. b, a terminal is formed to which the connecting wire 19a is connected. In addition, the seventh
Even if the manifolds 10 and the separators 22 are connected as shown in the figure, the effect is the same. Although not shown, the cooler 3 or the tightening fittings 8
Connections between a, 8b and the manifold 10 may be formed in the same manner.

第8図a〜cに、セパレータ22に端子23を
形成する実施例が示されている。同図aにはセパ
レータ22と端子23を一体形成したもの、同図
b,cにはセパレータ22に端子23又は接続線
19aを接着又はモールデイングにより接続した
ものが示されている。また、この引き出し端子2
3は上記のようにセパレータ22に取り付けて
も、電極20に取り付けても、効果は同一であ
る。
8a to 8c show an embodiment in which terminals 23 are formed on separator 22. FIG. Figure a shows a structure in which the separator 22 and the terminal 23 are integrally formed, and figures b and c show a structure in which the terminal 23 or the connecting wire 19a is connected to the separator 22 by adhesive or molding. Also, this pull-out terminal 2
3 has the same effect whether it is attached to the separator 22 or the electrode 20 as described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、絶縁部
材の厚みを低減することができることから、絶縁
構造が簡単化されるとともに冷却効率が向上さ
れ、しかも絶縁耐圧が安定に保持され、且つ積層
段数を増やして出力電圧を高電圧化することがで
きるという効果がある。
As explained above, according to the present invention, since the thickness of the insulating member can be reduced, the insulating structure is simplified, the cooling efficiency is improved, the dielectric strength voltage is stably maintained, and the number of stacked layers is reduced. This has the effect of increasing the output voltage by increasing the output voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbは従来例の正面断面図及び平面
断面図、第2図は第1図図示従来例の模式的等価
回路図、第3図は第1図図示従来例の部分詳細
図、第4図a及びbは本発明の一実施例の正面断
面図及び平面断面図、第5図は第4図図示実施例
の模式的等価回路図、第6図a及びbはそれぞれ
第7図図示実施例の部分詳細、第7図及び第8図
a〜cは変形例を説明するための部分詳細図であ
る。 1…単位電池、3…冷却器、10…マニホール
ド、11…シール材、17…絶縁材。
1A and 1B are front sectional views and plan sectional views of the conventional example, FIG. 2 is a schematic equivalent circuit diagram of the conventional example shown in FIG. 1, and FIG. 3 is a partial detailed view of the conventional example shown in FIG. 4a and b are a front sectional view and a plan sectional view of one embodiment of the present invention, FIG. 5 is a schematic equivalent circuit diagram of the embodiment shown in FIG. 4, and FIGS. 6a and b are respectively FIG. 7. Partial details of the illustrated embodiment, FIGS. 7 and 8 a to c are partial detailed views for explaining modified examples. DESCRIPTION OF SYMBOLS 1... Unit battery, 3... Cooler, 10... Manifold, 11... Sealing material, 17... Insulating material.

Claims (1)

【特許請求の範囲】[Claims] 1 複数段に積層された単位電池と、導電性材料
により一体形成され前記各単位電池の反応ガス給
排口に第1の絶縁部材を介して取り付けられる反
応ガス給排マニホールドと、導電性材料により一
体形成され前記単位電池間に第2の絶縁部材を介
して適宜挿入配置される冷却器と、を具えて成る
積層形の燃料電池において、前記積層された中心
段の単位電池の一方の電極と前記マニホールド及
び前記冷却器とを電気的に接続したことを特徴と
する燃料電池。
1 Unit cells stacked in multiple stages, a reaction gas supply/discharge manifold integrally formed of a conductive material and attached to the reaction gas supply/discharge port of each unit battery via a first insulating member, and a reaction gas supply/discharge manifold made of a conductive material. A stacked fuel cell comprising: a cooler integrally formed and inserted between the unit cells as appropriate via a second insulating member; and one electrode of the stacked center stage unit cells; A fuel cell characterized in that the manifold and the cooler are electrically connected.
JP58087714A 1983-05-20 1983-05-20 Fuel cell Granted JPS59214169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58087714A JPS59214169A (en) 1983-05-20 1983-05-20 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58087714A JPS59214169A (en) 1983-05-20 1983-05-20 Fuel cell

Publications (2)

Publication Number Publication Date
JPS59214169A JPS59214169A (en) 1984-12-04
JPH0160907B2 true JPH0160907B2 (en) 1989-12-26

Family

ID=13922565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58087714A Granted JPS59214169A (en) 1983-05-20 1983-05-20 Fuel cell

Country Status (1)

Country Link
JP (1) JPS59214169A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276304B2 (en) * 2004-12-23 2007-10-02 Fuelcell Energy, Inc. Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor

Also Published As

Publication number Publication date
JPS59214169A (en) 1984-12-04

Similar Documents

Publication Publication Date Title
US20230041144A1 (en) Battery, battery module, battery pack, and automobile
US20230054089A1 (en) Battery, battery pack and electric vehicle
US8802259B2 (en) Battery pack of compact structure
US7914937B2 (en) Fuel cell and fuel cell stack
US20040043289A1 (en) Laminate packaging flat cell
KR100599795B1 (en) Secondary battery
KR102383415B1 (en) Battery pack
US7670710B2 (en) Fuel cell and fuel cell stack with pressure chambers
US5811202A (en) Hybrid molten carbonate fuel cell with unique sealing
KR20100017265A (en) Electrochemical cell and energy storage assembly
CN109742304A (en) A kind of power battery module and electric vehicle
KR20100017261A (en) Electrochemical cell with weld points connections and energy storage assembly
JP2008251236A (en) Flat lamination type fuel cell
JPH11121025A (en) Secondary battery
JPH0160907B2 (en)
JPH1032016A (en) Fastening and heating device of fuel cell
JP2003086229A (en) Stack structure of fuel cell
US11600844B2 (en) Solid-state battery cell and solid-state battery module
JPH06275307A (en) Fuel cell
KR20230082218A (en) Secondary battery module
JP2021026958A (en) Fuel cell unit
JP5125376B2 (en) Fuel cell
JPH04296463A (en) Fuel cell
JP2000182653A (en) Solid electrolyte fuel cell block and solid electrolyte fuel cell module
US20110236797A1 (en) Multi-functional tightening clamps for a fuel cell