JPS592020A - Electrochromic display element - Google Patents

Electrochromic display element

Info

Publication number
JPS592020A
JPS592020A JP57110864A JP11086482A JPS592020A JP S592020 A JPS592020 A JP S592020A JP 57110864 A JP57110864 A JP 57110864A JP 11086482 A JP11086482 A JP 11086482A JP S592020 A JPS592020 A JP S592020A
Authority
JP
Japan
Prior art keywords
material layer
conductive material
display element
electrochromic
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57110864A
Other languages
Japanese (ja)
Inventor
Masataka Miyamura
雅隆 宮村
Yuko Nakajima
中嶋 祐子
Masanori Sakamoto
正典 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57110864A priority Critical patent/JPS592020A/en
Priority to CA000428961A priority patent/CA1211547A/en
Priority to AU15071/83A priority patent/AU543876B2/en
Priority to US06/502,322 priority patent/US4537826A/en
Priority to DE8383105817T priority patent/DE3382605T2/en
Priority to EP19830105817 priority patent/EP0098416B1/en
Publication of JPS592020A publication Critical patent/JPS592020A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain a display element which is driven at low voltage, responds at high speed and has superior durability by forming an electrochromic (EC) material layer with a transition metallic oxide and an ionic conductive material layer contacting with the EC material layer with an org. polymer and an inorg. ionic conductive material. CONSTITUTION:A transparent electrode 2 is formed on a transparent glass substrate 1, and an EC material layer 3 of MoO3 or WO3 is formed on the electrode 2 by vacuum deposition or other method. A uniform mixture of a soln. of an org. polymer such as polymethyl methacrylate with an inorg. ionic conductive material such as LiClO4, LiF or NaF is applied to the layer 3 and dried to form an ionic conductive material layer 4. A transparent electrode 5 is formed on the layer 4 by sputtering, and the void is sealed with epoxy resin to obtain an entirely solid EC display element. By adding a white pigment such as TiO2 or Al2O3 to the layer 4, the background may be prevented from being seen through the layer 4 to improve the decorative effect. The generation of H2 by a reaction between the electrodes is prevented in the element, and the element causes no liq. leak and has superior durability.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電気発色表示素子に関し、更に詳しくは、電
極間に短絡等の生ずることがなく、エレクトロクロ電ツ
ク層との密着性が良好で、発消色の応答速度が速く、且
つ、長期間の使用に際しても表示機能が低下することの
ない電気発色表示素子に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an electrochromic display element, and more specifically, an electrochromic display element that does not cause short circuits between electrodes and has good adhesion with an electrochromic layer. The present invention relates to an electrochromic display element which has a fast response speed for color development and fading and whose display function does not deteriorate even when used for a long period of time.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、エレクトロクロミック材料層に遷移金属酸化物を
使用する電気発色表示素子において、このエレクトロク
ロミック材料層に接して形成され液体イオン導電材料と
しては、発消色応答速度を速め、良好なプントラストを
得る目的から、例えば、硫酸等のカチオン移動度が大き
い酸類を主体とする電解液が使用されている。しかしな
がら、これらを長期間に亘って使用した場合には、電気
発色表示素子から電解液が漏洩し易いという問題点を有
している。そのため、電気発色表示素子の製造に際して
杜、電解液を液密に封止することを要し、製造工程が煩
雑と々ル、作業効率が低下するという問題点をも有して
いる。
Conventionally, in electrochromic display elements that use transition metal oxides in the electrochromic material layer, the liquid ion conductive material formed in contact with the electrochromic material layer has been used to speed up the coloring/decoloring response speed and provide good punnlast. For this purpose, for example, an electrolytic solution containing mainly acids having high cation mobility, such as sulfuric acid, is used. However, when these are used for a long period of time, they have a problem in that the electrolyte tends to leak from the electrochromic display element. Therefore, when manufacturing an electrochromic display element, it is necessary to seal the electrolyte in a liquid-tight manner, resulting in the problem that the manufacturing process is complicated and work efficiency is reduced.

一方、固体イオン導電゛材料としては、例えば、二酸化
ケイ素(SlOり、7ツ化マグネシウム(MtFt )
 、フッ化カルシウム(CaF、)等の無機イオン導を
材料或いはパーフルオロスルホン酸樹脂、スチレンスル
ホン酸樹脂、アクリル樹脂等の有機イオン導電材料が使
用されている。しかし、前者は、イオン導電材料層及び
エレクトロクロミック材料層中に存在するピンホールを
介して透明電極と対向電極間が短絡し易いという問題点
を有している。又、その製造に際して生産性が悪く、実
用には適さないものである。他方、高分子樹脂等の有機
イオン導電材料を使用した場合には、エレクトロクロミ
ック材料層との界面の密着性が不良でちゃ、界面でのイ
オン移動が円滑に進行しないという問題点を有している
。更に、有機イオン導電材料層中でのカチオン移動速度
が小さいために、発消色の応答速度が遅く、2秒程度を
要するという問題点を有している。
On the other hand, examples of solid ion conductive materials include silicon dioxide (SlO), magnesium heptatide (MtFt), etc.
Inorganic ion conductive materials such as calcium fluoride (CaF), or organic ion conductive materials such as perfluorosulfonic acid resin, styrene sulfonic acid resin, and acrylic resin are used. However, the former has a problem in that the transparent electrode and the counter electrode are easily short-circuited through pinholes existing in the ion-conductive material layer and the electrochromic material layer. In addition, the productivity is poor during manufacture, making it unsuitable for practical use. On the other hand, when an organic ion conductive material such as a polymeric resin is used, there is a problem that if the adhesion of the interface with the electrochromic material layer is poor, ion movement at the interface will not proceed smoothly. There is. Furthermore, since the cation movement speed in the organic ion conductive material layer is low, the response speed for developing and decoloring is slow and takes about 2 seconds.

又、従来の電気発色表示素子は、イオン導電材料が液体
であると固体であるとに拘らず、一般に、副反応によっ
て水素を発生し易いっそのため、透明電極として使用さ
れている酸化第二スズ(SnO,)又は酸化インジウム
(IntOs )等の金属酸化物が水素によシ還元され
て、金属Sm又は金属In等となる。従って、長期間使
用し九場合には、還元されて生成した金属8n又は金属
In等によって電気発色表示素子の表示部分が不均一に
褐色化乃至黒色化し、表示機能が低下するという問題点
を有している。
Furthermore, regardless of whether the ionic conductive material is liquid or solid, conventional electrochromic display elements generally tend to generate hydrogen through side reactions, so stannic oxide, which is used as a transparent electrode, is A metal oxide such as (SnO,) or indium oxide (IntOs) is reduced by hydrogen to become metal Sm, metal In, or the like. Therefore, when used for a long period of time, the display area of the electrochromic display element becomes unevenly brown or black due to metal 8n or metal In produced by reduction, resulting in a problem that the display function deteriorates. are doing.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した問題点を解消し、電極間に短
絡等の生ず石ととがなく、エレクトロクty(ツク材料
層との密着性が良好で、発消色の応答速度が速く、且つ
、長期間の使用に際して本水素が発生することなく、表
示機能が低下しない電気発色表示素子を提供することに
ある。
The purpose of the present invention is to solve the above-mentioned problems, eliminate short circuits between electrodes, have good adhesion with the electrolyte material layer, and improve the response speed of color development and fading. It is an object of the present invention to provide an electrochromic display element that is fast and does not generate hydrogen during long-term use and whose display function does not deteriorate.

〔発明の概要〕[Summary of the invention]

本発明の電気発色表示素子は、電極間にエレクトロクロ
ミック材料層と、これに接するイオン導電材料層とを具
備して成る電気発色表示素子において、 前記エレクトロクロミック材料層が遷移金属酸化物から
成膜、且つ、前記イオン導電材料層が有機高分子樹脂及
び無機イオン導電材料から成ることを特徴とするもので
ある。
The electrochromic display element of the present invention is an electrochromic display element comprising an electrochromic material layer between electrodes and an ion conductive material layer in contact with the electrochromic material layer, wherein the electrochromic material layer is formed from a transition metal oxide. , and the ion conductive material layer is made of an organic polymer resin and an inorganic ion conductive material.

又、本発明の電気発色表示素子は、前記イオン導電材料
層が、更に顔料を含んで成るものであってもよい。
Further, in the electrochromic display element of the present invention, the ion conductive material layer may further contain a pigment.

以下において、本発明を更に詳しく説明する。In the following, the invention will be explained in more detail.

本発明に係る電気発色表示素子の概略構成図を図面に示
した。図面においては、基板(υ上に、透明電極(2)
、エレクトロクロミック材料層(3)、イオン導電材料
層(4)及び対向電極(5)がそれぞれ設けられたもの
を示した。
A schematic configuration diagram of an electrochromic display element according to the present invention is shown in the drawings. In the drawing, a transparent electrode (2) is placed on the substrate (υ).
, an electrochromic material layer (3), an ion conductive material layer (4), and a counter electrode (5) are shown.

本発明に係るエレクトロクロミック材料層を構成する材
料としては遷移金属酸化物であれば特に制限はなく、例
えば、酸化タングステン(WOI)、酸化モリブデン(
M・0.)、酸化チタン(TIO,)等が挙げられる。
The material constituting the electrochromic material layer according to the present invention is not particularly limited as long as it is a transition metal oxide; for example, tungsten oxide (WOI), molybdenum oxide (
M・0. ), titanium oxide (TIO, ), and the like.

本発明に係ろイオン導電材料層を構成する材料L1有機
高分子樹脂及び無機イオン導電材料である。有機高分子
樹脂としては、成膜時に透明性を有するものであれば特
に制限は々く、例えば、ポリスチレン、ポリ塩化ビニル
、塩化ビニル−酢酸ビニル共li合体、ポリ酢酸ビニル
、ポリビニルアセクール、フェノール樹脂、エポキシ樹
脂、アルキド樹脂、アクリル樹脂、ポリアクリロニトリ
ル、ブタジェン系合成ゴム及びポリオレフィン等が挙げ
られ、これらから成る群よ)選ばれた1種もしくは2m
以上のものが使用される。
Materials L1 constituting the ion conductive material layer according to the present invention are an organic polymer resin and an inorganic ion conductive material. There are no particular restrictions on the organic polymer resin as long as it is transparent during film formation, such as polystyrene, polyvinyl chloride, vinyl chloride-vinyl acetate co-li, polyvinyl acetate, polyvinyl acecool, and phenol. Resins, epoxy resins, alkyd resins, acrylic resins, polyacrylonitrile, butadiene-based synthetic rubbers, polyolefins, etc.;
The above are used.

無機イオン導電材料としては、発消色に関与するLi2
又はN? を含有するものであれば特に制限はなく、例
えば、フッ化リチウム(LIF)、目つ化リチウム(L
II)、水酸化リチウム(Lion)、過塩素酸リチウ
ム(t、tczo、) 、フッ化ナトリウム(NaF)
、ヨウ化ナトリウム(NaI)、水酸化ナトリウム(N
aOH)及び過塩素酸ナトリウム(Na(、to、)等
が挙げられ、これらから成る群よシ選ばれた1種もしく
は2種以上のものが使用される。この無機イオン導電材
料の配合量線、有機高分子樹脂に対して0.01〜10
00重量にであゐことか好ましく、更に好ましくは20
〜100重量%である。無機イオン導電材料の配合量が
0.01重量%未満であると、発色時のコントラストが
低下して表示機能が不良と々シ、一方、1000重景%
を超えると、複合材として成膜性が低下し、均一な組成
のイオン導電材料層が得難く゛なる。
As an inorganic ion conductive material, Li2, which is involved in color development and fading
Or N? There is no particular restriction as long as it contains lithium fluoride (LIF), lithium fluoride (LIF),
II), lithium hydroxide (Lion), lithium perchlorate (t, tczo, ), sodium fluoride (NaF)
, sodium iodide (NaI), sodium hydroxide (N
aOH) and sodium perchlorate (Na(,to,), etc., and one or more selected from the group consisting of these are used.The blending amount curve of this inorganic ion conductive material , 0.01 to 10 for organic polymer resin
00 weight, more preferably 20
~100% by weight. If the blending amount of the inorganic ion conductive material is less than 0.01% by weight, the contrast during coloring will decrease and the display function will be poor.
If it exceeds this value, the film forming properties of the composite material will deteriorate and it will become difficult to obtain an ion conductive material layer with a uniform composition.

本発明に係るイオン導電材料層は、表示機能の向上及び
美粧効果の付与の目的から、更に顔料を含有するもので
あってもよい。本発明において使用される顔料としては
、例えば、二酸化チタン(TlOt)、酸化アルきニウ
ム(Az、os)、酸化iグネンウム(MfO)、酸化
ジルコ=fyム(ZrOl)、酸化イツトリウム(y*
Os) 、五酸化タンタル(Ta、0.)及び二酸化ケ
イ素(810り等の白色顔料、ニッケルチタンエロー、
カドミウムエロー、クロムエロー、°カドミウムレッド
、モリブデンオレンジ及びベンガラ等の着色顔料が挙げ
られ、これらから成る群よシ選ばれた1種もしくは2種
以上のものが使用される。これらの中でも、とシわけ白
色顔料を使用することは美粧効果の点から好ましいこと
である。上記した顔料の配合量は、有機高分子樹脂に対
して3〜50重量%であることが好ましく、更に好まし
くは10〜30重量%である。
The ion conductive material layer according to the present invention may further contain a pigment for the purpose of improving the display function and imparting a cosmetic effect. Pigments used in the present invention include, for example, titanium dioxide (TlOt), aluminum oxide (Az, os), ignium oxide (MfO), zirconium oxide (ZrOl), and yttrium oxide (y*).
Os), tantalum pentoxide (Ta, 0.) and silicon dioxide (white pigments such as 810, nickel titanium yellow,
Coloring pigments such as cadmium yellow, chrome yellow, cadmium red, molybdenum orange, and red iron oxide may be mentioned, and one or more selected from the group consisting of these pigments may be used. Among these, it is particularly preferable to use white pigments from the viewpoint of cosmetic effect. The blending amount of the pigment described above is preferably 3 to 50% by weight, more preferably 10 to 30% by weight based on the organic polymer resin.

顔料の配合量が5重量%未満であると、背景の色が薄く
、透けて見えるために美粧効果が十分ではなく、一方、
50重量%を超えると、イオン導電材料層の成膜性及び
イオン導電度が低下する。
If the amount of pigment added is less than 5% by weight, the background color will be pale and transparent, resulting in insufficient cosmetic effect;
If it exceeds 50% by weight, the film formability and ionic conductivity of the ion conductive material layer will decrease.

本発明において使用される他の材料は、通常、電気発色
表示素子に使用されているものでよい。
Other materials used in the present invention may be those commonly used in electrochromic display elements.

基板に豪よ、例えば、ガラスやポリエステル等の透明材
料が使用される。透明電極及び対向電極には、例えば、
In!0. 、BnO,、^t11IIが使用される。
For example, a transparent material such as glass or polyester is used for the substrate. For example, the transparent electrode and the counter electrode include:
In! 0. , BnO,, ^t11II are used.

上記した材料を使用して構成される本発明の電気発色表
示素子は、例えば、次のようにして製造することが可能
である。即ち、先ず、基板上に、スパッタ等の通常の方
法を用いて透明電極を形成する。次いで、前記透明電極
上に、蒸着等の方法を用いてエレクトロクロミック材料
層を形成する。
The electrochromic display element of the present invention constructed using the above-mentioned materials can be manufactured, for example, as follows. That is, first, a transparent electrode is formed on a substrate using a conventional method such as sputtering. Next, an electrochromic material layer is formed on the transparent electrode using a method such as vapor deposition.

イオン導電材料層の形成は、先ず、有機高分子樹脂及び
無機イオン導電材料を所定量配合し、分散、混合したも
の、或いは更に顔料を添加配合し、分散、混合したもの
を調製する。この混合物を、必要に石じて適当な溶剤で
希釈するか、予め有機高分子樹脂を溶剤で希釈したもの
を使用することにより粘度を調整し、例えば、スピニン
グ塗布法、浸漬法、ローラー塗布法又はス・プレー塗布
法岬を用いて、エレクトロクロミック材料層上に塗布す
ることが可能である。溶剤を使用した場合には、薄膜中
に残存する溶剤を除去する目的から、例えば50〜15
0℃の温度範囲で加熱処理を施すことが好ましい。尚、
上記イオン導電材料の粘度調整をするために使用される
溶剤としては、例えば、メチルエチルケトン、メチルイ
ソブチルケトン、トルエン、キシレン、クレゾール、エ
チルセロソルブアセテート、プチルセ田ソルプアセテー
ト、プロピレンカーボネート、アセトニトリル、ジメチ
ルアセトアミド、N−メチルピロリドン、ジメチルホル
ムアミド等の非水系溶媒が挙げられ、これらから成る群
より選ばれた1種もしく社2種以上のものが使用される
。又、溶剤を用いて希釈し九際のイオン導電材料液の濃
度は、塗布法により適宜調整する仁とが好ましい。次い
で、対向電極をイオン導電材料層上に1透明電極の形成
と同様にスパッタ等の方法を用いて形成する°ことによ
り、本発明の電気発色表示素子を得る仁とができる。
To form the ion conductive material layer, first, a predetermined amount of an organic polymer resin and an inorganic ion conductive material are blended, dispersed and mixed, or a pigment is further added and blended, dispersed and mixed. The viscosity of this mixture is adjusted by diluting it with an appropriate solvent as necessary, or by using an organic polymer resin diluted in advance with a solvent. Alternatively, it is possible to apply onto the electrochromic material layer using a spray coating method. When a solvent is used, for example, 50 to 15
It is preferable to perform the heat treatment in a temperature range of 0°C. still,
Examples of the solvent used to adjust the viscosity of the above-mentioned ion conductive material include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, cresol, ethyl cellosolve acetate, ptylsetasol acetate, propylene carbonate, acetonitrile, dimethyl acetamide, Examples include non-aqueous solvents such as N-methylpyrrolidone and dimethylformamide, and one or more solvents selected from the group consisting of these are used. Further, it is preferable that the concentration of the ion conductive material liquid after diluting with a solvent is appropriately adjusted by a coating method. Next, a counter electrode is formed on the ion conductive material layer using a method such as sputtering in the same manner as in the formation of the first transparent electrode, thereby obtaining the electrochromic display element of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の電気発色表示素子は、イオン導電材料層が塗布
法によシ形成されるために、ピンホール等を生ずること
がなく、従って、電極間の短絡岬が生じないものである
。又、エレクトロクロ2ツク材料層とイオン導電材料層
との密着性が良好であるために、発消色の応答が速やか
なものである。
In the electrochromic display element of the present invention, since the ionically conductive material layer is formed by a coating method, no pinholes or the like occur, and therefore no short circuit between the electrodes occurs. Further, since the adhesion between the electrochromic material layer and the ion conductive material layer is good, the response of coloring and fading is quick.

更に、本発明の電気発色表示素子は、発消色がイオン導
電材料層中のLl+又は歯4等の無機イオンによ〕行な
われるために、長期間の使用に際しても水素の発生がな
く、従って、表示機能の低下が殆んどないという利点を
有している。
Furthermore, since the electrochromic display element of the present invention develops and erases color using inorganic ions such as Ll+ or teeth 4 in the ion-conductive material layer, no hydrogen is generated even during long-term use. , it has the advantage that there is almost no deterioration in display function.

上記した利点を有する本発明の電気発色表示素子は、そ
の製造に際しても、均質な薄膜状イオン導電材料層を具
備するものを簡便な工程で得ることが可能なものである
The electrochromic display element of the present invention having the above-mentioned advantages can be manufactured with a homogeneous thin film-like ion conductive material layer through a simple process.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜10 ガラス板にI n*Osから成る透明導電膜をスパッタ
法を用いて形成し、前記導電膜を所望の表示が可能なよ
うに電極をパターン化した後、導電膜上に酸化タングス
テンを厚さが0.3 pmとなるように蒸着形成した。
Examples 1 to 10 A transparent conductive film made of In*Os was formed on a glass plate using a sputtering method, and the conductive film was patterned with electrodes to enable a desired display, and then oxidized on the conductive film. Tungsten was deposited to a thickness of 0.3 pm.

一方、第1表に示した10種類のイオン導電材料層形成
用組成物をIll#した。即ち、それぞれの有機高分子
樹脂を適当な溶媒に溶解したものに、所定量の無機イオ
ン導電材料を添加し、ボールミル及び三本ロールを用い
て充分分散せしめた。
On the other hand, the 10 types of compositions for forming an ion conductive material layer shown in Table 1 were labeled Ill#. That is, a predetermined amount of an inorganic ion conductive material was added to a solution of each organic polymer resin in a suitable solvent, and the mixture was thoroughly dispersed using a ball mill and a three-roll mill.

上記した駒、膜を有する基板上に、前記組成物を第1表
に示した浸漬法、スピニング法、スプレー法及びローツ
ー法のそれぞれの塗布方法を用いて塗布した。次いで、
この基板を100℃に加熱した鉄板上に約30分間放置
して乾燥せしめ、均質外イオン導電材料層の薄膜を作成
した。
The composition was applied onto the substrate having the above-mentioned pieces and films using the dipping method, spinning method, spray method, and low-two method shown in Table 1. Then,
This substrate was left on an iron plate heated to 100° C. for about 30 minutes to dry, thereby forming a thin film of a homogeneous ion-conductive material layer.

それぞれのイオン導電材料層上に、rnto、を厚さが
0.2μ慣となるようにスパッタ形成し、対向電極とし
た。
On each ion conductive material layer, rnto was sputtered to a thickness of 0.2 μm to form a counter electrode.

上記処理により得たそれぞれの基板について、空隙部分
にエポキシ樹脂を封止し、硬化せしめることによ]xO
種類の電気発色表示素子を得た。
[xO
Various types of electrochromic display elements were obtained.

比較例1〜2 比較例としてイオン導電材料層に、第1表に示したデュ
ポン社製イオン導電膜NAFION (商品名)を用い
た他はすべて実施例と同様の操作にて2種類の電気発色
表示素子を得た。
Comparative Examples 1 to 2 As a comparative example, two types of electrocoloring were performed in the same manner as in the examples except that the ion conductive film NAFION (trade name) manufactured by DuPont shown in Table 1 was used as the ion conductive material layer. A display element was obtained.

上記実施例1〜lO及び比較例1〜2で得たそれぞれの
電気発色表示素子について、コントラスト比(H@−N
@V−ザ(633mm )での発色時の吸光度と消色時
の吸光度との比)が3となるに要する電圧及び応答時間
を調べた。その結果を第1表に同時に示す。
Contrast ratio (H@-N
The voltage and response time required for the ratio of absorbance during color development to absorbance during decolorization (at @V-za (633 mm)) to be 3 were investigated. The results are also shown in Table 1.

第1表 *添加量は有機高分子樹脂に対する添加量(重量X)を
示す。
Table 1 *Additional amount indicates the addition amount (weight X) relative to the organic polymer resin.

表から明らかなように、比較例の電気発色表示素子は電
解質層が厚いため、高駆動電圧で応答速度が遅いもので
あるのに比べ、本発明のものはいずれも低電圧で駆動が
可能であシ、且つ、応答速度が速やかなものであること
が確認され九。
As is clear from the table, the electrochromic display elements of the comparative examples have thick electrolyte layers and therefore have slow response speeds at high driving voltages, whereas the devices of the present invention can be driven at low voltages. It has been confirmed that the response speed is quick.

又、本発明の電気発色表示素子は、表示電極側が負とな
るように電圧を印加することによυ、いずれも濃青色の
鮮明なパターンが表示され、逆極性の電圧を印加するこ
とによ〕、速やかに表示パターンが消去されるものであ
る。
Furthermore, in the electrochromic display element of the present invention, a clear dark blue pattern is displayed when a voltage is applied so that the display electrode side is negative, and a clear pattern of dark blue is displayed when a voltage of the opposite polarity is applied. ], the display pattern is quickly erased.

更に本発明の電気発色表示素子は、電極の副反応が起ζ
らないため水素等の発生がなく、電気化学的に安定なも
のであることが確認された。
Furthermore, the electrochromic display element of the present invention is free from side reactions of the electrodes.
It was confirmed that there was no generation of hydrogen, etc., and that it was electrochemically stable.

実施例11〜20 実施例1〜lOで使用したものと同様のガラス板を用意
し、同様の方法で透明電極及び酸化タングステンから成
るエレクトロクロずツク材料層を形成した。
Examples 11 to 20 Glass plates similar to those used in Examples 1 to 1O were prepared, and a transparent electrode and an electrochromic material layer made of tungsten oxide were formed in the same manner.

一方、第2表に示した10種類のイオン導電材料6層形
成用組成物を調製した。即ち、それぞれの有機高分子樹
脂を適当な溶媒に溶解したものK、所定量の無機イオン
導電材料及び顔料を添加し、三本ロールを用いて充分分
散せしめた。
On the other hand, 10 types of compositions for forming six layers of ion conductive materials shown in Table 2 were prepared. That is, a solution K of each organic polymer resin in a suitable solvent, a predetermined amount of an inorganic ion conductive material and a pigment were added, and the mixture was thoroughly dispersed using a triple roll.

次いで、実施例1−10と同様にして、第2表に示した
それぞれの塗布方法を用いてイオン導電材料層を形成し
た。
Next, in the same manner as in Example 1-10, an ion conductive material layer was formed using each coating method shown in Table 2.

更に、それぞれのイオン導電材料層上に、対向電極とし
てNlを0.2声欝の厚さとなるように蒸着形成した後
、前記実施例と同様の方法でエポキシ樹脂による封止を
行ない、10種類の電気発色表示素子を得た。
Furthermore, Nl was vapor-deposited as a counter electrode on each of the ion conductive material layers to a thickness of 0.2 mm, and then sealed with epoxy resin in the same manner as in the previous example. An electrochromic display element was obtained.

上記実施例11〜20で得たそれぞれの電気発色表示素
子について、コント5fスト比が3となるに要する電圧
及び応答時間を調べた。その結果を第2表に同時に示す
For each of the electrochromic display elements obtained in Examples 11 to 20 above, the voltage and response time required for the contrast 5f ratio to reach 3 were investigated. The results are also shown in Table 2.

第2表 ** 添加量はいずれも有機高分子樹脂に対する添加量(重量
に)を示す。
Table 2** All amounts added are based on the amount (by weight) of the organic polymer resin.

表から明らかなように、本発明の電気発色表示素子はい
ずれも低電圧で駆動が可能であシ、且つ、応答速度が速
やかなものであることが確認された。
As is clear from the table, it was confirmed that all of the electrochromic display elements of the present invention can be driven at low voltage and have quick response speed.

又、本発明の電気発色表示素子は、表示電極側が負とな
るように電圧を印加することによシ、いずれも白地に濃
青色の鮮明なバ、ターンが表示され、逆極性の電圧を印
加するヒとによシ、速やかに表示パターンが消去される
ものである、 更に、本発明の電気発色表示素子は、電極間で副反応が
起こらないため水素等の発生がなく、電気化学的に安定
なものである仁とが確認された。
Further, in the electrochromic display element of the present invention, by applying a voltage so that the display electrode side is negative, clear dark blue bars and turns are displayed on a white background, and when a voltage of opposite polarity is applied. Furthermore, the electrochromic display element of the present invention does not generate hydrogen or the like because no side reactions occur between the electrodes, and is electrochemically stable. It was confirmed that the compound was stable.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に係る電気発色表示素子の構成例の断面
図である。 (1)・・・基板、(2)・・・透明電極、(3)・・
・エレクトロクロミック材料層、(4)・・・イオン導
電材料層、(5)・・・対向電極。
The drawing is a cross-sectional view of a configuration example of an electrochromic display element according to the present invention. (1)...Substrate, (2)...Transparent electrode, (3)...
- Electrochromic material layer, (4)... ion conductive material layer, (5)... counter electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)  電極間に、エレクトロクロミック材料層と、
これに接するイオン導電材料層とを具備して成る電気発
色表示素子において、 前記エレクトロクロミック材料層が遷移金属酸化物から
威力、且つ、前記イオン導電材料層が有機高分子樹脂及
び無機イオン導電材料から成ることを特徴とする電気発
色表示素子。
(1) An electrochromic material layer between the electrodes,
An electrochromic display element comprising an ion conductive material layer in contact with the electrochromic material layer, wherein the electrochromic material layer is made of a transition metal oxide, and the ion conductive material layer is made of an organic polymer resin and an inorganic ion conductive material. An electrochromic display element characterized by:
(2)  イオン導電材料層が更に顔料を含んで成る特
許請求の範囲第1項記載の電気発色表示素子。
(2) The electrochromic display element according to claim 1, wherein the ion conductive material layer further contains a pigment.
JP57110864A 1982-06-29 1982-06-29 Electrochromic display element Pending JPS592020A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57110864A JPS592020A (en) 1982-06-29 1982-06-29 Electrochromic display element
CA000428961A CA1211547A (en) 1982-06-29 1983-05-26 Electrochromic display element
AU15071/83A AU543876B2 (en) 1982-06-29 1983-05-30 Electrochromic display element
US06/502,322 US4537826A (en) 1982-06-29 1983-06-08 Electrochromic display element
DE8383105817T DE3382605T2 (en) 1982-06-29 1983-06-14 ELECTROCHROME DISPLAY DEVICE.
EP19830105817 EP0098416B1 (en) 1982-06-29 1983-06-14 Electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110864A JPS592020A (en) 1982-06-29 1982-06-29 Electrochromic display element

Publications (1)

Publication Number Publication Date
JPS592020A true JPS592020A (en) 1984-01-07

Family

ID=14546609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110864A Pending JPS592020A (en) 1982-06-29 1982-06-29 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPS592020A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779920A (en) * 1980-11-06 1982-05-19 Asahi Glass Co Ltd Dimming element and dimming control transparent body
JPS581130A (en) * 1981-06-26 1983-01-06 Nippon Kogaku Kk <Nikon> Manufacture of perfect solid type electrochromic cell
JPS5840531A (en) * 1981-09-03 1983-03-09 Nec Corp Entirely solid type electrochromic display device
JPS5891432A (en) * 1981-11-26 1983-05-31 Sanyo Chem Ind Ltd Electrochromic display element
JPS58163922A (en) * 1982-03-24 1983-09-28 Nec Corp All solid state type electrochromic display and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779920A (en) * 1980-11-06 1982-05-19 Asahi Glass Co Ltd Dimming element and dimming control transparent body
JPS581130A (en) * 1981-06-26 1983-01-06 Nippon Kogaku Kk <Nikon> Manufacture of perfect solid type electrochromic cell
JPS5840531A (en) * 1981-09-03 1983-03-09 Nec Corp Entirely solid type electrochromic display device
JPS5891432A (en) * 1981-11-26 1983-05-31 Sanyo Chem Ind Ltd Electrochromic display element
JPS58163922A (en) * 1982-03-24 1983-09-28 Nec Corp All solid state type electrochromic display and its production

Similar Documents

Publication Publication Date Title
US4537826A (en) Electrochromic display element
US4193670A (en) Electrochromic devices having protective interlayers
CA1111537A (en) Electrochromic devices
US4598979A (en) Electrochromic display device
JPS59113422A (en) Total solid-state electrochromic display
JPS592020A (en) Electrochromic display element
JPH0145895B2 (en)
Yamanaka Tungsten Trioxide/Liquid Electrolyte Electrochromic Devices with Amorphous Iron Tungstate Counter Electrodes–Response Characteristics and Cell Reliability
JP4438299B2 (en) Electrodeposition type image display device
JPS6033255B2 (en) electrochromic display device
JPS61223724A (en) Electrochromic display element
JPS63286826A (en) Electrochromic display element
JPS6048023A (en) Electrochromic element
JPS62295031A (en) Electrochromic display device
JPS5994745A (en) Electrochromic display element
JPS5840531A (en) Entirely solid type electrochromic display device
JPS5942522A (en) Electrochromic display element
JPH0363726B2 (en)
JPS59178432A (en) Electrocoloring display element
JPH0339724A (en) Electrochromic element
JPH06250231A (en) Electrochromic element
JPH0371112A (en) Electrochromic element
JPS6073527A (en) Electrochromic element
JPH0343716A (en) Electrochromic element
JPS5994743A (en) Electrochromic display element