JPH0160540B2 - - Google Patents
Info
- Publication number
- JPH0160540B2 JPH0160540B2 JP56057819A JP5781981A JPH0160540B2 JP H0160540 B2 JPH0160540 B2 JP H0160540B2 JP 56057819 A JP56057819 A JP 56057819A JP 5781981 A JP5781981 A JP 5781981A JP H0160540 B2 JPH0160540 B2 JP H0160540B2
- Authority
- JP
- Japan
- Prior art keywords
- welded
- oxide film
- tin
- iron
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 28
- 238000003466 welding Methods 0.000 claims description 28
- 229910000831 Steel Inorganic materials 0.000 claims description 26
- 239000010959 steel Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 24
- 229910044991 metal oxide Inorganic materials 0.000 claims description 21
- 150000004706 metal oxides Chemical class 0.000 claims description 21
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 238000007747 plating Methods 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 239000011651 chromium Substances 0.000 claims description 11
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 5
- 239000010408 film Substances 0.000 description 82
- 239000010410 layer Substances 0.000 description 37
- 239000003973 paint Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 25
- 238000012360 testing method Methods 0.000 description 22
- 230000007797 corrosion Effects 0.000 description 21
- 238000005260 corrosion Methods 0.000 description 21
- 239000011261 inert gas Substances 0.000 description 21
- 238000000576 coating method Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 18
- 238000012937 correction Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- 239000005028 tinplate Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000007769 metal material Substances 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000004826 seaming Methods 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 229910001128 Sn alloy Inorganic materials 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- NNIPDXPTJYIMKW-UHFFFAOYSA-N iron tin Chemical compound [Fe].[Sn] NNIPDXPTJYIMKW-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229920003180 amino resin Polymers 0.000 description 2
- -1 and some Chemical compound 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910000680 Aluminized steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229920001944 Plastisol Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011104 metalized film Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004999 plastisol Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 239000005029 tin-free steel Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
Description
本発明は缶胴溶接継目部の表面に金属酸化皮膜
層を形成せしめた溶接缶体に関する。
従来、食缶、飲料缶等には半田缶、接着缶等が
用いられてきたが、近年、溶接缶も用いられるよ
うになつてきた。
かゝる溶接缶は、一般に金属薄板からなる缶材
の溶接される継目部をのぞき塗装、印刷を施こ
し、次いで缶胴ブランクに切断成型後、必要に応
じ、ブランク端縁継目部表面の溶接阻害成分を除
去したのち円筒状に成型しブランク端を重ね合
せ、当該重ね合せ部を電気抵抗溶接機により高温
加圧条件下で重合溶接して缶胴を作成し、次いで
必要に応じ内外面溶接継目部に補正塗装を施こ
し、その後缶胴の端部に蓋を巻締して得られる。
かゝる方法で得られた溶接缶の缶胴継目部は電気
抵抗溶接時1000℃前後の高温に加熱されると共に
数10Kgの加圧を受けるため、当該継目部の缶材は
重ね合せ部が押しつぶされ、薄くひろがると共に
その表面は空気中の酸素により酸化され、継目部
表面に通常1000Å以上の厚さの茶褐色或は黒色の
金属酸化皮膜が形成される。
かゝる酸化皮膜は、一般に缶材金属素地に対す
る密着性、折り曲げ、延展等に対する加工性が悪
く、製缶加工々程、例えばフレンジング、ネツキ
ング、シーミング等の工程で金属素地界面から剥
離しやすく、たとえ当該継目部上に塗装し、被覆
補正を行つたとしても補正塗膜と共に脱落して素
地を露呈する原因となる。かゝる酸化皮膜の剥離
したあとの金属素地表面はもとの缶材表面及び酸
化皮膜剥離前の継目部表面構造とは全く異なり金
属素地が露呈したものとなる、この様な金属素地
の露呈した缶体に内容物を充填すると金属露出部
の腐蝕、穿孔或は内容物への金属溶出がおこり、
缶品質上問題を有する。
そのため、従来より、かゝる問題点を解消する
方法として、溶接時、溶接箇所周辺を不活性ガス
雰囲気に保持し酸素を遮断すると共に当該部を冷
却し酸化皮膜の形成をおさえ溶接部を見かけ上金
属素地に近い状態に保つ方法が採られてきた。し
かしかゝる方法で酸化皮膜の形成をおさえる為に
は、低温の不活性ガスを多量に必要とし、更に溶
接部周辺を、酸素のない完全な不活性ガス雰囲気
に保つための専用装置が不可欠である。しかも、
得られた溶接缶体の溶接継目部の表面構造は酸化
皮膜の形成はおさえられたとしても溶接時の高温
及び加圧よる変形、電極部材との接触による表面
保護皮膜の剥離等を受けるためもとの缶材表面と
は異なつた構造となつて金属素地の保護効果の低
下したものとなる。例えば、金属素材として錫め
つき鋼板を用いた場合、その表面は錫めつきが施
され金属素地が保護されているが、溶接時、相当
量の錫めつき層が高温加圧により飛散したり、溶
接電極部材に付着し、金属素地表面からのぞかれ
ると共に、一部合金化し、もとの缶材表面に比べ
錫めつき層の有する保護効果が大巾に失われたも
のとなる。また、表面にクロム・クロメート層を
設けた缶用テイン・フリー・スチールにおいて
も、溶接性を高めるため、溶接される端縁部の表
面クロム・クロメート層を除去したのち使用する
方法が一般的であり、その様な除去処理を行つて
溶接した継目表面はクロム・クロメート層を除去
しているためもとのテイン・フリー・スチール表
面に比べ著るしく保護効果の低下したものとなり
また、表面クロム・クロメート層を除去せずに用
いたとしても、溶接時の高温・加圧条件により、
表面のクロム・クロメート層は押し広げられ、表
面の保護層の構造が変化し当初に与えられた保護
効果を失つたものとなる。
また、ブラツクプレート或はニツケルめつき鋼
板においても溶接時の高温加圧条件により、表面
塗油層或はニツケルめつき層等の保護層が除去さ
れるか或は押し広げられ薄くなり、不安定な表面
構造となる。かくの如く溶接缶体の溶接継目部は
酸化皮膜の形成を防止しても、その表面の保護層
の構造は溶接前に比べ保護効果が低く不安定なも
のとなり塗料や樹脂フイルムによる被覆補正が不
可欠となる。この塗料や樹脂フイルムにより被覆
補正するとしても継目部に被覆される内外面補正
塗料や樹脂フイルムが薄膜であつたり、塗料の硬
化不良等により補正効果が低いと腐蝕、穿孔、或
は内容物への金属溶出がおこり、実用上問題を有
するものであつた。
本発明の目的は、従来技術により得られる溶接
缶体の溶接継目部の有する前記問題点を解消し、
耐蝕性、耐内容物適性等の缶品質にすぐれた溶接
缶体を提供せんとするものである。
本発明者等は鉄を金属素地とする金属素材の両
端縁を重合し溶接して得られる溶接缶体におい
て、溶接継目部表面に、鉄に対する酸素原子濃度
比が0.5以上の酸化鉄を主体とする膜厚300〜900
Åの金属酸化皮膜層を形成せしめる事により従来
技術の前記問題点の解消した溶接缶体が得られる
ことを見出し更に、金属素材として片面錫めつき
量14g/m2以下の錫めつき鋼板を用い前記金属化
皮膜中の鉄成分と錫成分の総量に対して錫成分が
10〜50%の範囲で含有されているときには、更
に、溶接継目部表面の耐蝕性、耐内容物適性等の
品質が向上した溶接缶体が得られることを見出
し、本発明を完成した。本発明の溶接缶体におい
ては、溶接する際に溶接継目表面に形成された金
属酸化皮膜層が鉄に対する酸素原子濃度比が0.5
以上の酸化鉄を主体とし、その膜厚が300〜900Å
であることを必須とするが、かゝる皮膜層は、そ
れを強制剥離し下層金属面を露出させた溶接継目
部表面、或は不活性ガスを多量に使用し、酸化皮
膜の形成を抑制して得られた溶接継目部表面に比
べ、外気や溶接缶体に充填する各種内容物に対し
耐蝕性において安定である。
更に、金属素材として、片面錫めつき量14g/
m2以下の錫めつき鋼板を用い、前記金属酸化皮膜
中の鉄成分と錫成分の総量に対して錫成分を10〜
50%の範囲で含有すると特に金属酸化皮膜と鉄素
地との間に介在する鉄―錫合金層により金属酸化
皮膜の密着性が良好となり耐蝕性、耐内容物適性
が向上する。
次に本発明について更に詳しく説明すれば次の
通りである。
まず、本発明の溶接缶体に用いる金属素材とし
ては従来より半田缶、接着缶、溶接缶に適用され
てきた公知缶材例えば錫めつき鋼板、テイン・フ
リー・スチール、ブラツクプレート、ニツケルめ
つき鋼板、亜鉛めつき鋼板、アルミめつき鋼板等
を用いる事が出来るが溶接の容易さ或は得られた
缶体の缶品質、耐内容物適性等の面から片面の錫
めつき量が14g/m2以下、好適には錫めつき量
0.05〜8.4g/m2の錫めつき鋼板、テイン・フリ
ー・スチール、ブラツクプレート、及びニツケル
めつき厚さが好適には0.05〜0.5μのニツケルめつ
き鋼板が適している。このうち、錫めつき鋼板、
ニツケルめつき鋼板等は、通常めつき層の上に更
にクロメート層が施されているが、本発明におい
ては、そのままで特に支障なく用いられる。かゝ
る缶材を用いて溶接缶を製造する方法としては、
従来より、該缶材の溶接される端縁部をのぞき塗
料、印刷を施こした缶胴ブランクを用い、必要に
応じ、ブランク端縁部表面の溶接阻害成分を研
磨、切削等の手段を用いて除去した後円筒状に成
型し、ブランク端どうしを重ね合せ当該部を電気
抵抗溶接機を用いて加圧溶接し缶胴を製造する方
法が公知であり、かゝる溶接缶の継目部表面の酸
化皮膜形成を防止する方法及び装置としても、特
公昭38―15843号公報、特開昭52―84141号公報、
特開昭55―156681号公報、特開昭55―103284号公
報等で開示の如く、溶接箇所及びその直後の工程
を不活性ガス雰囲気とし、酸化を防止する方法が
公知である。
本発明の溶接缶体においては、溶接継目部表面
に300〜900Åの酸化皮膜を形成せしめる必要があ
りかゝる皮膜を形成せしめる方法としては、前記
公知手法を活用し、溶接機の溶接箇所及びその直
後の工程を不活性ガス主体の雰囲気とし不活性ガ
ス量を調節し、雰囲気中の酸素量(或は空気量)
を前記膜厚範囲の酸化皮膜層が形成されるレベル
に保持する方法、或は、冷却気体等を用いて溶接
直後の溶接継目部の温度を抑制し、酸化反応が必
要以上に進行しない温度条件におさえる方法等を
挙げる事ができるが、不活性ガス量の調節による
方法が好適である。かゝる方法においては不活性
ガス量が少なすぎると、或は、溶接継目部の冷却
が不十分であると酸化反応が進みすぎ、金属酸化
皮膜層が厚くなりすぎる。逆に、不活性ガス量が
多すぎるか、或は冷却効果が大すぎると酸化反応
が所定量だけ進まず酸化皮膜層が薄くなりすぎる
ので、所望の厚さの金属酸化皮膜層を形成せしめ
る為には缶材の種類、製缶速度等に応じ、不活性
ガス使用量、冷却気体の温度、使用量を適切に制
御する必要があり溶接箇所及び直後の装置周りの
雰囲気を、前記の如き適切な雰囲気条件に保持す
る装置、例えば、ガス噴射装置、ガス雰囲気保持
チヤンバー等を適宜使用する事がのぞましい。か
くして得られた本発明の溶接缶体の継目表面の酸
化皮膜層は酸化鉄が主体であり最外表面から深部
に入るにつれて次第に鉄に対する酸素原子濃度が
小さくなるが、本発明においては鉄に対する酸素
原子濃度比が0.5に達する迄の金属酸化物層の厚
みが300〜900Åの範囲にある事がのぞましく鉄に
対する酸素原子濃度比が0.5以下の層を含めた厚
みが300〜900Åの範囲の酸化鉄皮膜層は耐蝕性が
低く、金属素地の保護効果が低下する傾向があり
好ましくない。しかも、鉄に対する酸素原子濃度
比が0.5以上であつても900Åをこえる厚膜になる
と製缶加工時に亀裂或は剥離しし、実用上問題を
有するが、900Å以下、好ましくは800Å以下の膜
厚では、加工時に亀裂或は剥離せず、良好な密着
性を有する。更に、かゝる酸化皮膜層は300Å以
下の薄膜ではその下層の金属素地を一様に被覆す
ることができず、局部的に素地が露呈した表面構
造となるが、300Å以上好ましくは400Å以上の膜
厚があれば溶接継目表面を一様に被覆せしめる事
ができ、前記酸化皮膜の安定性とあいまつて不安
定な溶接継目部金属素地を外気や内容物から保護
する効果を有する。
また、かゝる金属酸化皮膜層中にはその他の金
属成分として、錫めつき鋼板にあつては錫酸化物
等の形で錫成分が、テイン・フリー・スチール材
にあつてはクロム酸化物、クロム水和酸化物等の
形でクロム成分がニツケルめつき鋼板にあつて
は、ニツケル酸化物が共存する。
特に、錫めつき鋼板を使用した場合、金属酸化
皮膜の下層には鉄―錫合金層が形成されており、
また金属酸化皮膜中に共存する錫成分は表面から
深部に入るにつれて増加する傾向があるため適量
に錫成分が共存すると、金属酸化皮膜層と下層の
鉄―錫合金層との金属構成がより近いものとなり
両層の密着性が向上する傾向がある。この場合の
金属酸化皮膜にあつては錫成分が鉄成分及び錫成
分の総和に対し原子濃度比で10〜50%の範囲で共
存するときは密着性、加工性、耐蝕性、耐内容物
適性のすぐれたものとなる。かゝる酸化皮膜を形
成せしめるためには、錫めつき量の比較的低いブ
リキ材、具体的には錫めつき量が片面14g/m2以
下、好ましくは0.05〜8.4g/m2のブリキ材を用い
る事がのぞましい。
またテイン・フリー・スチールを使用する場合
は、通常端縁部表面のクロム・クロメート処理層
を除去したのち溶接を行うため、溶接継目表面の
金属酸化皮膜層は酸化鉄が主体であり、一部、ク
ロム酸化物、クロム水和酸化物等が共存する構成
となるかゝる構成の皮膜の下層はブリキ材におけ
る下層とは異なり、錫成分のない構造のため、密
着性が幾分低下する傾向があるが、金属酸化皮膜
厚さを300〜900Å、より好適には300〜700Åとす
る事により密着性、加工性、耐蝕性等のすぐれた
ものとすることができる。
また、ブラツクプレート、ニツケルめつき鋼板
においても本発明の構成の酸化皮膜の条件を備え
る限り溶接継目表面の耐蝕性を向上せしめる事が
できる。かくして得られた本発明の溶接缶体は、
溶接継目表面に通常、淡黄色〜茶褐色をした300
〜900Åの金属酸化皮膜層を有しており、皮膜層
自体、各種内容物に対し安定であり金属素地の保
護被覆効果を有するため缶の保管環境或は充填内
容物によつてはそのまゝで用いる事が可能である
が、缶品質、耐内容物適性をよりすぐれたものと
するために、溶接継目表面に補正塗膜或は樹脂フ
イルムを設け、被覆補正することができる。
かゝる被覆補正用塗料としては、従来より缶内
面用或は缶外面用塗料として公知の塗料類、例え
ばエポキシ樹脂系塗料、フエノール樹脂系塗料、
アミノプラスト塗料、ビニル樹脂系塗料、ポリエ
ステル樹脂系塗料、アクリル樹脂系塗料、ポリア
ミド樹脂系塗料等を単独或は併用し溶剤系塗料、
水系塗料、オルガノゾル系塗料、プラスチゾル系
塗料或は粉体塗料等所望の塗料形態で用いること
ができる。また、塗装方法としては、塗料種類、
塗料形態に応じスプレーコート、ローラーコー
ト、粉体塗装等公知の塗装方法から適切な方法を
選択し用いることができる。
また樹脂フイルムとしてはポリエステル樹脂、
ポリアミド樹脂、ビニル樹脂、アクリル樹脂、エ
ポキシ樹脂、アミノプラスト樹脂、その他公知の
樹脂を単独或は併用した樹脂フイルムを単層或は
複層の形で用い、公知の手法、例えば特公昭53―
43350号公報等の方法で貼着することができる。
かゝる補正被膜は10〜90μ、好適には20〜60μ
が適している。
本発明の構成の金属酸化皮膜を設けた溶接継目
表面は、従来の不活性ガスを多量に使用し、金属
酸化皮膜の形成を抑制した溶接缶体の継目表面に
比べ各種内容物に対する安定性にすぐれるだけで
なく補正塗料に対する密着性においてもすぐれて
おり、補正塗料の施こされた本発明の缶体は、従
来の補正溶接缶体に比べよりすぐれた耐蝕性、耐
内容物適性を有するものとなる。本発明により得
られた缶体は、各種内容物に対しすぐれた耐蝕
性、耐内容物適性を有しており、食缶、飲料缶、
エアゾール缶用として特に好ましい。
本発明を以下試験例を挙げて説明する。なお本
試験例における酸化皮膜厚さ及び成分構成はオー
ジエ電子分光測定器(Auger electron
spectroscopy)を用いて測定した。
試験例 1
板厚0.23mmで内面側及び外面側錫めつき量が共
に5.6gr/m2のブリキ材(#50/#50ブリキ)の
内面側に端縁継目部をのぞき、エポキシ・フエノ
ール系塗料からなる膜厚4.0μの硬化塗膜を形成せ
しめると共に、外面側に端縁継目部をのぞき所望
の印刷を施こした被覆鋼板を250g入り溶接缶の
缶胴ブランクサイズに切断成型後、該ブランクを
円筒状に成型し端縁部をラツプ巾0.5mmに重ね合
せ、銅電極線を介し回転ロール電極間で加圧シー
ム溶接を行う公知溶接機を用いて毎分200缶の製
缶速度で空気中で溶接を行い、缶胴を製造し缶内
面側溶接継目部表面に縁黒色の酸化皮膜を有する
缶胴(缶胴番号1)を得た。また、缶胴番号1の
溶接缶胴を製造する際、電極ロールのある溶接箇
所及びその直後を不活性ガス雰囲気に保つ専用装
置を用い多量の不活性ガスを使用し空気の流入を
防ぎ缶内面側の継目表面の酸化を防止する方法で
溶接を行い缶内面側溶接継目表面が実質上金属素
地と同様の外観を有する缶胴(缶胴番号4)を得
た。次いで、缶胴番号4の溶接缶胴の製造におい
て不活性ガス使用量を調節し、空気を混入せしめ
酸素濃度を変えた雰囲気で溶接を行い缶内面側継
目部外観が茶〜薄茶色を呈した溶接缶胴(缶胴番
号2及び3)を得た。
得られた缶胴番号1〜4の溶接缶胴の缶内面側
溶接継目部の酸化皮膜厚及び酸化皮膜中の錫成分
原子濃度を測定するとともに、該酸化皮膜の加工
性、密着性、及び室内に保存したときの継目部表
面の耐蝕性について評価した。その結果を表―1
にまとめた。この結果より、1200Åの酸化皮膜を
有する缶胴番号1の継目表面は蓋巻締加工条件の
変形で微小亀裂を生じその部分を接着テープを用
いて剥離テストを行うと黒色の酸化皮膜が剥離
し、金属素地が露呈し密着性、加工性が不良であ
つた。また、不活性ガスを多量に使用して製造し
た缶胴番号4の継目表面は銀白色を呈し金属素地
に近い色を呈しており、巻締加工変形により特に
変化はなかつた。しかし室内で約3ケ月間保存す
ると継目部表面に赤錆が発生し、耐蝕性が不良で
あつた。一方、本発明の実施例に該当する缶胴番
号2、及び3は密着性加工性にすぐれ、室内に約
3ケ月間保存しても赤錆は発生せず、良好な耐蝕
性を有していた。
試験例 2
試験例―1と同じブリキ材を使用し、試験例―
1と同様の方法において、缶胴外面側の溶接継目
部周りの不活性ガス雰囲気中の酸素(空気)量を
調節し、缶外面側酸化皮膜厚さの異なる3種の溶
接缶胴(缶胴番号5,6及び7)を得た。得られ
た缶胴を用いて試験例―1と同様にして酸化皮膜
物性を評価した結果、表―1に示す如く本発明の
実施例に該当する缶胴番号6は、良好な酸化皮膜
物性を有していた。
試験例 3
板厚0.23mmで内面側及び外面側の錫めつき量が
共に2.8gr/m2のブリキ材(#25/#25ブリキ)
を用いる以外はすべて試験例―1(缶胴番号2及
び3)の製法と同様にして、缶内面側溶接継目表
面酸化皮膜厚さが460Åの溶接缶胴(缶胴番号8)
を得た。
得られた缶胴の継目部表面酸化皮膜の評価結果
を表―1に示す。この結果より本発明の実施例に
該当する缶胴番号8の缶胴継目表面は良好な物性
を有していることが明らかである。
試験例 4
板厚0.23mmのテイン・フリー・スチールの内面
側に端縁継目部をのぞき、エポキシ・フエノール
系塗料からなる膜厚4.3μの硬化塗膜を形成せしめ
ると共に、外面側に端縁継目部をのぞき印刷をほ
どこした被覆鋼板を250g入り溶接缶の缶胴ブラ
ンクサイズに切断成形後、該ブランク内外面の端
縁部表面のクロム・クロメート層を切削除去し、
端縁易溶接化缶胴ブランクを作成した。
次に、本缶胴ブランクを用いる以外は、試験例
―1と同様にし、缶外面側溶接継目部表面の不活
性ガス雰囲気条件を変え缶外面側酸化皮膜厚さの
異なる2種の溶接缶胴(缶胴番号9及び10)を得
た。
得られた缶胴の缶外面側溶接継目部表面の酸化
皮膜物性を評価した。その結果を表―1に示す。
この結果から明らかな様に、酸化皮膜厚が250Å
の缶胴番号9は、空缶保存中に錆が発生したが、
本発明の実施例に該当する缶胴番号10では錆の発
生はみられず、加工性、密着性も良好であつた。
試験例 5
板厚0.23mmのブラツクプレートを缶材として用
いる以外はすべて試験例―2と同様にし、缶外面
側溶接継目部まわりの不活性ガス雰囲気の空気混
入量を変え缶外面側酸化皮膜厚さの異なる2種の
溶接缶胴(缶胴番号11及び12)を得た。
得られた缶胴の酸化皮膜物性を表―1に示す。
この結果より酸化皮膜の膜厚300Åより薄い缶胴
番号11では、空缶保存中に継目表面に赤錆が発生
し耐蝕性が不良であつた。それに対し本発明の実
施例に該当する缶胴番号12は腐蝕もなく良好であ
つた。
試験例 6
板厚0.24mmで錫めつき量内面側5.6g/m2、外面
側2.8g/m2のブリキ材(#50/#25ブリキ)を用
い、その内面側に端縁継目部をのぞきエポキシ・
ウレア系塗料を塗布し、膜厚7.6μの硬化塗膜を形
成せしめ420gr入りエアゾール缶の缶胴ブランク
サイズに切断成型後、該ブランクを用いて試験例
―1と同様の溶接条件及び不活性ガスの使用方法
で缶内面側継目表面の酸化皮膜厚さの異なる3種
の溶接缶胴(缶胴番号13,14、及び15)を得た。
表―1に示す酸化皮膜物性からも明らかな様に本
発明の実施例に該当する缶胴番号14は良好な物性
を有している。
試験例 7
板厚0.23mmで内面側及び外面側に0.8g/m2の
ニツケルめつき層を施こしたニツケルめつき鋼板
を用いる以外は試験例―2と同様にし、缶外面側
溶接継目表面の金属酸化皮膜厚さの異なる3種の
溶接缶胴(缶胴番号16,17,18)を得た。表−1
に示す結果から明らかな様に本発明の実施例に該
当する缶胴番号17は缶胴番号16,18に比べ密着
性、加工性及び耐蝕性が共にすぐれていた。
試験例 8
試験例−1及び試験例−3において缶胴番号
1,2,3,4及び8の溶接缶胴を製造後、引続
き缶胴内面溶接継目部表面にエポキシ・フエノー
ル系塗料からなり塗布巾8mm、膜厚10〜40μの範
囲の内面補正塗装を施こした。次いで塩化ビニル
樹脂系オルガノゾル塗料からなる被覆を蓋内面側
に設けたアルミ蓋を前記内面補正缶胴の一端に2
重巻締により取りつけ缶胴番号1,2,3,3,
4,8の各々に対応する缶体として缶番号1,
2,3,4,5,6の缶体を得た。得られた缶体
に内容物としてミルクコーヒーを入れ―蓋内面側
にエポキシ・フエノール系塗料を被覆したブリキ
蓋を用いて2重巻締により密封充填し、所定のレ
トルト加熱処理を行つたのち室温で6ケ月間保存
した。その後、開缶し、内容物及び缶胴溶接継目
部の評価を行なつた。その結果を表−2に示す。
この結果より本発明の実施例に該当する缶体(缶
体番号2,3,4及び6)は異常なく良好であつ
たが酸化皮膜900Å以上の厚い缶体(缶体番号1)
及び酸化皮膜が300Å以下で補正塗装が薄い缶体
(缶体番号5)はサイドシームの巻締加工部に腐
蝕がみられ内容物の鉄溶出量も0.5ppmと本発明
の缶体より多く不良であつた。
試験例 9
試験例−6において、缶胴番号13,14,15の溶
接缶胴を製造後、引続き缶胴内面溶接継目部表面
に対しエポキシ・ウレア系塗料からなり塗布巾8
mmで比較的薄膜の内面補正塗装を施こした内面補
正缶胴を得た。また錫めつき量内面側11.2g/m2、
外面側8.4g/m2のブリキ材の内面側にエポキシ・
ウレア系塗料を塗布し、膜厚7.6μの硬化塗膜を形
成せしめた塗装板を用いて天蓋及び地蓋を作り、
前記内面補正缶胴の両端に2重巻締により取りつ
け表−2に示す様な420gr入りエアゾール缶体
(缶体番号7,8,9)を製造した。本缶体にマ
ウントキヤツプを用いてウオーターベースのスタ
ーチを封入し、45℃で3ケ月間保存し、缶品質評
価を行つた。その結果表−2からも明らかな様に
内面補正塗料の膜厚が薄い場合酸化皮膜の薄い缶
体番号7及び、内面補正塗料の膜厚が厚く酸化皮
膜の著るしく厚い缶体番号9においてはサイドシ
ーム巻締加工部に腐蝕がみられた。一方本発明の
実施例に該当する缶体番号8では腐蝕はみられず
適度な膜厚の酸化皮膜が保護効果を有していた。
The present invention relates to a welded can body having a metal oxide film layer formed on the surface of the welded seam of the can body. Conventionally, soldered cans, adhesive cans, etc. have been used for food cans, beverage cans, etc., but in recent years, welded cans have also come to be used. Such welded cans are generally made by painting and printing the can material, which is made of thin metal sheets, except for the joints to be welded, and then cutting and forming can body blanks, and then welding the surfaces of the joints at the edges of the blanks as necessary. After removing inhibiting components, the blanks are formed into a cylindrical shape, the ends of the blanks are overlapped, and the overlapping parts are polymerized and welded under high temperature and pressurized conditions using an electric resistance welder to create a can body.Then, the inner and outer surfaces are welded as necessary. It is obtained by applying a corrective coating to the seam and then sealing the lid to the end of the can body.
During electric resistance welding, the can body joint of the welded can obtained by this method is heated to a high temperature of around 1000°C and pressurized to several tens of kilograms, so the can material at the joint has a large overlap. As it is crushed and spread thin, its surface is oxidized by oxygen in the air, and a brown or black metal oxide film with a thickness of usually 1000 Å or more is formed on the joint surface. Such an oxide film generally has poor adhesion to the metal base of the can, and poor workability with respect to bending, stretching, etc., and is likely to peel off from the interface of the metal base during can manufacturing processes, such as franging, netting, seaming, etc. Even if the seam is coated and corrected, it will fall off along with the correction coating, exposing the base material. After the oxide film is peeled off, the surface of the metal base is completely different from the original can material surface and the surface structure of the joint before the oxide film is peeled off. When filling a can with contents, corrosion of exposed metal parts, perforation, or metal elution into the contents may occur.
There is a problem with the quality of the can. Therefore, as a conventional method to solve such problems, during welding, the area around the welded area is kept in an inert gas atmosphere to block oxygen, and the area is cooled to prevent the formation of an oxide film so that the welded area is visible. A method has been adopted to maintain the condition close to that of the upper metal base. However, in order to suppress the formation of an oxide film using such a method, a large amount of low-temperature inert gas is required, and special equipment is also required to maintain a complete inert gas atmosphere without oxygen around the welding area. It is. Moreover,
Even if the formation of an oxide film is suppressed, the surface structure of the welded joint of the obtained welded can body is susceptible to deformation due to high temperature and pressure during welding, and peeling of the surface protective film due to contact with electrode members. The structure is different from that of the can material surface, and the protective effect of the metal base is reduced. For example, when a tin-plated steel plate is used as a metal material, the surface is tin-plated to protect the metal base, but during welding, a considerable amount of the tin-plated layer may scatter due to high temperature pressurization. It adheres to the welding electrode member, is exposed from the surface of the metal base, and is partially alloyed, resulting in a significant loss of the protective effect of the tinned layer compared to the original can material surface. In addition, even with stain-free steel for cans that has a chromium/chromate layer on its surface, it is common practice to remove the surface chromium/chromate layer from the edges to be welded before use in order to improve weldability. The welded seam surface that has been subjected to such removal treatment has a significantly reduced protective effect compared to the original tain-free steel surface because the chromium/chromate layer has been removed, and the surface chromium・Even if the chromate layer is used without removing it, due to the high temperature and pressure conditions during welding,
The chromium/chromate layer on the surface is expanded, and the structure of the protective layer on the surface changes, losing its initial protective effect. Furthermore, due to the high temperature and pressure conditions during welding of black plates or nickel-plated steel plates, the protective layers such as the surface oil coating layer or the nickel plating layer may be removed or stretched and thinned, resulting in unstable conditions. It becomes a surface structure. Even if the formation of an oxide film is prevented at the welded seam of the welded can body, the structure of the protective layer on the surface has a lower protective effect than before welding and becomes unstable, making it difficult to correct the coating with paint or resin film. becomes essential. Even if this paint or resin film is used to correct the coating, if the inner and outer surface correction paint or resin film that covers the joint is a thin film, or if the correction effect is low due to poor curing of the paint, corrosion, perforation, or damage to the contents may occur. Metal elution occurred, which caused a practical problem. The object of the present invention is to solve the above-mentioned problems of the welded joints of welded cans obtained by the prior art,
It is an object of the present invention to provide a welded can body with excellent can quality such as corrosion resistance and content resistance. In a welded can body obtained by polymerizing and welding both edges of a metal material with iron as a metal base, the welded joint surface contains mainly iron oxide with an oxygen atomic concentration ratio of 0.5 or more to iron. Film thickness 300~900
They discovered that by forming a metal oxide film layer of 100 Å, it was possible to obtain a welded can body that solved the above-mentioned problems of the prior art.Furthermore, they developed a tin-plated steel plate with a tin coating on one side of 14 g/ m2 or less as a metal material. The tin component is relative to the total amount of iron component and tin component in the metallized film used.
It was discovered that when the content is in the range of 10 to 50%, a welded can body with improved quality such as corrosion resistance of the surface of the weld joint and suitability for contents resistance was obtained, and the present invention was completed. In the welded can body of the present invention, the metal oxide film layer formed on the surface of the weld seam during welding has an oxygen atomic concentration ratio of 0.5 to iron.
Mainly composed of iron oxide with a film thickness of 300 to 900 Å
However, such a film layer can be forcibly removed from the weld joint surface to expose the underlying metal surface, or by using a large amount of inert gas to suppress the formation of an oxide film. Compared to the surface of the welded seam obtained using the above method, it is more stable in terms of corrosion resistance against the outside air and various contents filled in the welded can body. Furthermore, as a metal material, the amount of tin plating on one side is 14g/
Using a tin-plated steel plate with a size of less than m
When the content is in the range of 50%, the iron-tin alloy layer interposed between the metal oxide film and the iron substrate improves the adhesion of the metal oxide film, improving corrosion resistance and content resistance. Next, the present invention will be explained in more detail as follows. First, the metal materials used for the welded can body of the present invention include known can materials that have been conventionally applied to solder cans, adhesive cans, and welded cans, such as tin-plated steel sheets, stain-free steel, black plates, and nickel-plated cans. Steel plates, galvanized steel plates, aluminized steel plates, etc. can be used, but the amount of tin plating on one side should be 14 g / m 2 or less, preferably the amount of tin plating
Suitable are tin-plated steel plates of 0.05 to 8.4 g/m 2 , stain-free steel, black plates, and nickel-plated steel plates with a nickel plating thickness of preferably 0.05 to 0.5 μm. Among these, tinned steel plate,
Nickel-plated steel sheets and the like usually have a chromate layer on top of the plating layer, but in the present invention, they can be used as they are without any particular problem. The method for manufacturing welded cans using such can stock is as follows:
Conventionally, a can body blank is coated with paint or printing except for the edge to be welded, and if necessary, welding inhibiting components on the surface of the edge of the blank can be removed by means such as polishing or cutting. There is a known method of manufacturing a can body by overlapping the ends of the blanks and welding the blanks under pressure using an electric resistance welding machine. As a method and apparatus for preventing the formation of an oxide film, Japanese Patent Publication No. 38-15843, Japanese Patent Application Laid-open No. 84141-1987,
As disclosed in JP-A-55-156681, JP-A-55-103284, etc., a method is known in which oxidation is prevented by creating an inert gas atmosphere at the welding location and the process immediately after it. In the welded can body of the present invention, it is necessary to form an oxide film with a thickness of 300 to 900 Å on the surface of the weld seam.The method for forming such a film is to utilize the above-mentioned known method, and to The process immediately after that is made into an atmosphere mainly composed of inert gas, and the amount of inert gas is adjusted to reduce the amount of oxygen (or amount of air) in the atmosphere.
A method of maintaining the temperature at a level at which an oxide film layer having the thickness range described above is formed, or a temperature condition in which the temperature of the weld seam immediately after welding is suppressed using cooling gas, etc., so that the oxidation reaction does not proceed unnecessarily. Although there are methods of controlling the amount of inert gas, a method of controlling the amount of inert gas is preferable. In such a method, if the amount of inert gas is too small, or if the weld seam is not sufficiently cooled, the oxidation reaction will proceed too much and the metal oxide film layer will become too thick. On the other hand, if the amount of inert gas is too large or the cooling effect is too strong, the oxidation reaction will not proceed by the specified amount and the oxide film layer will become too thin. It is necessary to appropriately control the amount of inert gas used, the temperature and amount of cooling gas used, depending on the type of can stock, the can manufacturing speed, etc. It is preferable to use a device that maintains the atmospheric conditions under appropriate conditions, such as a gas injection device, a gas atmosphere maintenance chamber, etc. The oxide film layer on the joint surface of the welded can body of the present invention thus obtained is mainly composed of iron oxide, and the concentration of oxygen atoms relative to iron gradually decreases as it goes deeper from the outermost surface. It is preferable that the thickness of the metal oxide layer before the atomic concentration ratio reaches 0.5 is in the range of 300 to 900 Å, and the thickness including the layer where the atomic concentration ratio of oxygen to iron is 0.5 or less is in the range of 300 to 900 Å. The iron oxide film layer has low corrosion resistance and tends to reduce the protective effect of the metal substrate, so it is not preferable. Furthermore, even if the oxygen atomic concentration ratio to iron is 0.5 or more, if the film is thicker than 900 Å, it will crack or peel off during can manufacturing, which poses a practical problem. It does not crack or peel during processing and has good adhesion. Furthermore, if such an oxide film layer is thinner than 300 Å, it will not be possible to uniformly cover the underlying metal substrate, resulting in a surface structure where the substrate is locally exposed, but if the oxide film layer is thinner than 300 Å, preferably 400 Å or more, If the film is thick enough, the surface of the weld seam can be uniformly coated, and together with the stability of the oxide film, it has the effect of protecting the unstable metal base of the weld seam from outside air and contents. In addition, other metal components in such a metal oxide film layer include tin components in the form of tin oxides in the case of tin-plated steel sheets, and chromium oxides in the case of tin-free steel materials. In the case of nickel-plated steel sheets in which chromium components are present in the form of chromium hydrated oxide, etc., nickel oxide coexists. In particular, when tin-plated steel sheets are used, an iron-tin alloy layer is formed under the metal oxide film.
In addition, the tin component that coexists in the metal oxide film tends to increase as it goes deeper from the surface, so when a suitable amount of tin component coexists, the metal composition of the metal oxide film layer and the underlying iron-tin alloy layer becomes closer. This tends to improve the adhesion between both layers. In this case, when the metal oxide film coexists with the tin component in an atomic concentration ratio of 10 to 50% of the total of the iron component and the tin component, it has good adhesion, workability, corrosion resistance, and suitability for content resistance. It will be of excellent quality. In order to form such an oxide film, it is necessary to use a tinplate material with a relatively low amount of tin plating, specifically, a tin plate with a tin plating amount of 14 g/m 2 or less on one side, preferably 0.05 to 8.4 g/m 2 . It is desirable to use wood. In addition, when using stain-free steel, the chromium/chromate treatment layer on the surface of the edge is usually removed before welding, so the metal oxide film layer on the surface of the weld seam is mainly iron oxide, and some , chromium oxide, chromium hydrated oxide, etc. coexist. Unlike the lower layer of tinplate materials, the lower layer of the film does not have a tin component, so the adhesion tends to decrease somewhat. However, by setting the metal oxide film thickness to 300 to 900 Å, more preferably 300 to 700 Å, excellent adhesion, workability, corrosion resistance, etc. can be obtained. Further, even in black plates and nickel-plated steel plates, the corrosion resistance of the weld joint surface can be improved as long as the oxide film conditions of the present invention are met. The welded can body of the present invention thus obtained is
300, which usually has a light yellow to brown color on the weld seam surface.
It has a metal oxide film layer of ~900 Å, and the film layer itself is stable against various contents and has the effect of protecting the metal base, so it may remain as it is depending on the storage environment of the can or the contents filled. However, in order to improve can quality and suitability for contents resistance, a correction coating or resin film can be provided on the surface of the weld seam to correct the coating. Such coating correction paints include paints conventionally known as paints for the inside or outside of cans, such as epoxy resin paints, phenolic resin paints,
Solvent-based paints using aminoplast paints, vinyl resin paints, polyester resin paints, acrylic resin paints, polyamide resin paints, etc. alone or in combination;
It can be used in any desired paint form, such as a water-based paint, an organosol-based paint, a plastisol-based paint, or a powder paint. In addition, as for the painting method, the type of paint,
Depending on the form of the paint, an appropriate method can be selected from known coating methods such as spray coating, roller coating, and powder coating. In addition, resin films include polyester resin,
Polyamide resins, vinyl resins, acrylic resins, epoxy resins, aminoplast resins, and other known resins are used alone or in combination to form a single layer or multilayer resin film, and a known method is used, for example, in the
It can be attached by a method such as that disclosed in Japanese Patent No. 43350. Such a correction coating has a thickness of 10 to 90μ, preferably 20 to 60μ.
is suitable. The welded joint surface provided with the metal oxide film of the structure of the present invention is more stable against various contents than the joint surface of a conventional welded can body, which uses a large amount of inert gas to suppress the formation of the metal oxide film. In addition to being excellent in adhesion to correction paint, the can body of the present invention coated with correction paint has better corrosion resistance and content resistance than conventional correction welded can bodies. Become something. The can body obtained by the present invention has excellent corrosion resistance and content resistance against various contents, and can be used for food cans, beverage cans,
Particularly preferred for use in aerosol cans. The present invention will be explained below with reference to test examples. The oxide film thickness and component composition in this test example were determined using an Auger electron spectrometer (Auger electron spectrometer).
spectroscopy). Test example 1 A tinplate material (#50/#50 tinplate) with a plate thickness of 0.23mm and a tin plating amount of 5.6gr/ m2 on both the inner and outer surfaces (#50/#50 tinplate) was coated with epoxy/phenol based on the inner surface, excluding the edge joint. After forming a cured coating film of paint with a thickness of 4.0 μm and carrying out the desired printing on the outer surface side except for the edge seam, cut and mold the coated steel plate to the size of a can body blank for a 250 g welded can. The blanks are formed into a cylindrical shape, the edges are overlapped with a lap width of 0.5 mm, and a known welding machine is used to perform pressure seam welding between rotating roll electrodes via a copper electrode wire at a can manufacturing speed of 200 cans per minute. Welding was performed in air to produce a can body (can body number 1) having a black oxide film on the surface of the welded seam on the inner surface of the can. In addition, when manufacturing the welded can body with can body number 1, we use a special device that maintains an inert gas atmosphere at the welding point where the electrode roll is located and immediately after it, and uses a large amount of inert gas to prevent air from entering the can inner surface. Welding was carried out in a manner that prevented oxidation of the side seam surface to obtain a can body (can body number 4) in which the welded seam surface on the inner side of the can had an appearance substantially similar to that of the metal base. Next, in manufacturing a welded can body with can body number 4, the amount of inert gas used was adjusted and welding was performed in an atmosphere with air mixed in and oxygen concentration changed, and the appearance of the joint on the inner side of the can took on a brown to light brown color. Welded can bodies (can bodies numbers 2 and 3) were obtained. The thickness of the oxide film and the atomic concentration of the tin component in the oxide film at the weld seam on the inner surface of the can bodies of the obtained welded can bodies Nos. 1 to 4 were measured, and the workability, adhesion, and indoor The corrosion resistance of the seam surface was evaluated when stored in . Table 1 shows the results.
summarized in. From this result, the seam surface of can body No. 1, which has an oxide film of 1200 Å, developed microcracks due to deformation of the lid seaming process conditions, and when a peel test was performed on the cracked area using adhesive tape, the black oxide film peeled off. The metal base was exposed and the adhesion and workability were poor. Furthermore, the seam surface of can body No. 4 manufactured using a large amount of inert gas exhibited a silvery white color similar to that of the metal base, and there was no particular change due to deformation during the seaming process. However, after being stored indoors for about 3 months, red rust developed on the surface of the joint, and the corrosion resistance was poor. On the other hand, can bodies Nos. 2 and 3, which correspond to Examples of the present invention, had excellent adhesive workability, did not develop red rust even after being stored indoors for about 3 months, and had good corrosion resistance. . Test Example 2 Using the same tin material as Test Example-1, Test Example-
In the same method as in 1, the amount of oxygen (air) in the inert gas atmosphere around the weld seam on the outside of the can body was adjusted, and three types of welded can bodies (can bodies) with different oxide film thicknesses on the outside of the can body were adjusted. Nos. 5, 6 and 7) were obtained. Using the obtained can body, the physical properties of the oxide film were evaluated in the same manner as in Test Example 1. As shown in Table 1, can body number 6, which corresponds to the example of the present invention, had good oxide film physical properties. had. Test example 3 Tinplate material (#25/#25 tinplate) with a plate thickness of 0.23mm and a tin plating amount of 2.8gr/ m2 on both the inner and outer sides.
A welded can body (can body number 8) with a welded seam surface oxide film thickness of 460 Å on the inner surface of the can was manufactured in the same manner as in Test Example 1 (can body numbers 2 and 3) except that
I got it. Table 1 shows the evaluation results of the oxide film on the surface of the seam of the can body. From this result, it is clear that the can body joint surface of can body number 8, which corresponds to the example of the present invention, has good physical properties. Test Example 4 A cured coating of epoxy/phenol paint with a thickness of 4.3 μm was formed on the inner surface of a 0.23 mm thick stain-free steel plate, excluding the edge seam, and the edge seam was formed on the outer surface. After cutting and forming the coated steel plate, which has been printed except for the parts, into the size of a can body blank for a 250g welded can, the chromium/chromate layer on the edge surfaces of the inner and outer surfaces of the blank is removed,
A can body blank with easily welded edges was created. Next, we conducted two types of welded can bodies with different oxide film thicknesses by changing the inert gas atmosphere conditions on the welded seam surface on the outer side of the can, except for using this can body blank. (can body numbers 9 and 10) were obtained. The physical properties of the oxide film on the surface of the welded seam on the outer side of the can body of the obtained can body were evaluated. The results are shown in Table-1.
As is clear from this result, the oxide film thickness is 250Å.
Can body number 9 rusted during storage as an empty can, but
Can body No. 10, which corresponds to the example of the present invention, showed no rust and had good workability and adhesion. Test Example 5 The procedure was the same as in Test Example 2 except that a black plate with a thickness of 0.23 mm was used as the can material, and the amount of air mixed in the inert gas atmosphere around the weld seam on the outside of the can was changed to change the thickness of the oxide film on the outside of the can. Two types of welded can bodies with different sizes (can body numbers 11 and 12) were obtained. Table 1 shows the physical properties of the oxide film on the can body obtained.
From this result, in can body number 11 with an oxide film thickness of less than 300 Å, red rust occurred on the seam surface during storage of the empty can, and the corrosion resistance was poor. In contrast, can body No. 12, which corresponds to an example of the present invention, was in good condition with no corrosion. Test Example 6 A tin plate (#50/#25 tin plate) with a thickness of 0.24 mm and a tin coating of 5.6 g/m 2 on the inner surface and 2.8 g/m 2 on the outer surface was used, and an edge joint was formed on the inner surface. Peeking epoxy
A urea-based paint was applied to form a cured film with a film thickness of 7.6μ, and the blank was cut and molded to the size of a 420gr aerosol can body blank.The blank was then welded under the same welding conditions and inert gas as in Test Example-1. Using this method, three types of welded can bodies (can body numbers 13, 14, and 15) with different oxide film thicknesses on the inner side seam surface were obtained.
As is clear from the physical properties of the oxide film shown in Table 1, can body No. 14, which corresponds to the example of the present invention, has good physical properties. Test Example 7 The same procedure as Test Example 2 was used except that a nickel-plated steel plate with a thickness of 0.23 mm and a nickel plating layer of 0.8 g/m 2 was applied on the inner and outer sides was used. Three types of welded can bodies (can body numbers 16, 17, and 18) with different metal oxide film thicknesses were obtained. Table-1
As is clear from the results shown in Figure 1, can body No. 17, which corresponds to the example of the present invention, had better adhesion, workability, and corrosion resistance than can bodies No. 16 and 18. Test Example 8 After producing welded can bodies with can body numbers 1, 2, 3, 4, and 8 in Test Example-1 and Test Example-3, epoxy/phenol-based paint was subsequently applied to the weld joint surface of the inner surface of the can body. An inner surface correction coating with a width of 8 mm and a film thickness of 10 to 40 μm was applied. Next, an aluminum lid with a coating made of vinyl chloride resin organosol paint on the inner surface of the lid was attached to one end of the inner surface correction can body.
Can body number 1, 2, 3, 3, installed by heavy tightening.
Can numbers 1 and 8 are can bodies corresponding to numbers 4 and 8, respectively.
Can bodies of 2, 3, 4, 5, and 6 were obtained. Milk coffee is poured into the resulting can, and the inner surface of the lid is sealed with a tin lid coated with epoxy/phenol paint. After being double-sealed, it is heated to room temperature. It was stored for 6 months. Thereafter, the can was opened and the contents and the welded seam of the can body were evaluated. The results are shown in Table-2.
The results show that the cans corresponding to the examples of the present invention (cans No. 2, 3, 4, and 6) were in good condition with no abnormalities, but the cans with a thick oxide film of 900 Å or more (can No. 1)
The can body with an oxide film of less than 300 Å and a thin correction coating (can body number 5) showed corrosion in the seamed part of the side seam, and the amount of iron leached from the contents was 0.5 ppm, which was more defective than the can body of the present invention. It was hot. Test Example 9 In Test Example 6, after welded can bodies with can body numbers 13, 14, and 15 were manufactured, epoxy/urea paint was applied to the welded joint surface of the inner surface of the can body with a coating width of 8.
An inner surface correction can body was obtained which was coated with a relatively thin film of inner surface correction coating in mm. Also, the amount of tin plating on the inner side is 11.2g/ m2 ,
Epoxy on the inner side of the tin plate with a weight of 8.4g/ m2 on the outer side.
The canopy and ground cover were made using painted boards coated with urea paint to form a cured film with a film thickness of 7.6μ.
A 420gr aerosol can body (can body numbers 7, 8, and 9) as shown in Table 2 was manufactured by attaching the inner surface corrected can body to both ends by double seaming. Water-based starch was sealed in the can using a mounting cap, and the can was stored at 45°C for 3 months to evaluate the quality of the can. As can be seen from Table 2, can number 7 has a thin oxide film when the inner surface correction paint is thin, and can number 9 has a thick inner surface correction paint and a significantly thick oxide film. Corrosion was observed in the side seam seaming area. On the other hand, in can body number 8, which corresponds to an example of the present invention, no corrosion was observed, and the oxide film with an appropriate thickness had a protective effect.
【表】【table】
【表】【table】
【表】【table】
Claims (1)
して得られる溶接缶体において溶接継目部表面に
鉄に対する酸素原子濃度比が0.5以上の酸化鉄を
主体とする膜厚300〜900Åの金属酸化皮膜層を形
成せしめることを特徴とする溶接缶体。 2 前記金属素地が溶接継目となる端縁表面のク
ロム・クロメート処理層を除去したテイン・フリ
ー・スチール、ブラツクプレート及びニツケルめ
つき鋼板のいずれか1つを用いたことを特徴とす
る特許請求の範囲第1項記載の溶接缶体。 3 片面錫めつき量14g/m2以下の錫めつき鋼板
の金属素地の両端縁を溶接して得られる溶接缶体
において溶接継目部表面に鉄に対する酸素原子濃
度比が0.5以上の酸化鉄を主体とし、鉄成分と錫
成分の総量に対して錫成分を10〜50%の範囲で含
有する膜厚が300〜900Åの金属酸化皮膜層を形成
せしめることを特徴とする溶接缶体。[Scope of Claims] 1. In a welded can body obtained by welding both edges of a metal base made of iron, a film mainly composed of iron oxide with an oxygen atomic concentration ratio to iron of 0.5 or more on the surface of the weld joint. A welded can body characterized by forming a metal oxide film layer with a thickness of 300 to 900 Å. 2. A patent claim characterized in that the metal substrate is made of any one of stain-free steel, black plate, and nickel-plated steel plate from which the chromium/chromate treatment layer on the edge surface that will become the welding seam has been removed. A welded can body according to scope 1. 3. In a welded can body obtained by welding both edges of a metal base of a tin-plated steel plate with a tin plating amount of 14 g/m 2 or less on one side, iron oxide with an oxygen atomic concentration ratio of 0.5 or more to iron is applied to the surface of the weld joint. A welded can body characterized by forming a metal oxide film layer having a thickness of 300 to 900 Å and containing a tin component in the range of 10 to 50% based on the total amount of iron and tin components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5781981A JPS57174468A (en) | 1981-04-18 | 1981-04-18 | Welded can body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5781981A JPS57174468A (en) | 1981-04-18 | 1981-04-18 | Welded can body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57174468A JPS57174468A (en) | 1982-10-27 |
JPH0160540B2 true JPH0160540B2 (en) | 1989-12-22 |
Family
ID=13066524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5781981A Granted JPS57174468A (en) | 1981-04-18 | 1981-04-18 | Welded can body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57174468A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59229290A (en) * | 1983-06-10 | 1984-12-22 | Nippon Kokan Kk <Nkk> | Electric resistance seam welding method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5530345A (en) * | 1978-08-25 | 1980-03-04 | Yoshizaki Kozo | Production of welded metal can barrel and device thereof |
JPS55103284A (en) * | 1979-02-01 | 1980-08-07 | Toyo Seikan Kaisha Ltd | Metal vessel, its production and apparatus |
JPS55136592A (en) * | 1979-04-12 | 1980-10-24 | Toyo Seikan Kaisha Ltd | Bright welded seam can made of tin plate |
JPS55138096A (en) * | 1979-04-11 | 1980-10-28 | Nippon Steel Corp | Surface treated steel plate, for resistance welding having layer containing ni |
JPS575885A (en) * | 1980-06-12 | 1982-01-12 | Toyo Seikan Kaisha Ltd | Tin-free steel welded can with coated seam |
JPS5710374A (en) * | 1980-06-20 | 1982-01-19 | Toyo Seikan Kaisha Ltd | Welded can with coated joint made of tin free steel and its production |
-
1981
- 1981-04-18 JP JP5781981A patent/JPS57174468A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5530345A (en) * | 1978-08-25 | 1980-03-04 | Yoshizaki Kozo | Production of welded metal can barrel and device thereof |
JPS55103284A (en) * | 1979-02-01 | 1980-08-07 | Toyo Seikan Kaisha Ltd | Metal vessel, its production and apparatus |
JPS55138096A (en) * | 1979-04-11 | 1980-10-28 | Nippon Steel Corp | Surface treated steel plate, for resistance welding having layer containing ni |
JPS55136592A (en) * | 1979-04-12 | 1980-10-24 | Toyo Seikan Kaisha Ltd | Bright welded seam can made of tin plate |
JPS575885A (en) * | 1980-06-12 | 1982-01-12 | Toyo Seikan Kaisha Ltd | Tin-free steel welded can with coated seam |
JPS5710374A (en) * | 1980-06-20 | 1982-01-19 | Toyo Seikan Kaisha Ltd | Welded can with coated joint made of tin free steel and its production |
Also Published As
Publication number | Publication date |
---|---|
JPS57174468A (en) | 1982-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4451506A (en) | Side seam-coated welded cans and process for preparation thereof | |
JPS5930798B2 (en) | Steel plate for welded can containers and its manufacturing method | |
JPS59598B2 (en) | Tampered steel plate with excellent weldability | |
JPH0160540B2 (en) | ||
JPH0464932B2 (en) | ||
US5389451A (en) | Laminated steel sheet for welded can | |
JP3259416B2 (en) | Laminated steel sheet for welding cans | |
JP2817562B2 (en) | Laminated steel sheet for cans | |
JPH0213896B2 (en) | ||
JP4293065B2 (en) | Welding cans with excellent resistance to sulfur discoloration and corrosion | |
JP2806249B2 (en) | Large square can and manufacturing method thereof | |
EP2180085A1 (en) | Surface-treated tin-plated steel sheet for welded can and welded can made thereof | |
JPS6131198B2 (en) | ||
EP1134305A1 (en) | Steel plate for laminated container, and method for producing can using the same and can | |
JPH0373348B2 (en) | ||
JP2723511B2 (en) | Painted welded can body | |
JP2910488B2 (en) | Laminated steel sheet for welding cans | |
KR100261507B1 (en) | Method of manufacturing resin film coated metal sheet | |
JP2527330B2 (en) | Edible canned container | |
JP2580923B2 (en) | Laminated steel sheet for welding can and method for producing the same | |
JPH0349628B2 (en) | ||
JPS63125151A (en) | Tinned welding can for canning | |
JPH0212815B2 (en) | ||
JPH0199955A (en) | Inside painted can | |
JPS61104087A (en) | Electric resistance seam welded can having superior coatability and corrosion resistance |