JPH0160807B2 - - Google Patents

Info

Publication number
JPH0160807B2
JPH0160807B2 JP15521380A JP15521380A JPH0160807B2 JP H0160807 B2 JPH0160807 B2 JP H0160807B2 JP 15521380 A JP15521380 A JP 15521380A JP 15521380 A JP15521380 A JP 15521380A JP H0160807 B2 JPH0160807 B2 JP H0160807B2
Authority
JP
Japan
Prior art keywords
light control
electrolyte
electrode
decoloring
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15521380A
Other languages
Japanese (ja)
Other versions
JPS5779920A (en
Inventor
Tadatoshi Kamimori
Junichi Nagai
Mamoru Mizuhashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15521380A priority Critical patent/JPS5779920A/en
Priority to DE8181301512T priority patent/DE3164989D1/en
Priority to EP81301512A priority patent/EP0038165B1/en
Priority to US06/254,104 priority patent/US4435048A/en
Publication of JPS5779920A publication Critical patent/JPS5779920A/en
Publication of JPH0160807B2 publication Critical patent/JPH0160807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エレクトロクロミツク(以下ECと
略す)現象を示す物質を用いた調光素子と調光合
せ透明体に関するものである。 EC現象を利用した調光素子は、例えば日射量
に応じて外光の入射量を自動的又は人為的に任意
に制御しうるものであり、建造物の窓材料、自動
車、航空機の窓ガラス等調光素子としての用途が
期待される。 従来、EC素子は、一対の電極板の間にWO3
MoO3,TiO2,Ir2O3等のEC物質とこのEC物質
を着色させうるイオンを含む電解質を挾持したも
のが知られ、主に小型の表示装置への応用が研究
されている。 ここに用いる電解質としては、固体、液体、半
固体電解質が提唱されてきた。これらを大面積か
つ充分な透過率変調の可能性という観点からみる
と、固体電解質は応答が遅く、変調幅も小さく、
更に多層膜コートとなるので生産性が悪く、大面
積での特性の一様性を確保しにくいという問題が
ある。また液体電解質の場合は、大面積化のとき
パネル化技術、電解質に漏洩防止が困難である。
半固体電解質特に有機物電解質は固体電解質、液
体電解質に比し、均一性、作業性、生産性等の点
から大面積の調光素子としては有利であるが、一
般にイオン伝導性がないか、小さくそれ自身では
EC特性を示さないか充分でないものが多い。 従来提案されているイオン伝導性を改良した有
機物電解質としては、特公昭54−43387号公報に
硫酸を含んだポリビニルアルコール、ポリアクリ
ルアミド、エチレングリコール等が又
GB2005856号明細書には強酸、弱酸或は塩基を
含んだポリスチレン、ポリエチレンスルホン酸、
パーフルオロスルホン酸等が、又GB2014326号
明細書には酸基を含んだモノマーとビニルモノマ
ーの共重合体が開示されている。 しかるに従来提案されているイオン伝導性を与
える方法は、酸を添加してプロトンイオンの濃度
を高める方法か、或は塩基、塩等の電解質を添加
してプロトンの移動度を増加させるものであつ
た。これらプロトンイオンの濃度を高めるか移動
度を増加させるものを有機物電解質に添加した場
合、ECの消色時の応答性は向上するが、着色時
の応答性については積極的効果があまりないもの
であつた。 本発明者らは、これらの欠点を改善するため
に、応答性を改善する方法を提案してきている。 しかし、これらも駆動電圧という面では未だ問
題点を有していたものであり、本発明者はこの駆
動電圧を低下せしめことを目的として種々研究し
た結果、本発明を見い出したものである。 本発明は、エレクトロクロミツク物質の層を電
極上に形成した電極板と、対向電極を設けた電極
板と、その間に挟持されたLiI又はI2及び接着機
能又は粘着機能を有する高分子化合物を含む電解
質とからなることを特徴とする調光素子であり、
エレクトロクロミツク物質の層を電極上に形成し
た電極板と、対向電極を設けた電極板と、その間
に挟持された接着機能又は粘着機能を有する高分
子化合物及びヨウ素化合物を含む非液体性電解質
とからなることを特徴とする調光合せ透明体であ
る。 本発明の調光素子及び調光合せ透明体は、ヨウ
素化合物を用いていることにより、対向電極での
好ましくない副反応を生ずることなく、低電圧で
の駆動が可能である。 又、電解質に金属に配位機能を有する物質、特
にキレート化剤を併用することにより、着色が速
く応答性が良くなる。 又、電解質に消色安定剤を加えることにより、
消色性能も改善され、大きな透過率変化が可能と
なる。 又、電解質として接着機能又は粘着機能を有す
る高分子化合物を併用することにより、電解質を
半固体化できるため周辺シール、注入口封止、間
隙一定化等の問題をほとんど生じなく、かつ、2
枚の電極板が接着されていることとなり、万一強
い外力がかかり電極板が破損した場合において
も、破片が飛散しなく安全であるという利点も有
している。 本発明に使用するエレクトロクロミツク物質と
は、前述の公知のものが使用できるが、通常
WO3系の材質が使用されれば良い。なお、この
EC物質は、その着色時に可視光の範囲内で吸収
性を有し、その消色時に可視光の範囲内で少なく
とも一部は吸収性を有しないものである。 通常使用する場合には、着色時には可視光全域
にわたり吸収性を有し、消色時には、可視光全域
にわたり透明となるものが好ましい。又、特定の
波長域のみに吸収を生じるようなEC物質を用い
る又は着色フイルターを併用する等して、特定の
色調の模様、文字等をえがき出すようにしても良
い。 本発明の電極板は、透明板上に電極を設けたも
のであれば使用でき、ガラス、プラスチツク等の
透明板上に、In2O3,SnO2,Au等の導電膜を設
ける。この導電膜は、通常透明板全面に設ければ
良いが、必要に応じて設けない部分を形成する又
は複数に分割する等しても良い。 この電極板の内の一方の電極板の導電膜上に前
記EC物質の層を形成する。このEC物質の層の厚
さは着色時の着色濃度により定められれば良い
が、通常1000〜10000Å程度で良いと思われる。 本発明では、EC物質の層を電極板上に形成し
ているため、ビオロゲンのような溶液型EC調光
素子のように電圧の印加を中止したとたんに消色
してしまうという欠点がなく、メモリー性を持た
せることができる。 又、他方の電極板の導電膜は対向電極として使
用されるが、着消色のいずれにおいても可視光の
範囲内で吸収を生じないEC物質の層を設けてお
いても良い。 本発明の電解質は、プロトン供与性溶媒とヨウ
素化合物とを含む。さらに、これに加えて、着色
促進剤として金属に配位機能を有する物質及び/
または消色安定剤としてClもしくはBrを含む化
合物を併用することが好ましい。 又、この電解質に接着機能又は粘着機能を有す
る高分子化合物を併用することにより、安全性が
向上し、電解質が液体又は固体の際に生ずるよう
な欠点を生じない。 本発明のプロトン供与性溶媒としては、高沸点
低凝固点、誘電率大のものが好ましく、炭素数3
以上のアルコール、アミド系溶媒、プロピレンカ
ーボネート等が用いられる。 本発明にかかるヨウ素化合物は、解離あるいは
酸化還元の平衡状態においてI―イオンを生じる
ものであれば良く、電解質中に5×10-3mol/
〜飽和量程度加えられれば良く、EC調光素子の
駆動電圧を低下させる。これらの内でもヨウ化リ
チウムが応答性が良く好ましい。特に後述の消色
安定剤と併用することにより、応答性、低電圧駆
動性、電極劣化防止、長寿命性の点で効果が大き
い。 この添加量は5×10-3mol/未満では改善の
効果がほとんどなく、飽和量を越えると沈殿物等
を生じるため好ましくなく、適宜決定されれば良
い。このヨウ素化合物は、レドツクス作用を有
し、対向電極が単なる透明電極であつても、電極
の溶解、還元またはガスの発生といつた好ましく
ない副反応を生じなく、スムーズな着消色を生じ
せしめる効果を有する。特に、後述の着色促進剤
と併用することにより低電圧での応答性が極めて
良く、メモリー性も充分に生じる。 本発明の着色促進剤としては、金属に対して配
位機能を有する添加物を使用すれば良く、これに
より着色応答性が良くなる。これは、電極金属へ
の配位子が配位による結合を生成し、電極面にお
いて電荷の授受を容易にするため、応答性が良く
なるためと思われる。この金属に対して配位機能
を有する物質としては、B,B,B族中の
元素がつくる中性分子或は陰イオンが知られてお
り、具体的にはNR3,PR3,S=CR2,O=CR2
(R:H、アルキル基、フエニル基等の有機置換
基)NH2 -,F-,CN-等が例示され、夫夫程度の
差はあるが応答性を向上させる。中でも多座配位
子である各種キレート化剤が特に有効である。キ
レート化剤としては、アセチルアセトン、ベンゾ
イルアセトン等のβジケトン誘導体、エチレンジ
アミン、トリエチレンテトラミン等のポリアミン
化合物、ジメチルグリオキシム等のオキシム、シ
ユウ酸、マレイン酸、エチレンジアミン四酢酸等
の多価カルボン酸、グリシン等のアミノ酸、チオ
グリコール酸、チオサリチル酸、ジメルカプトプ
ロパノール等Sを含んだもの等が例示される。 これら添加剤は単独で添加しても応答性特に着
色時の応答性が改良され、更にこれにプロトンイ
オンの濃度又は移動度を高める物質を添加併用す
るとよい。プロトンイオンの濃度又は移動度を高
める物質としては、硫酸、塩酸、リン酸等の無機
酸、ギ酸、酢酸、安息香酸、トリクロル酢酸等の
カルボン酸、ベンゼンスルホン酸、トルエンスル
ホン酸、等の有機スルホン酸、LiOH,NaOH等
の無機塩基、n―プロピルアミン等の有機塩基、
酢酸クロム、硫酸ニツケル、塩化鉄等の遷移金属
塩、酢酸アンモニウム等の有機塩、SiO2
Al2O3,TiO2等の酸化物微粒子或はゾル等が例示
される。 この着色促進剤は、5×10-3mol/飽和量混
合された場合に効果を生じ、5×10-3mol/未
満では、応答性改善が不充分であり、飽和量を越
えると、沈殿物を生じる等の欠点を生じるため好
ましくない。 消色安定剤としては、塩素を含む低級カルボン
酸、臭素化合物があり、消色時、即ち透過状態で
の透過率を高くすることができる。この具体例と
しては、モノブロム酢酸、トリブロム酢酸、
CHBr3等があり、1×10-3mol/〜飽和量添加
されれば良い。 本発明に用いる接着機能又は粘着機能を有する
高分子化合物は、特に限定されるものではない
が、電解質を非液体化することにより、透明体の
間隔を一定に保つとともに、破損を生じにくくす
るものであり、万一破損しても電解質が流出しな
いものであり、具体的にはポリアクリル酸、ポリ
メタクリル酸及びそれらの塩、エステル、アミ
ド、ポリスルフオン酸、ポリビニルアルコール、
ポリ酢酸ビニル、ポリビニルアセタール、ナイロ
ン、ポリウレタン、メラミン、尿素樹脂、ポリア
ミノシラン等の極性基をもち接着性のある高分子
及びそれらを構成するモノマーと他のモノマーの
共重合体がある。 特に、ポリビニルブチラールに代表されるポリ
ビニルアセタールが接着性、耐久性、応答性に優
れたものであり、大面積で耐久性があり、合せガ
ラスにみられる高い貫通抵抗性を生じせしめるこ
とができ、調光機能と安全機能を併せもたせるこ
とができる。 このように電解質を強靭な耐久力を有する弾力
性のある半固体化することにより、素子の周辺シ
ール部及び注入口の封止部が液体の電解質を用い
た場合に比してはるかに簡便又は不要となるもの
であり、液洩れによる劣化、透明体間隔のたわみ
による拡大等の欠点を生じなく、かつ高い貫通抵
抗性があり、安全性にも優れているものである。 この高分子化合物を本発明の調光合せ透明体に
使用するためには、この高分子化合物が溶剤にと
けるものの場合には電極板に添加剤を含んだ有機
物の溶液を、メニスカスコート法、引上げ法、ス
プレー法、流延法或はスピンナー法等で所定の厚
みに塗布し、これに真空蒸着法等で形成したEC
物質膜付電極板を圧着させるか、又は高分子化合
物がフイルムにできる場合にはあらかじめ添加剤
を含んだフイルムにしておいて、両電極板で圧着
させることにより得られる。又、高分子化合物が
溶剤にとけない場合には、モノマーの溶液に添加
剤を加え、硬化剤をさらに加え適当な粘度にした
ものを用いた方がよい。圧着に際しては必要に応
じて熱、圧力をかけることができる。 又、樹脂の塗布及び圧着時の取り扱い性を向上
させる為に適当な可塑剤、増粘剤、安定剤、充填
剤、顔料等を添加してもよい。 又、電極板間の間隔を一定にするために周辺或
は面内に一定厚みのプラスチツクフイルム、ガラ
スフアイバー、ガラスビーズ等を用いてもよい。 この様にして形成されたパネルの端面は水分、
酸素等の侵入を防ぐためにエポキシ樹脂、シリコ
ン樹脂、ブチルゴム、チオコール等のシーラント
を塗布密閉して使用することが好ましい。 本発明の調光素子又は調光合せ透明体の使用に
際しては、電極を設ける透明体としてガラス又は
硬質プラスチツク或はハードコートしたプラスチ
ツクを用い、そのまま建造物、車輌等調光窓とし
て使用しても良いし、透明体として可撓性のある
プラスチツクフイルムを用いることにより可撓性
のある調光素子又は調光合せ透明体を製造するこ
ともできる。 この場合にはガラス板等に貼着して、ペアガラ
スの中に入れることもできるし、表面のプラスチ
ツクフイルムに耐擦傷性コートを施すことによ
り、基材への接着型EC素子とすることもできる。 対向電極は導電膜のみでも良いが、遷移金属酸
化物、窒化物、硫化物等の遷移金属化合物の薄膜
を設けておくことにより低電圧応答性が向上す
る。この具体例としては、FeO,NiO,CuOが特
に効果がある。 EC物質の発消色機構は、WO3を例にとつてみ
ると以下に示される可逆反応からなり、表示極を
マイナスにすることにより右側へ反応が進み着色
し、表示極をプラスにすることにより左側へ反応
が進み消色する。又、EC物質を使用した素子は
メモリー性があり、表示極をフローテイング状態
とした場合相当長期にわたりその直前の状態を保
持することとなり、電力を消費しない。 WO3+xH++Xe-Hx+WO3ex- 又、対向電極では、In2O3の場合の例を示し、
表示極と対応させるため対向電極をプラスにした
場合反応が右に進むように示してある。又、Ml
はヨウ素化合物を、Keはキレート化剤を示す。 2×Ml−2xe-xI2+2xM+ In2O3+xOH-+xH+Ke-−xe- In2O3Kex+xH2O なお、本発明でのヨウ素化合物は、このよう
に、単独でレドツクス反応及び駆動電圧を下げる
働きをしている。特に、ヨウ素化合物と着色促進
剤と併用した場合に駆動電圧を大巾に低下させる
ことが可能となり、わずか1V程度で駆動させる
ことが可能となるものである。 実施例 1 表示極透明体として、10cm角のガラス板に
In2O3を真空蒸着し、その上にWO3を真空蒸着し
た基板を用い、対向電極として10cm角のガラス板
上にIn2O3を真空蒸着したものを用い、電解質と
して、溶媒ブチルアルコール、着色促進剤チオサ
リチル酸1×10-3mol/、消色安定剤トリブロ
ム酢酸5×10-2mol/とヨウ素化合物を1×
10-3mol/混合したものを使用した。このヨウ
素化合物、駆動電圧、着消色時間のグラフの番号
を第1表に示す。なお、第1表中No.1とNo.2は比
較例である。 又、グラフのたて軸は、透過率を100%として
示し、横軸は時間を分で示す。実施例2以下も同
様に示す、又、各グラフの左側の線は、0乃至3
分間に電圧を印加して着色した場合の透過率変化
を示し、右側の線は、3分を0分として逆極性の
電圧を印加して消色させた場合の透過率変化を示
している。
The present invention relates to a light control element and a light control transparent body using a substance exhibiting an electrochromic (hereinafter abbreviated as EC) phenomenon. A light control element that utilizes the EC phenomenon can automatically or artificially control the amount of incident outside light according to the amount of sunlight, and is used in window materials for buildings, automobiles, aircraft window glass, etc. It is expected to be used as a light control element. Conventionally, EC elements have WO 3 between a pair of electrode plates,
A device in which an EC material such as MoO 3 , TiO 2 , Ir 2 O 3 and an electrolyte containing ions capable of coloring the EC material is sandwiched is known, and its application to small display devices is being studied. Solid, liquid, and semi-solid electrolytes have been proposed as the electrolyte used here. Looking at these from the perspective of large area and the possibility of sufficient transmittance modulation, solid electrolytes have a slow response and a small modulation width.
Furthermore, since it is a multilayer coating, productivity is low and there are problems in that it is difficult to ensure uniformity of characteristics over a large area. In addition, in the case of liquid electrolyte, it is difficult to use panel technology to prevent leakage of the electrolyte when increasing the area.
Semi-solid electrolytes, especially organic electrolytes, are advantageous in terms of uniformity, workability, and productivity compared to solid electrolytes and liquid electrolytes, but they generally have no ionic conductivity or are small in size. by itself
Many of them do not exhibit EC characteristics or do not exhibit sufficient EC characteristics. Conventionally proposed organic electrolytes with improved ionic conductivity include polyvinyl alcohol containing sulfuric acid, polyacrylamide, ethylene glycol, etc., as described in Japanese Patent Publication No. 54-43387.
GB2005856 specifies polystyrene containing strong acid, weak acid or base, polyethylene sulfonic acid,
Perfluorosulfonic acid, etc., and GB2014326 discloses a copolymer of a monomer containing an acid group and a vinyl monomer. However, conventionally proposed methods for imparting ionic conductivity include adding acids to increase the concentration of proton ions, or adding electrolytes such as bases and salts to increase the mobility of protons. Ta. When something that increases the concentration or mobility of these proton ions is added to an organic electrolyte, the responsiveness of EC when decoloring improves, but it does not have much of a positive effect on the responsiveness when coloring. It was hot. The present inventors have proposed a method for improving responsiveness in order to improve these drawbacks. However, these still have problems in terms of driving voltage, and the inventor of the present invention has discovered the present invention as a result of various studies aimed at lowering this driving voltage. The present invention comprises an electrode plate on which a layer of an electrochromic substance is formed, an electrode plate on which a counter electrode is provided, LiI or I 2 sandwiched between them, and a polymer compound having an adhesive function or adhesive function. A light control element characterized by comprising an electrolyte containing,
An electrode plate having a layer of an electrochromic substance formed on the electrode, an electrode plate having a counter electrode, and a non-liquid electrolyte containing a polymer compound and an iodine compound having an adhesive or adhesive function sandwiched therebetween. This is a light control transparent body characterized by comprising: By using an iodine compound, the light control element and light control transparent body of the present invention can be driven at low voltage without causing any undesirable side reactions at the counter electrode. Further, by using a substance having a coordination function with metals, particularly a chelating agent, in the electrolyte, coloring is quick and responsiveness is improved. In addition, by adding a decolorizing stabilizer to the electrolyte,
The erasing performance is also improved, and a large change in transmittance is possible. In addition, by using a polymer compound with an adhesive or adhesive function as an electrolyte, the electrolyte can be made semi-solid, so there are almost no problems such as peripheral sealing, injection port sealing, and gap constantization, and 2.
Since the two electrode plates are glued together, there is also the advantage that even if a strong external force is applied to the electrode plate and the electrode plate is damaged, the pieces will not scatter and it will be safe. As the electrochromic substance used in the present invention, the above-mentioned known ones can be used, but usually
It is sufficient if WO 3 type material is used. Furthermore, this
An EC substance has absorbency within the visible light range when colored, and does not have absorbency at least in part within the visible light range when decolorized. In normal use, it is preferable to have absorbency over the entire visible light range when colored, and to be transparent over the entire visible light range when decolorized. Furthermore, by using an EC substance that absorbs only in a specific wavelength range, or by using a colored filter in combination, patterns, letters, etc. in a specific color tone may be printed. The electrode plate of the present invention can be used as long as the electrode is provided on a transparent plate, and a conductive film of In 2 O 3 , SnO 2 , Au, etc. is provided on a transparent plate such as glass or plastic. This conductive film may normally be provided on the entire surface of the transparent plate, but if necessary, it may be formed in a portion where it is not provided or may be divided into a plurality of parts. A layer of the EC material is formed on the conductive film of one of the electrode plates. The thickness of this layer of EC material may be determined by the coloring density at the time of coloring, but it is generally considered to be about 1,000 to 10,000 Å. In the present invention, since a layer of EC material is formed on the electrode plate, there is no disadvantage that the color disappears as soon as voltage application is stopped, unlike solution type EC dimming elements such as viologen. , can have memory properties. Further, the conductive film of the other electrode plate is used as a counter electrode, but a layer of an EC material that does not absorb within the visible light range may be provided in either coloring or decoloring. The electrolyte of the present invention includes a proton-donating solvent and an iodine compound. Furthermore, in addition to this, substances and/or substances that have a coordinating function to metals as coloring accelerators are added.
Alternatively, it is preferable to use a compound containing Cl or Br as a decoloring stabilizer. Further, by using a polymer compound having an adhesive or adhesive function in combination with this electrolyte, safety is improved and the drawbacks that occur when the electrolyte is liquid or solid do not occur. The proton-donating solvent of the present invention is preferably one with a high boiling point, a low freezing point, and a large dielectric constant, and has 3 carbon atoms.
The above-mentioned alcohols, amide solvents, propylene carbonate, etc. are used. The iodine compound according to the present invention may be one that generates I- ions in the dissociation or redox equilibrium state, and should be present in the electrolyte at a concentration of 5×10 -3 mol/
~ It is sufficient to add about a saturation amount, and it reduces the driving voltage of the EC dimming element. Among these, lithium iodide is preferred because of its good responsiveness. In particular, when used in combination with a decoloring stabilizer to be described later, it is highly effective in terms of responsiveness, low voltage drivability, prevention of electrode deterioration, and long life. If the amount added is less than 5 x 10 -3 mol/, there will be little improvement effect, and if it exceeds the saturation amount, precipitation will occur, which is not preferable, so it may be determined as appropriate. This iodine compound has a redox effect, and even if the counter electrode is a simple transparent electrode, it causes smooth coloring and fading without causing undesirable side reactions such as electrode dissolution, reduction, or gas generation. have an effect. In particular, when used in combination with a coloring accelerator described below, responsiveness at low voltages is extremely good and sufficient memory properties are produced. As the coloring accelerator of the present invention, an additive having a coordinating function with respect to metal may be used, which improves the coloring response. This is thought to be because the ligand to the electrode metal forms a bond through coordination and facilitates transfer of charge on the electrode surface, resulting in improved responsiveness. Neutral molecules or anions produced by elements in the B, B, and B groups are known as substances that have a coordination function for this metal, and specifically, NR 3 , PR 3 , S= CR 2 , O=CR 2
(R: Organic substituents such as H, alkyl group, and phenyl group) NH 2 - , F - , CN -, etc. are exemplified, and although there are differences in degree, the response is improved. Among these, various chelating agents that are polydentate ligands are particularly effective. Chelating agents include β-diketone derivatives such as acetylacetone and benzoylacetone, polyamine compounds such as ethylenediamine and triethylenetetramine, oximes such as dimethylglyoxime, polyhydric carboxylic acids such as oxalic acid, maleic acid, and ethylenediaminetetraacetic acid, and glycine. Examples thereof include amino acids such as thioglycolic acid, thiosalicylic acid, and dimercaptopropanol. Even when these additives are added alone, the responsiveness, especially the responsiveness during coloring, is improved, and it is also preferable to add a substance that increases the concentration or mobility of proton ions in combination. Substances that increase the concentration or mobility of proton ions include inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid, carboxylic acids such as formic acid, acetic acid, benzoic acid, and trichloroacetic acid, and organic sulfonic acids such as benzenesulfonic acid and toluenesulfonic acid. acids, inorganic bases such as LiOH and NaOH, organic bases such as n-propylamine,
Transition metal salts such as chromium acetate, nickel sulfate, iron chloride, organic salts such as ammonium acetate, SiO 2 ,
Examples include oxide fine particles or sols such as Al 2 O 3 and TiO 2 . This coloring accelerator produces an effect when mixed in an amount of 5 x 10 -3 mol/saturation, and if it is less than 5 x 10 -3 mol/ the response improvement is insufficient, and if it exceeds the saturation amount, it will cause precipitation. This is not preferable because it causes disadvantages such as the formation of foreign substances. Examples of decoloring stabilizers include lower carboxylic acids containing chlorine and bromine compounds, which can increase the transmittance during decoloring, that is, in a transmitting state. Specific examples include monobromoacetic acid, tribromoacetic acid,
CHBr 3 and the like may be added in an amount of 1×10 −3 mol/~ to saturation. The polymer compound having an adhesive function or adhesive function used in the present invention is not particularly limited, but may be one that maintains a constant interval between transparent bodies and makes it difficult to cause damage by making the electrolyte non-liquid. Even if it is damaged, the electrolyte will not flow out. Specifically, polyacrylic acid, polymethacrylic acid and their salts, esters, amides, polysulfonic acids, polyvinyl alcohol,
There are adhesive polymers having polar groups such as polyvinyl acetate, polyvinyl acetal, nylon, polyurethane, melamine, urea resin, and polyaminosilane, and copolymers of monomers constituting these polymers and other monomers. In particular, polyvinyl acetal, represented by polyvinyl butyral, has excellent adhesiveness, durability, and responsiveness, is durable over a large area, and can produce the high penetration resistance seen in laminated glass. It can have both a dimming function and a safety function. In this way, by making the electrolyte into an elastic semi-solid with strong durability, the peripheral sealing part of the element and the sealing part of the injection port are much simpler or simpler than when using liquid electrolyte. It is unnecessary, does not cause disadvantages such as deterioration due to liquid leakage and expansion of the gap between transparent bodies due to deflection, has high penetration resistance, and is excellent in safety. In order to use this polymer compound in the light control transparent body of the present invention, if this polymer compound is soluble in a solvent, a solution of an organic substance containing an additive is applied to the electrode plate using a meniscus coating method or a pulling method. EC is applied to a specified thickness using a method such as a spray method, a casting method, a spinner method, etc., and then formed using a vacuum evaporation method, etc.
It can be obtained by press-bonding an electrode plate with a substance film, or, if the polymer compound can be formed into a film, by making a film containing additives in advance and press-bonding it with both electrode plates. If the polymer compound is not soluble in a solvent, it is better to use a solution of monomers with additives and a curing agent added thereto to obtain an appropriate viscosity. During crimping, heat and pressure can be applied as necessary. In addition, suitable plasticizers, thickeners, stabilizers, fillers, pigments, etc. may be added to improve handling properties during coating and pressure bonding of the resin. Furthermore, a plastic film, glass fiber, glass beads, etc. of a constant thickness may be used around the periphery or within the plane to make the spacing between the electrode plates constant. The end surface of the panel formed in this way is free from moisture.
In order to prevent the intrusion of oxygen and the like, it is preferable to use a sealant such as epoxy resin, silicone resin, butyl rubber, thiocol, etc. to seal the container. When using the light control element or the light control transparent body of the present invention, glass, hard plastic, or hard-coated plastic is used as the transparent body on which the electrodes are provided, and it can be used as it is as a light control window in buildings, vehicles, etc. Moreover, by using a flexible plastic film as the transparent body, a flexible light control element or a light control combined transparent body can be manufactured. In this case, it can be attached to a glass plate or the like and placed inside a pair of glass, or it can be made into an adhesive type EC element to the base material by applying a scratch-resistant coating to the plastic film on the surface. can. Although only a conductive film may be used as the counter electrode, low voltage responsiveness is improved by providing a thin film of a transition metal compound such as a transition metal oxide, nitride, or sulfide. As specific examples, FeO, NiO, and CuO are particularly effective. Taking WO 3 as an example, the coloring and fading mechanism of EC substances consists of the reversible reaction shown below. By setting the display pole to negative, the reaction progresses to the right, resulting in coloration, and by turning the display pole to positive. The reaction progresses to the left side and the color disappears. Furthermore, elements using EC materials have memory properties, and when the display electrode is placed in a floating state, it retains its previous state for a considerable period of time, and does not consume power. WO 3 +xH + +Xe - Hx + WO 3 ex - Also, for the counter electrode, an example of In 2 O 3 is shown,
The reaction is shown to proceed to the right when the counter electrode is made positive in order to correspond to the display electrode. Also, Ml
represents an iodine compound, and Ke represents a chelating agent. 2×Ml−2xe - xI 2 +2xM + In 2 O 3 +xOH - +xH + Ke - -xe - In 2 O 3 Kex + xH 2 O In this way, the iodine compound in the present invention can be used alone for redox reaction and drive. It works to lower the voltage. In particular, when an iodine compound and a color accelerator are used in combination, it becomes possible to significantly reduce the driving voltage, and it becomes possible to drive with only about 1V. Example 1 On a 10 cm square glass plate as an extremely transparent display material
A substrate on which In 2 O 3 was vacuum evaporated and WO 3 was vacuum evaporated thereon was used. In 2 O 3 was vacuum evaporated on a 10 cm square glass plate as the counter electrode, and the solvent butyl alcohol was used as the electrolyte. , color accelerator thiosalicylic acid 1×10 -3 mol/, decolorization stabilizer tribromoacetic acid 5×10 -2 mol/and iodine compound 1×
10 -3 mol/mixture was used. The graph numbers of the iodine compound, driving voltage, and coloring/decoloring time are shown in Table 1. Note that No. 1 and No. 2 in Table 1 are comparative examples. Further, the vertical axis of the graph indicates transmittance as 100%, and the horizontal axis indicates time in minutes. Example 2 and subsequent examples are shown in the same manner, and the line on the left side of each graph is 0 to 3.
The line on the right shows the change in transmittance when coloring is achieved by applying a voltage for 3 minutes, and the line on the right shows the change in transmittance when a voltage of the opposite polarity is applied to erase the color, with 3 minutes being 0 minutes.

【表】 ヨウ素化合物を使用しない例では、駆動電圧を
1.5Vとすれば透過率は20%80%に変化するが、
No.2(第2図)に示す例では、1Vであるため透過
率が着色時においても50%を切らないものであつ
た。これに対し、本発明の実施例であるNo.3乃至
No.9は、着消色特性ともに良く、1Vの駆動電圧
で、3分以内に、透過率20%80%の変化が得ら
れた。 又、電解質にヨウ化リチウムのみを添加し、着
色促進剤であるチオサリチル酸を使用しない例を
No.10として示し、その結果を第10図に示す。こ
の結果は、グラフからも明らかなようにNo.4より
かは着色応答性が悪いものであつたが、ヨウ素化
合物を添加しなく、着色促進剤であるチオサリチ
ル酸のみを添加した例であるNo.2に比しては低電
圧での応答性が良いものであつた。 実施例 2 ヨウ素化合物としてLiIを1×10-3mol/使
用し、着色促進剤と消色安定剤を種々変更した例
を第2表に示す。なお、着色促進剤の添加量は1
×10-1mol/、消色安定剤の添加量は5×
10-2mol/であり、その他の条件は全て実施例
1と同じとした。この結果は第11図乃至第15
図に示したように、いずれも優れた着消色特性が
得られた。
[Table] In examples where iodine compounds are not used, the driving voltage is
If it is 1.5V, the transmittance will change from 20% to 80%,
In the example shown in No. 2 (Fig. 2), since the voltage was 1 V, the transmittance did not fall below 50% even when colored. On the other hand, Nos. 3 to 3 which are examples of the present invention
No. 9 had good coloring and fading characteristics, and a change in transmittance of 20% to 80% was obtained within 3 minutes at a driving voltage of 1V. In addition, an example is shown in which only lithium iodide is added to the electrolyte and thiosalicylic acid, which is a color accelerator, is not used.
No. 10, and the results are shown in FIG. As is clear from the graph, this result showed that the coloring response was worse than No. 4, but No. Compared to .2, the response at low voltage was better. Example 2 Table 2 shows an example in which 1×10 −3 mol/LiI was used as the iodine compound and the coloring accelerator and decoloring stabilizer were variously changed. The amount of color accelerator added is 1
×10 -1 mol/, the amount of decolorizing stabilizer added is 5×
10 -2 mol/, and all other conditions were the same as in Example 1. This result is shown in Figures 11 to 15.
As shown in the figure, excellent coloring/decoloring properties were obtained in all cases.

【表】 実施例 3 実施例1のNo.4の基本的には同一とし、電解液
に、No.16ポリビニルブチラール30%、No.17ポリア
クリル酸30%を加えた調光合せ透明体を製造し
た。この着消色特性は、第16図、第17図に示
すように優れたものであり、しかも合せガラスと
同様高い貫通抵抗性が得られるものであつた。
又、これらはいずれも電解質が非液体であるため
液洩れを生じない耐久性の高いものであつた。 実施例 4 実施例1のNo.4と基本的には同一とし、対向電
極上に遷移金属酸化物層を形成したものを使用し
た例であり、No.18FeO,No.19NiO,No.20CuO夫々
500Aの厚さに設けた例で、駆動電圧1VではNo.4
と同様の着消色特性を示すため、より厳しい条件
である駆動電圧0.75Vで行なつた着消色特性を第
18図乃至第20図に示す。これらの例は駆動電
圧が0.75Vであるため、着色特性はやや劣ること
になるが、遷移金属酸化物層を設けない例No.21
(素子としてはNo.4と同一)を0.75Vで駆動した
例である第21図と比較した場合、低電圧駆動特
性がより良いものであつた。 比較例 本発明のヨウ素化合物の代りに、No.22LiClO4
No.23LiBr,No.24H2SO4を夫々1mol/添加した
No.2と同じ素子を用いてその着消色特性を測定
し、その結果を第22図乃至第24図に示す。こ
れらは、添加物ないしよりはやや良い着消色特性
を示したが、1Vの駆動電圧では、着色特性が不
充分なものにすぎなかつた。 実施例 5 実施例1のNo.3とNo.5〜No.9の着色促進剤及び
消色安定剤を含まない場合の例であるNo.25(I2)、
No.26(MnI2)、No.27(NiI2)、No.28(ZnI2)、No.29
(NH4I)、No.30(CH2ICOOH)の着消色時間のグ
ラフを第25図〜第30図に示す。駆動電圧は
IVとした。 実施例 6 実施例1のNo.10(LiI)及び実施例5のNo.29
(NH4I)の例のヨウ素化合物の濃度を0.75M/
とし、電解質にポリビニルブチラール30%を加え
た例であるNo.31(LiI)、No.32(NH4I)の着消色時
間のグラフを第31図及び第32図に示す。駆動
電圧はIVとした。 このように本発明は低い電圧での着消色特性が
良く、特に接着性又は粘着性の高分子化合物を用
いて電解質を半固体化することにより合せガラス
のような高い貫通抵抗性を示す優れたものであ
り、種々の調光素子として必要に応じて他の材
料、添加剤を併用することにより種々の応用が可
能なものである。
[Table] Example 3 A light control transparent body was basically the same as No. 4 of Example 1, but added 30% of No. 16 polyvinyl butyral and 30% of No. 17 polyacrylic acid to the electrolyte. Manufactured. The coloring and fading properties were excellent as shown in FIGS. 16 and 17, and high penetration resistance was obtained, similar to that of laminated glass.
In addition, since the electrolyte in each of these was non-liquid, they were highly durable and did not cause liquid leakage. Example 4 This is an example that is basically the same as No. 4 of Example 1, but uses a transition metal oxide layer formed on the counter electrode, and No. 18FeO, No. 19 NiO, and No. 20 CuO, respectively.
In this example, it is installed at a thickness of 500A, and at a driving voltage of 1V, it is No.4.
18 to 20 show the coloring/decoloring characteristics obtained under a driving voltage of 0.75 V, which is a more severe condition, in order to show the coloring/decoloring characteristics similar to those shown in FIG. In these examples, the driving voltage is 0.75V, so the coloring characteristics are slightly inferior, but Example No. 21 without a transition metal oxide layer
When compared with FIG. 21, which is an example in which the device (the element is the same as No. 4) was driven at 0.75V, the low voltage drive characteristics were better. Comparative Example Instead of the iodine compound of the present invention, No.22LiClO 4 ,
1 mol/each of No.23LiBr and No.24H 2 SO 4 was added.
Using the same device as No. 2, its coloring and fading characteristics were measured, and the results are shown in FIGS. 22 to 24. Although these exhibited slightly better coloring and decoloring properties than additives, their coloring properties were only insufficient at a driving voltage of 1V. Example 5 No. 25 (I 2 ), which is an example of the case where the color accelerator and decoloring stabilizer of No. 3 and No. 5 to No. 9 of Example 1 are not included,
No.26 (MnI 2 ), No.27 (NiI 2 ), No.28 (ZnI 2 ), No.29
(NH 4 I) and No. 30 (CH 2 ICOOH), graphs of coloring/decoloring time are shown in FIGS. 25 to 30. The driving voltage is
It was designated as IV. Example 6 No. 10 (LiI) of Example 1 and No. 29 of Example 5
The concentration of the iodine compound in the example of (NH 4 I) is 0.75M/
Figures 31 and 32 show graphs of the coloring and fading time of No. 31 (LiI) and No. 32 (NH 4 I), which are examples in which 30% polyvinyl butyral was added to the electrolyte. The driving voltage was set to IV. As described above, the present invention has good coloring/decoloring properties at low voltages, and in particular, by making the electrolyte semi-solid using an adhesive or sticky polymer compound, it has excellent properties that exhibit high penetration resistance like laminated glass. It can be used in various ways as a light control element by using other materials and additives as necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第32図は本発明の実施例及び比較
例の着消色特性を示すグラフ。
FIGS. 1 to 32 are graphs showing the coloring/decoloring characteristics of Examples and Comparative Examples of the present invention.

Claims (1)

【特許請求の範囲】 1 エレクトロクロミツク物質の層を電極上に形
成した電極板と、対向電極を設けた電極板と、そ
の間に挟持されたLiI又はI2及び接着機能又は粘
着機能を有する高分子化合物を含む電解質とから
なることを特徴とする調光素子。 2 電解質が、金属に対して配位機能を有する物
質を含む特許請求の範囲第1項記載の調光素子。 3 金属に対して配位機能を有する物質が、キレ
ート化剤である特許請求の範囲第2項記載の調光
素子。 4 電解質が、塩素を含む低級カルボン酸からな
る消色安定剤を含む特許請求の範囲第1項〜第3
項のいずれか一項記載の調光素子。 5 電解質が、臭素化合物からなる消色安定剤を
含む特許請求の範囲第1項〜第3項のいずれか一
項記載の調光素子。 6 エレクトロクロミツク物質の層を電極上に形
成した電極板と、対向電極を設けた電極板と、そ
の間に挟持された接着機能又は粘着機能を有する
高分子化合物及びI2又はLiIを含む非液体性電解
質とからなることを特徴とする調光合せ透明体。 7 非液体性電解質が、金属に対して配位機能を
有する物質を含む特許請求の範囲第6項記載の調
光合せ透明体。 8 金属に対して配位機能を有する物質が、キレ
ート化剤である特許請求の範囲第7項記載の調光
合せ透明体。 9 非液体性電解質が、塩素を含む低級カルボン
酸からなる消色安定剤を含む特許請求の範囲第6
項〜第8項いずれか一項記載の調光合せ透明体。 10 非液体性電解質が、臭素化合物からなる消
色安定剤を含む特許請求の範囲第6項〜第8項の
いずれか一項記載の調光合せ透明体。
[Claims] 1. An electrode plate with an electrochromic material layer formed on the electrode, an electrode plate with a counter electrode, LiI or I 2 sandwiched between them, and a polymer having an adhesive function or adhesive function. A light control element comprising an electrolyte containing a molecular compound. 2. The light control element according to claim 1, wherein the electrolyte includes a substance having a coordination function with respect to a metal. 3. The light control element according to claim 2, wherein the substance having a coordination function with respect to metal is a chelating agent. 4 Claims 1 to 3 in which the electrolyte contains a decoloring stabilizer made of a lower carboxylic acid containing chlorine
The light control device according to any one of paragraphs. 5. The light control element according to any one of claims 1 to 3, wherein the electrolyte contains a decoloring stabilizer made of a bromine compound. 6 An electrode plate with a layer of electrochromic substance formed on the electrode, an electrode plate with a counter electrode provided thereon, and a non-liquid containing a polymer compound having an adhesive or adhesive function and I2 or LiI sandwiched between them. A light-adjustable transparent body characterized by comprising a transparent electrolyte. 7. The light control transparent body according to claim 6, wherein the non-liquid electrolyte contains a substance having a coordination function with respect to a metal. 8. The light control transparent body according to claim 7, wherein the substance having a coordination function with respect to metal is a chelating agent. 9 Claim 6 in which the non-liquid electrolyte contains a decoloring stabilizer made of a lower carboxylic acid containing chlorine
The light control transparent body according to any one of Items 1 to 8. 10. The light control transparent body according to any one of claims 6 to 8, wherein the non-liquid electrolyte contains a decoloring stabilizer made of a bromine compound.
JP15521380A 1980-04-15 1980-11-06 Dimming element and dimming control transparent body Granted JPS5779920A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15521380A JPS5779920A (en) 1980-11-06 1980-11-06 Dimming element and dimming control transparent body
DE8181301512T DE3164989D1 (en) 1980-04-15 1981-04-07 Electro-optical device and electro-optical light controlling device
EP81301512A EP0038165B1 (en) 1980-04-15 1981-04-07 Electro-optical device and electro-optical light controlling device
US06/254,104 US4435048A (en) 1980-04-15 1981-04-14 Electro-optical device and electro-optical light controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15521380A JPS5779920A (en) 1980-11-06 1980-11-06 Dimming element and dimming control transparent body

Publications (2)

Publication Number Publication Date
JPS5779920A JPS5779920A (en) 1982-05-19
JPH0160807B2 true JPH0160807B2 (en) 1989-12-26

Family

ID=15600975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15521380A Granted JPS5779920A (en) 1980-04-15 1980-11-06 Dimming element and dimming control transparent body

Country Status (1)

Country Link
JP (1) JPS5779920A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592020A (en) * 1982-06-29 1984-01-07 Toshiba Corp Electrochromic display element
JPS5994743A (en) * 1982-11-24 1984-05-31 Toshiba Corp Electrochromic display element
JPS63106732A (en) * 1986-10-24 1988-05-11 Asahi Glass Co Ltd Electrochromic element
FR2618568B1 (en) * 1987-07-24 1992-04-17 Warszawski Bernard METHOD FOR MANUFACTURING A DEVICE FOR MODULATING LIGHT

Also Published As

Publication number Publication date
JPS5779920A (en) 1982-05-19

Similar Documents

Publication Publication Date Title
US4435048A (en) Electro-optical device and electro-optical light controlling device
US7884994B2 (en) Electrochromic layers, device and process of producing same
JP4759139B2 (en) Devices based on poly- (3,4-dioxythiophene) derivatives that are electrochromically switched by protons
JP3942764B2 (en) Electrochromic devices based on poly- (3,4-dioxy-thiophene) derivatives
US20010006430A1 (en) Method for producing a cell for an electrochromic mirror and an electrochromic mirror
JP2007529781A (en) Gel polymer electrolyte using ionic liquid and electrochromic device using the same
CN106896612A (en) A kind of electrochromic device and its application in rearview mirror preparation field
US8345345B2 (en) Electrochromic device having an improved fill port plug
JPH1138454A (en) Electrochromic mirror
RU2524963C1 (en) Electroconductive adhesive for electrochromic devices
US11237448B2 (en) Hybrid electrochromic devices and methods
JPS63106731A (en) Dimmer body
JPH0160807B2 (en)
JPH0217093B2 (en)
JP4360663B2 (en) Electrochromic mirror
JPH06273725A (en) Light control window
RU2464607C2 (en) Single-layer partitioned electrochromic device having electrochromic polymer material
JPS63106732A (en) Electrochromic element
WO1999032928A1 (en) Electrochromic element
JP2001188261A (en) Electrochromic element
KR20120000735A (en) Photocurable gel polymer electrolyte composition
JP3556850B2 (en) Electrochromic device
JPH0115851B2 (en)
JP2000235198A (en) Electrochromic device
JP2010117409A (en) Display element