JPH0160355B2 - - Google Patents

Info

Publication number
JPH0160355B2
JPH0160355B2 JP55004920A JP492080A JPH0160355B2 JP H0160355 B2 JPH0160355 B2 JP H0160355B2 JP 55004920 A JP55004920 A JP 55004920A JP 492080 A JP492080 A JP 492080A JP H0160355 B2 JPH0160355 B2 JP H0160355B2
Authority
JP
Japan
Prior art keywords
welding
wire
current value
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55004920A
Other languages
Japanese (ja)
Other versions
JPS56102380A (en
Inventor
Yoshiki Shimoyama
Satoshi Sugimoto
Akira Nitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP492080A priority Critical patent/JPS56102380A/en
Publication of JPS56102380A publication Critical patent/JPS56102380A/en
Publication of JPH0160355B2 publication Critical patent/JPH0160355B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は不活性ガスを主成分とするシールドガ
ス中で消耗性溶接ワイヤを溶融させて溶接する
MIGアーク溶接方法に関するものである。
[Detailed description of the invention] The present invention melts and welds a consumable welding wire in a shielding gas mainly composed of an inert gas.
This relates to the MIG arc welding method.

消耗性シールドガスアーク溶接においては、溶
接終了個所にクレータが発生すると溶接割れの原
因となる。また、溶接終了時に消耗性溶接ワイヤ
(以下、ワイヤという)の先端がワイヤ径よりも
大きい球状になつたまま溶接が終了すると次回の
アークスタートが円滑に行われなくなる。したが
つて、従来、これら2つの問題点がそれぞれ個別
的に検討され種々の改良技術が提案されている。
ワイヤ先端の溶融球を除去する方法の一つとし
て、溶接終了時にワイヤ送給装置の機械的慣性モ
ーメントによるワイヤ送給速度の漸減すなわち溶
接電流の漸減に対応させて、その電流値に適した
溶接電圧に漸減もしくは段階状に低減させたり、
又は溶接終了時に溶接電源の無負荷電圧をアーク
電圧とほぼ等しくすることなどが提案されてい
る。このような方法は、炭酸ガスアーク溶接に対
しては効果がみとめられるが、不活性ガスを主成
分とするMIGアーク溶接には効果が期待できな
い。炭酸ガスアーク溶接においては、電流値が大
になるほど電磁反発力が大になつてワイヤ先端に
大粒の溶滴が生じて不規則なドロツプ移行をす
る。逆に溶接電流値が小さくなり、ワイヤ先端の
溶融金属の移行形態がドロツプ移行から短絡移行
になるとワイヤ先端と溶融池との距離も小にな
り、さらに電磁反発力も小さくなるために、ワイ
ヤ先端の溶融金属が大電流のときのように大粒に
成長する以前にワイヤ先端の溶融金属と溶融池と
が容易に短絡するようになる。この短絡が生じる
とワイヤ先端の溶融金属は、溶融池の表面張力に
よつて容易に溶融池に移行するのでワイヤ先端に
は溶融球が生じなくなる。このように、炭酸ガス
アーク溶接では、溶接電流が大になるほどワイヤ
先端の溶融金属が大粒になつて離脱が困難にな
り、逆に電流が小さくなつて短絡移行領域になる
とワイヤ先端の溶融金属の溶融池への移行が容易
になる。
In consumable shielded gas arc welding, if a crater occurs at the welding point, it will cause weld cracking. Further, if welding is completed with the tip of the consumable welding wire (hereinafter referred to as wire) having a spherical shape larger than the wire diameter, the next arc start will not be performed smoothly. Therefore, conventionally, these two problems have been individually studied and various improvement techniques have been proposed.
One method for removing the molten ball at the tip of the wire is to gradually reduce the wire feeding speed due to the mechanical inertia of the wire feeding device at the end of welding, that is, to gradually reduce the welding current, and perform welding that is appropriate for the current value. The voltage can be gradually reduced or reduced in stages,
Alternatively, it has been proposed to make the no-load voltage of the welding power source approximately equal to the arc voltage at the end of welding. Although such a method is effective for carbon dioxide arc welding, it cannot be expected to be effective for MIG arc welding, which uses inert gas as the main component. In carbon dioxide arc welding, as the current value increases, the electromagnetic repulsion force increases, and large droplets form at the tip of the wire, causing irregular droplet transfer. Conversely, as the welding current value decreases and the transition form of the molten metal at the wire tip changes from a drop transition to a short circuit transition, the distance between the wire tip and the molten pool decreases, and the electromagnetic repulsion force also decreases. Before the molten metal grows into large particles as when a large current is applied, the molten metal at the tip of the wire and the molten pool easily become short-circuited. When this short circuit occurs, the molten metal at the tip of the wire easily transfers to the molten pool due to the surface tension of the molten pool, so that no molten ball is formed at the tip of the wire. In this way, in carbon dioxide arc welding, as the welding current increases, the molten metal at the tip of the wire becomes larger particles, making it difficult to separate, and conversely, when the current decreases and a short-circuit transition region occurs, the molten metal at the tip of the wire melts. Easier transition to pond.

したがつて、前述したような溶接終了時に溶接
電流を漸減させ、それにともなつて溶接電圧を漸
減させてアーク長を短かくしてドロツプ移行領域
から短絡移行領域に移させることが有効であり、
それによつて溶接終了時のワイヤ先端の溶融球の
発生を効果的に防止することができる。それに対
して、不活性ガスを主成分とするMIGアーク溶
接方法においては、溶接電流が大になるほどピン
チ力が大になるのでワイヤ先端の溶融金属が小粒
になつて極めて規則正しく溶融池にスプレー移行
をするが、逆に電流が小になるとワイヤ先端の溶
融速度およびピンチ力の低下によつてワイヤ先端
の溶融金属が大粒になつて離脱するようになる。
さらにMIGアーク溶接方法の短絡移行領域にお
いては、炭酸ガスアーク溶接の短絡移行領域にく
らべて、同じ溶接電流であつても、前者の電位傾
度が後者のそれよりも小さいために、前者はアー
クの集中性が劣り、また入熱が少なくワイヤ先端
および溶融池の冷却速度が大になつてステイツク
も生じやすくなり、MIGアーク溶接の短絡移行
領域では炭酸ガスアーク溶接のそれのように広範
囲で安定したアークを維持することが困難である
ので、溶接終了端における欠陥も生じやすい。
Therefore, it is effective to gradually reduce the welding current at the end of welding as described above, and to gradually reduce the welding voltage accordingly to shorten the arc length and move it from the drop transition region to the short circuit transition region,
Thereby, it is possible to effectively prevent the formation of molten balls at the tip of the wire at the end of welding. In contrast, in the MIG arc welding method, which uses inert gas as the main component, the pinch force increases as the welding current increases, so the molten metal at the tip of the wire becomes small particles and sprays into the molten pool in an extremely regular manner. However, when the current decreases, on the other hand, the melting speed at the wire tip and the pinching force decrease, causing the molten metal at the wire tip to become large particles and separate.
Furthermore, in the short-circuit transition region of the MIG arc welding method, compared to the short-circuit transition region of carbon dioxide arc welding, even with the same welding current, the potential gradient of the former is smaller than that of the latter. In addition, the heat input is low and the cooling rate of the wire tip and molten pool increases, making it more likely that stagnation will occur. Since it is difficult to maintain, defects at the end of the weld are also likely to occur.

したがつて、MIGアーク溶接方法、特にアル
ミの溶接においては、前述したような溶接電流の
減少に対応させて溶接電圧を減少させる方法で
は、ワイヤ先端に溶融球が残つたり、ステイツク
を生じたりして、炭酸ガスアーク溶接の場合ほ
ど、略一定した効果が得られない。そこで、この
ようなMIGアーク溶接には、溶接終了時にワイ
ヤと被溶接物間に溶接電圧よりも高い出力電圧を
パルス的に供給して、その際流れる大きい電流の
ピンチ効果で、消耗性電極先端溶融球を強制的に
離脱させて溶融池に移行させる方法も示されてい
る。しかし、このようなパルス的に発生させる電
圧の大きさとタイミングとの設定が、溶接機の出
力電圧の大小又は消耗性電極送給量の大小により
微妙に異なり、条件選定がむつかしく、また設定
が不完全な場合には、ステイツクを生じたり、溶
融球の径が大きくなつたりする欠点が残されてい
た。さらには、このようなパルス電圧を供給する
方法においては、溶接終了時に大きいピンチ力を
得るような溶接電流を通電するために、大きなア
ーク力が生じてクレータのくぼみを大きくしてし
まう欠点もあつた。
Therefore, in the MIG arc welding method, especially when welding aluminum, the method of reducing the welding voltage in response to the decrease in the welding current as described above may leave a molten ball at the tip of the wire or cause a stagnation. Therefore, a substantially constant effect cannot be obtained as in the case of carbon dioxide arc welding. Therefore, in such MIG arc welding, an output voltage higher than the welding voltage is supplied in pulses between the wire and the workpiece at the end of welding, and the pinch effect of the large current flowing at that time causes the tip of the consumable electrode to A method of forcibly separating the molten sphere and transferring it to the molten pool is also shown. However, the setting of the magnitude and timing of the voltage to be generated in a pulsed manner differs slightly depending on the output voltage of the welding machine or the amount of consumable electrode feeding, making it difficult to select the conditions and the setting may be incorrect. In the perfect case, there remained drawbacks such as sticking and an increase in the diameter of the molten sphere. Furthermore, this method of supplying pulse voltage has the disadvantage that the welding current is applied to obtain a large pinch force at the end of welding, which generates a large arc force and increases the size of the crater. Ta.

本発明は、不活性ガスを主成分とするMIGア
ーク溶接において、溶接終了時にワイヤ先端の溶
融金属のスプレー移行が可能であつて、かつクレ
ータのくぼみが大にならない程度の溶接電流を通
電してスプレー移行をさせることによつて、ワイ
ヤ先端に溶融球を発生させることなく、ワイヤ送
給を停止させてステイツクをも防止し、かつワイ
ヤがバーンバツク(燃えあがりによるチツプとの
溶着)を生じる前に溶接電流をしや断するMIG
アーク溶接方法を提案したものである。
The present invention uses MIG arc welding, which uses inert gas as the main component, to apply a welding current that allows spray transfer of molten metal at the tip of the wire at the end of welding, and that does not cause large craters. By spray transfer, the wire feeding is stopped and stuck is prevented without generating a molten ball at the tip of the wire, and before the wire burns back (welding with the chip due to burning). MIG that cuts welding current
This proposed an arc welding method.

以下、本発明のMIGアーク溶接方法について
図面を参照して説明する。
Hereinafter, the MIG arc welding method of the present invention will be explained with reference to the drawings.

第1図A乃至Dは本発明のMIGアーク溶接方
法の実施例を示し、縦軸を溶接電流I、横軸を時
間の経過tとする。同図Dにおいてt0は溶接作業
の終了前に溶接電流Iaをクレータフイラ電流Ifに
変化させる時刻であり、同図A乃至Dにおいてt1
は溶接終了に際し溶接ワイヤ送給装置への電力の
供給を遮断する時刻であり、この時刻の前後にお
いて溶接装置の出力設定値が一定に維持されてお
れば、溶接電流Idは、ワイヤ送給速度の漸減と対
応して2点鎖線で示すごとく漸減する。t2は、溶
接終了に際し溶接装置の出力設定値をスプレー移
行が可能でかつクレータのくぼみを大にしないよ
うな溶接終了処理電流値Ieに設定する時刻であ
り、t3はそのように設定した溶接終了処理電流値
Ieを遮断する時刻である。1点鎖線で示されたIc
は、溶接ワイヤの材質および直径シールドガスの
成分とによつて定まるスプレー移行臨界溶接電流
値(以下、臨界電流値という)であつて、例えば
溶接ワイヤの材質が純アルミでその直径が1.2、
1.6および2.4mmのときそれぞれ100、130および
185Aであり、アルミ合金で直径が1.2、1.6および
2.4mmのときそれぞれ130、170および240Aであ
り、ステンレス鋼で直径1.2および1.6mmのときそ
れぞれ180Aおよび220Aであり、ニツケル合金で
1.6mmでは240Aであり、軟鋼で1.6mmでは260Aで
ある。同図Aにおいては、時刻t1までの溶接終了
前の溶接電流Iaは、スプレー移行が可能な前述し
た臨界電流値Icよりも充分に大きな電流が通電さ
れており、時刻t1において溶接終了のためにワイ
ヤ送給装置への電力の供給を遮断している。この
時刻t1以後においてはワイヤ送給装置は機械的慣
性により速度を漸減し、それに対応して溶接電流
値I′dが漸減して臨界電流値Icに近ずく。時刻t2
おいて、溶接装置の出力設定器を調整することに
よつて、本来調整がなければ2点鎖線で示された
電流Idのごとく漸減して臨界電流値Ic以下になる
はずの溶接電流Idを、臨界電流値Ic以上の電流値
Ieに維持する。そうすることによつて、ワイヤ先
端から溶滴がスプレー状で移行を続けるので、ワ
イヤ先端に溶融球が発生することがない。ワイヤ
送給が略停止してステイツクを生じなくなり、か
つバーンバツクが生じる以前の時刻t3において、
溶接装置の出力を遮断して溶接を終了する。上記
の溶接終了処理電流値Ieは、臨界電流値Icをこえ
るがそのIcに近い値であるために、スプレー移行
が行われてワイヤ先端には溶融球が生じることな
く、かつ上記の溶接中の電流値Iaよりも小さいの
で、クレータを小さくする効果をも有している。
同図Bにおいては、時刻t1までの溶接終了前の溶
接電流Iaは、臨界電流値Icよりも小さい値である
ので、ワイヤ先端からの溶滴は溶融池に短絡移行
をする。時刻t1において、ワイヤ送給装置への電
力の供給を遮断するとともに溶接装置の出力設定
器を調整して、臨界電流値Ic以上の電流値Ieに増
加させる。以後は、同図Aの場合と同様である。
このように同図Bの場合には、溶接電流Iaが短絡
移行領域の電流であるために、大きなクレータは
発生していないので、溶接中の電流値Iaからすぐ
に溶接終了処理電流値Ieに変化させてもよく、し
たがつてワイヤ送給装置に電力の供給を遮断する
時刻t1と溶接終了処理電流値Ieを設定する時刻t2
とが同時になる。同図Cにおいては、時刻t1まで
の溶接終了前の溶接電流値Iaは、臨界電流値Icよ
りも少し大きい値であるのでワイヤ先端からの溶
滴はスプレー移行が行われている。時刻t1におい
てワイヤ送給装置への電力の供給を遮断するとと
もに溶接装置の出力設定器を調整することによつ
て、もしその調整が行われなければワイヤ送給速
度の漸減とともに漸減するはずの溶接電流Idを、
臨界電流値Ic以上の電流値Ieに維持する。以後、
同図Bの場合と同様である。同図Dにおいては、
時刻t0までの溶接電流値Iaは、臨界電流値Icより
も充分に大きな値であるので、ワイヤ先端からの
溶滴はスプレー移行が行われているが、電流値が
大であるので大きなクレータを生じている。した
がつて、時刻t0において溶接電流値をIaから臨界
電流値Icよりも小さいクレータフイラ電流Ifに変
化させている。時刻t2において溶接装置の出力設
定器を調整して再び臨界電流値Icをこえる溶接終
了処理電流値Ieに増加させている。この場合は、
クレータフイラ電流Ifが臨界電流値Icよりも充分
に小さくワイヤ送給速度も小さくて機械的慣性も
小さくなつているので、時刻t2において溶接電流
値をIfからIeに増加させた後の時刻t1において、
ワイヤ送給装置への電力の供給を遮断している。
上述した同図Aにおいては、溶接電流値Iaが臨界
電流値Ieにくらべてかなり大であるので、大きな
クレータが発生しており、かつ溶接電流の減少は
ワイヤ送給装置による漸減を利用していて積極的
なクレータ処理が行われていないので、溶接終了
処理電流値Ieを臨界電流値Icをこえるが、できる
だけ小さな値として、かつこの電流の継続時間
(t3−t2)を長くし、例えば50msecとすることに
よつてクレータが小さくなるようにしている。他
方、同図Bに示すように短絡移行形溶接の場合又
は同図Dに示すように積極的にクレータ処理を行
つてクレータが小さくなつているときは、溶接終
了処理電流値Ieは臨界電流値Icよりも充分に大と
してワイヤ先端の溶融球の発生の防止をより効果
的に行わせることができる。ただし、この場合
は、溶接終了処理電流値Ieを増加させるために溶
接装置の出力電圧が高くなつており、しかもワイ
ヤ送給速度もすでに低下しているので、バーンバ
ツクを防止するために、溶接終了処理電流値Ieの
継続時間(t3−t2)を短くし、例えば10msecとす
る。この継続時間が10msec未満でワイヤ先端の
溶融球を除去させようとすれば、最終の溶接電流
値Ieが過大となつて、クレータのくぼみを大きく
してしまう。第2図A乃至Cは第1図Dに示す本
発明のMIGアーク溶接方法を実施した場合のそ
れぞれワイヤ送給装置の電動機の逆起電力Em、
溶接電圧Vおよび溶接電流Iの時間的経過を示す
図である。その溶接条件は、シールドガスとして
アルゴン、溶接ワイヤとして材質がアルミ合金
(JISZ3232 A5183WY)その直径が1.6mmで、ク
レータフイラ電流Ifが120A、クレータフイラ電
圧が21V、溶接終了処理電流値Ieが270A、最終
の溶接電圧が23Vであり、最終の溶接電流Ieの継
続時間(t3−t2)が50msecである。前述したよう
に直径1.6mmのアルミ合金ワイヤの臨界電流値が
170Aであるので、クレータフイラ電流値Ifが
120Aであつて臨界電流値以下であるために同図
Bの時刻t0からt2までの間の波形が示すごとく短
絡移行領域にあつて短絡をくり返しているが、溶
接終了処理電流値Ieは270Aであつて臨界電流値
よりも大であるので時刻t2とt3との間の波形が示
すごとく短絡現象が見られなくなつているが、こ
れはスプレー移行が行われたことを示している。
FIGS. 1A to 1D show an embodiment of the MIG arc welding method of the present invention, with the vertical axis representing welding current I and the horizontal axis representing elapsed time t. In the figure D, t 0 is the time when the welding current Ia is changed to the crater filler current If before the end of the welding operation, and in the figures A to D, t 1
is the time when the power supply to the welding wire feeding device is cut off at the end of welding, and if the output setting value of the welding device is maintained constant before and after this time, the welding current Id is the wire feeding speed Corresponding to the gradual decrease in , it gradually decreases as shown by the two-dot chain line. t 2 is the time when the output setting value of the welding device is set to a welding completion processing current value Ie that allows spray transfer and does not increase the crater depression, and t 3 is the time when the output setting value of the welding device is set at the welding end processing current value Ie that allows spray transfer and does not make the crater depression large. Welding end processing current value
It is time to cut off Ie. Ic indicated by a dashed-dotted line
is the spray transfer critical welding current value (hereinafter referred to as critical current value) determined by the material and diameter of the welding wire and the components of the shielding gas. For example, if the material of the welding wire is pure aluminum and its diameter is 1.2,
100, 130 and 1.6 and 2.4mm respectively
185A, aluminum alloy with diameters of 1.2, 1.6 and
130, 170 and 240A respectively for 2.4mm, 180A and 220A respectively for stainless steel and 1.2 and 1.6mm diameter, and 180A and 220A respectively for nickel alloy.
1.6mm is 240A, and 1.6mm mild steel is 260A. In Figure A, the welding current Ia up to time t 1 before the end of welding is sufficiently larger than the above-mentioned critical current value Ic at which spray transfer is possible, and the welding current Ia before the end of welding at time t 1 is sufficiently larger than the critical current value Ic that allows spray transfer. Therefore, the power supply to the wire feeding device is cut off. After time t1 , the speed of the wire feeding device gradually decreases due to mechanical inertia, and correspondingly, the welding current value I'd gradually decreases and approaches the critical current value Ic. At time t 2 , by adjusting the output setting device of the welding device, the welding current Id, which would otherwise gradually decrease as shown by the two-dot chain line and become below the critical current value Ic, is reduced. , a current value greater than the critical current value Ic
Keep it in Ie. By doing so, the droplets continue to migrate from the tip of the wire in the form of a spray, so that no molten ball is generated at the tip of the wire. At time t3 , when the wire feeding has almost stopped and stagnation no longer occurs, and before burnback occurs,
Cut off the output of the welding equipment to finish welding. The above-mentioned welding completion processing current value Ie exceeds the critical current value Ic but is close to the critical current value Ic, so that spray transfer occurs and no molten ball is generated at the wire tip, and the above-mentioned welding process current value Ie is close to the critical current value Ic. Since it is smaller than the current value Ia, it also has the effect of reducing the size of the crater.
In FIG. B, the welding current Ia before the end of welding up to time t1 is smaller than the critical current value Ic, so the droplet from the tip of the wire short-circuits into the molten pool. At time t1 , the power supply to the wire feeding device is cut off, and the output setting device of the welding device is adjusted to increase the current value Ie to a critical current value Ic or more. The subsequent steps are the same as in the case of A in the same figure.
In the case of B in the same figure, the welding current Ia is in the short circuit transition region, so no large crater is generated, and the welding end processing current value Ie immediately changes from the current value Ia during welding. Therefore, the time t 1 at which the power supply to the wire feeding device is cut off and the time t 2 at which the welding end processing current value Ie is set.
becomes at the same time. In Figure C, the welding current value Ia before the end of welding up to time t1 is a value slightly larger than the critical current value Ic, so the droplets from the tip of the wire are transferred to the spray. By cutting off the power supply to the wire feeding device at time t 1 and adjusting the output setting device of the welding device, it is possible to reduce the amount of power that would otherwise gradually decrease as the wire feeding speed gradually decreases. Welding current Id,
Maintain the current value Ie higher than the critical current value Ic. From then on,
This is the same as the case shown in FIG. In figure D,
The welding current value Ia up to time t 0 is sufficiently larger than the critical current value Ic, so the droplets from the wire tip are transferred to the spray, but the large current value causes a large crater. is occurring. Therefore, at time t0 , the welding current value is changed from Ia to crater filler current If, which is smaller than the critical current value Ic. At time t2 , the output setting device of the welding device is adjusted to increase the welding completion processing current value Ie, which exceeds the critical current value Ic again. in this case,
Since the crater filler current If is sufficiently smaller than the critical current value Ic, the wire feeding speed is low, and the mechanical inertia is also small, the welding current value is increased from If to Ie at time t 2 , and then at time t 1 . In,
The power supply to the wire feeder is cut off.
In Figure A mentioned above, the welding current value Ia is considerably larger than the critical current value Ie, so a large crater has occurred, and the welding current is reduced by using the gradual reduction by the wire feeding device. Since active crater treatment is not performed, the welding end treatment current value Ie should be set to a value as small as possible, although it exceeds the critical current value Ic, and the duration of this current (t 3 - t 2 ) should be lengthened. For example, by setting the time to 50 msec, the crater is made smaller. On the other hand, in the case of short-circuit transition type welding as shown in Figure B, or when the crater is reduced by active crater treatment as shown in Figure D, the welding completion processing current value Ie is equal to the critical current value. By making it sufficiently larger than Ic, the generation of molten balls at the tip of the wire can be more effectively prevented. However, in this case, the output voltage of the welding device has been increased in order to increase the welding end processing current value Ie, and the wire feeding speed has already decreased. The duration time (t 3 −t 2 ) of the processing current value Ie is shortened, for example, to 10 msec. If an attempt is made to remove the molten ball at the tip of the wire during this duration of less than 10 msec, the final welding current value Ie will become excessive and the crater will become larger. FIGS. 2A to 2C show the back electromotive force Em of the electric motor of the wire feeding device, respectively, when the MIG arc welding method of the present invention shown in FIG. 1D is carried out.
FIG. 3 is a diagram showing the time course of welding voltage V and welding current I. The welding conditions are argon as the shielding gas, aluminum alloy as the welding wire (JISZ3232 A5183WY), diameter 1.6mm, crater filler current If 120A, crater filler voltage 21V, welding final processing current value Ie 270A, final The welding voltage is 23V, and the duration of the final welding current Ie ( t3 - t2 ) is 50msec. As mentioned above, the critical current value of an aluminum alloy wire with a diameter of 1.6 mm is
Since it is 170A, the crater filler current value If is
Since the current is 120A and is less than the critical current value, as shown in the waveform from time t 0 to t 2 in Figure B, it is in the short circuit transition region and short circuits are repeated, but the welding completion processing current value Ie is Since the current is 270A, which is larger than the critical current value, the short circuit phenomenon is no longer observed as shown in the waveform between time t 2 and t 3 , which indicates that spray transfer has occurred. There is.

つぎに、本発明の溶接方法を実施する装置につ
いて説明する。
Next, an apparatus for carrying out the welding method of the present invention will be explained.

第3図A乃至Cはそれぞれ本発明の溶接方法を
実施する装置の第1の実施例の構成図、シーケン
ス回路図およびシーケンスの説明図である。各図
において1は溶接装置用の3相交流電源、2はワ
イヤ、3は被溶接物、T1は溶接電源用変圧器、
4は出力制御回路であつて例えばサイリスタ
SCRによつて構成される回路、Mはワイヤ送給
装置、M1はワイヤ送給装置用制御回路、5aは
第1の基準信号回路であつて溶接終了時よりも以
前の溶接装置の出力すなわち溶接電圧Va又溶接
電流Iaを設定する回路である。5bは第2の基準
信号回路であつてこの回路の出力信号Vrbと第1
の基準信号回路の出力信号Vraとの和の信号又は
差の信号によつて溶接終了時の溶接装置の出力す
なわち最終溶接電圧Ve又は溶接終了処理電流値
Ieを設定する。7は帰還回路であつて溶接電圧又
は溶接電流に相当する信号Vfを後述する比較回
路6にフイードバツクする。6は比較回路であつ
て第1の基準信号Vraとフイードバツク信号Vf
との差、又は第1の基準信号Vraと第2の基準信
号Vrbとの合成された信号Vra±Vrbとフイード
バツク信号Vfとの差の信号を増幅回路AMPを通
して出力制御回路4に供給する。8はシーケンス
回路でありTSはトーチスイツチ、TSaはトーチ
スイツチTSを溶接開始のために最初に押すと閉
路して溶接装置の出力を検出して自己保持され、
トーチスイツチTSを溶接終了のために再度押す
ことによつて開路する接点である。CR1は接点
TSaによつて励磁されるリレーのコイル、CR1
aおよびCR1bはリレーコイルCR1の励磁によ
つてそれぞれ開閉する常開接点および常閉接点で
ある。CR2は接点TSaによつて励磁されるリレ
ーのコイル、CR2aおよびCR2bは整流器DR
1、抵抗器R1およびコンデンサC1によつて遅
延復帰するリレーCR2の常開接点である。つぎ
に動作について説明する。溶接を開始するために
トーチスイツチTSを押すと、リレーの接点TSa
が閉路し、第3図Cに示すようにリレーCR1お
よびCR2が励磁されて接点CR1aが閉路しワイ
ヤ送給装置Mに電力が供給されワイヤ送給が開始
され、他方、接点CR2aが閉路し信号Vraが比
較回路6に供給され、その出力信号Vra−Vfが
増幅回路AMPを通じて出力制御回路4に供給さ
れて溶接電圧をVaの略一定値に、又は溶接電流
をIaの略一定値に維持して溶接が継続する。溶接
終了に際して時刻t1においてトーチスイツチTS
を再度押すと接点TSaしたがつて接点CR1aが
開路し、接点CR1bが閉路するので、ワイヤ送
給装置Mへの電力の供給が遮断されて第3図Cの
Mに示されるごとくワイヤ送給速度が漸減する。
しかし、接点CR2aおよびCR2bが遅延するま
では比較回路6には第1の基準信号Vra、第2の
基準信号Vrbおよびフイードバツク信号Vfが供
給され、信号の極性がVra+Vrb+Vfのときは同
図CのV又はIに示すごとく溶接装置の出力電圧
又は出力電流は増加し、Vra−Vrb−Vfのときは
同図点線に示すごとく溶接装置の出力は減少す
る。遅延時間の経過後の時刻t3において接点CR
2aおよびCR2bが開路して溶接装置出力は遮
断される。上述した遅延時間内における溶接装置
の出力電流は、臨界電流値Icをこえる値になるよ
うに第2の基準回路の出力信号Vrbが設定され
る。上記構成において溶接中は第1の基準信号
Vraを比較回路6に供給し、溶接終了時にその信
号Vraを遮断して第2の基準信号Vrbを供給する
ようにしてもよい。このときは、第2の基準信号
Vrbは予め定めた一定値に固定してもよい。ま
た、第1の基準信号回路5aの調整と第2の基準
信号回路5bの調整とを機械的又は電気的に連動
させて、例えば溶接中の出力電流値が大になるよ
うに第1の基準信号Vraが大に設定されたときに
は、第2の基準信号Vrbは小に設定されて溶接終
了時の基準信号の和の信号Vra+Vrbが、臨界電
流値Icをこえかつクレータのくぼみを大にしない
程度の溶接終了処理電流値Ieが通電されるように
してもよい。また上記の構成にクレータフイラ制
御回路を設けてもよい。
FIGS. 3A to 3C are a block diagram, a sequence circuit diagram, and a sequence explanatory diagram of a first embodiment of an apparatus for carrying out the welding method of the present invention, respectively. In each figure, 1 is a three-phase AC power source for welding equipment, 2 is a wire, 3 is a workpiece to be welded, T1 is a transformer for a welding power source,
4 is an output control circuit, such as a thyristor.
A circuit constituted by SCR, M is a wire feeding device, M1 is a control circuit for the wire feeding device, and 5a is a first reference signal circuit, which is the output of the welding device before the end of welding, that is, welding This is a circuit that sets voltage Va and welding current Ia. 5b is a second reference signal circuit, which outputs the output signal Vrb of this circuit and the first reference signal circuit.
The output of the welding device at the end of welding, that is, the final welding voltage Ve or the welding end processing current value, is determined by the sum signal or difference signal from the output signal Vra of the reference signal circuit.
Set up Ie. A feedback circuit 7 feeds back a signal Vf corresponding to the welding voltage or welding current to a comparison circuit 6, which will be described later. Reference numeral 6 denotes a comparison circuit which outputs the first reference signal Vra and the feedback signal Vf.
or the difference between the signal Vra±Vrb, which is a composite signal of the first reference signal Vra and the second reference signal Vrb, and the feedback signal Vf is supplied to the output control circuit 4 through the amplifier circuit AMP. 8 is a sequence circuit, TS is a torch switch, and TSa is a self-holding circuit that closes when the torch switch TS is first pressed to start welding and detects the output of the welding device.
This is a contact that opens when the torch switch TS is pressed again to complete welding. CR1 is a contact
Relay coil energized by TSa, CR1
a and CR1b are a normally open contact and a normally closed contact, respectively, which are opened and closed by excitation of relay coil CR1. CR2 is the relay coil excited by contact TSa, CR2a and CR2b are the rectifier DR
1. Normally open contact of relay CR2 with delayed return by resistor R1 and capacitor C1. Next, the operation will be explained. When you press the torch switch TS to start welding, the relay contact TSa
is closed, relays CR1 and CR2 are energized and contact CR1a is closed as shown in FIG. Vra is supplied to the comparison circuit 6, and its output signal Vra-Vf is supplied to the output control circuit 4 through the amplifier circuit AMP to maintain the welding voltage at a substantially constant value of Va or the welding current at a substantially constant value of Ia. welding continues. Upon completion of welding, the torch switch TS is turned on at time t1 .
When is pressed again, the contact TSa and therefore the contact CR1a open, and the contact CR1b closes, cutting off the power supply to the wire feeding device M and reducing the wire feeding speed as shown by M in Figure 3C. gradually decreases.
However, until the contacts CR2a and CR2b are delayed, the comparator circuit 6 is supplied with the first reference signal Vra, the second reference signal Vrb, and the feedback signal Vf, and when the signal polarity is Vra+Vrb+Vf, the Or, as shown in I, the output voltage or output current of the welding device increases, and when Vra-Vrb-Vf, the output of the welding device decreases as shown in the dotted line in the figure. Contact CR at time t 3 after the delay time has elapsed
2a and CR2b are opened and the welding device output is cut off. The output signal Vrb of the second reference circuit is set so that the output current of the welding device within the above-described delay time exceeds the critical current value Ic. In the above configuration, the first reference signal is used during welding.
It is also possible to supply Vra to the comparator circuit 6, cut off the signal Vra at the end of welding, and supply the second reference signal Vrb. At this time, the second reference signal
Vrb may be fixed to a predetermined constant value. Further, the adjustment of the first reference signal circuit 5a and the adjustment of the second reference signal circuit 5b may be mechanically or electrically linked to adjust the first reference signal so that the output current value during welding is increased, for example. When the signal Vra is set to a large value, the second reference signal Vrb is set to a small value so that the signal Vra + Vrb, which is the sum of the reference signals at the end of welding, exceeds the critical current value Ic and does not increase the depression of the crater. The welding completion processing current value Ie may be applied. Further, a crater filler control circuit may be provided in the above configuration.

第4図A乃至Cは、それぞれ本発明の溶接方法
を実施する装置の第2の実施例の構成図、シーケ
ンス回路図およびシーケンスの説明図である。各
図において符号1乃至4,6,T1,M,M1,
AMP,TS,TSa,CR1およびCR1aは第1図
A乃至Cに示す符号と同じである。5は溶接装置
の出力電流Iaを定めるための基準信号回路であ
り、7aは溶接中の出力電流Iaを定めるための第
1の帰還回路であり、7bは溶接終了時の溶接終
了処理電流値Ieを定めるための第2の帰還回路で
ある。CR1およびCR1dはリレーのコイルCR
1によつて開閉する常開接点である。TDRは遅
延帰作タイマのコイルであつて常閉接点CR1b
の閉路によつて励磁され、TDRbはタイマTDR
の常閉接点でである。CR3は、常閉接点CR1b
およびTDRbの閉路によつて励磁されるコイルで
あり、CR3aおよびCR3cはその常開接点であ
る。つぎに動作について説明する。溶接を開始す
るためにトーチスイツチTsを押すと接点TSaが
閉路し第4図Cに示されるようにリレーCR1が
励磁されて接点CR1aが閉路し、ワイヤ送給装
置Mに電力が供給されワイヤ送給が開始され、他
方、接点CR1cの閉路によつてフイードバツク
信号Vfが第1の帰還回路7aを通じてその出力
信号Vf1が比較回路6に供給され、その出力信号
Vr−Vf1が増幅回路AMPを通じて出力制御回路
4に供給されて溶接電圧をVaの略一定値に、又
は溶接電流をIaの略一定値に維持して溶接が継続
される。この溶接中においては接点CR1bが開
路しているのでタイマTDRおよびリレーのコイ
ルCR3は電圧が供給されず、接点CR3aは開路
している。溶接終了に際して時刻t1においてトー
チスイツチTSを再度押すと接点TSaしたがつて
接点CR1a,CR1cおよびCR1dが開路して
接点CR1bが閉路してタイマTDRおよびリレー
のコイルCR3に電圧が供給され接点CR3aおよ
びCR3cが閉路する。この接点CR3aの閉路に
よつてフイードバツク信号Vfが第2の帰還回路
7bを通じてその出力信号Vf2が比較回路6に供
給され、その出力信号Vr−Vf2が増幅回路AMP
を通じて出力制御回路4に供給される。フイード
バツク信号がVf1>Vf2のときは第4図Cに示す
ごとく溶接装置の出力電圧又は出力電流は増加
し、Vf1<Vf2のときは同図点線に示すごとく溶
接装置の出力は減少する。遅延時間の経過後の時
刻t3において接点TDRbが開路することによつて
接点CR3cが開路して溶接装置の出力は遮断さ
れる。上述した遅延時間内における溶接装置の出
力電流は、臨界電流値Icをこえる値になるように
第2の帰還回路7bの出力信号Vf2が設定され
る。上記の第4図AおよびBに示す実施例におい
て、基準信号回路5の調整と第2の帰還回路7b
の調整とを機械的又は電気的に連動させて、例え
ば溶接中の出力電流値が大になるように基準信号
Vrが大に設定されたときは第2の帰還信号Vf2
大に設定されて溶接終了時の比較回路6の出力信
号Vr−Vf2が、臨界電流値Icをこえかつクレータ
のくぼみを大にしない程度の溶接終了処理電流値
Ieが通電されるようにしてもよい。また上記の構
成に、第2の基準信号回路とその制御回路とを追
加してクレータフイラ制御回路を設けてもよい。
上記第1および第2の実施例のほかに、増幅回路
AMPの増幅度、出力制御回路のサイリスタSCR
の点弧回路の定数等を制御することによつて、溶
接終了処理電流値Ieを臨界電流値Icをこえかつク
レータのくぼみを大にしない程度の溶接電流を通
電させることができる。
FIGS. 4A to 4C are a configuration diagram, a sequence circuit diagram, and a sequence explanatory diagram of a second embodiment of an apparatus for carrying out the welding method of the present invention, respectively. In each figure, codes 1 to 4, 6, T1, M, M1,
AMP, TS, TSa, CR1 and CR1a have the same symbols as shown in FIGS. 1A to 1C. 5 is a reference signal circuit for determining the output current Ia of the welding device, 7a is a first feedback circuit for determining the output current Ia during welding, and 7b is a welding end processing current value Ie at the end of welding. This is a second feedback circuit for determining . CR1 and CR1d are relay coil CR
It is a normally open contact that is opened and closed by 1. TDR is the delayed return timer coil and normally closed contact CR1b
TDRb is excited by the closed circuit of timer TDR
It is a normally closed contact. CR3 is a normally closed contact CR1b
A coil is excited by the closing of TDRb and CR3a, and CR3a and CR3c are its normally open contacts. Next, the operation will be explained. When the torch switch Ts is pressed to start welding, the contact TSa is closed, and as shown in Figure 4C, the relay CR1 is energized and the contact CR1a is closed, and power is supplied to the wire feeding device M to feed the wire. On the other hand, by closing the contact CR1c, the feedback signal Vf is supplied to the comparator circuit 6 through the first feedback circuit 7a, and its output signal Vf1 is supplied to the comparator circuit 6.
Vr-Vf 1 is supplied to the output control circuit 4 through the amplifier circuit AMP, and welding is continued by maintaining the welding voltage at a substantially constant value of Va or the welding current at a substantially constant value of Ia. During this welding, contact CR1b is open, so voltage is not supplied to timer TDR and relay coil CR3, and contact CR3a is open. Upon completion of welding, when the torch switch TS is pressed again at time t1 , the contact TSa opens the contacts CR1a, CR1c, and CR1d, and the contact CR1b closes, supplying voltage to the timer TDR and relay coil CR3, causing the contacts CR3a and CR3c is closed. By closing this contact CR3a, the feedback signal Vf is passed through the second feedback circuit 7b, and its output signal Vf2 is supplied to the comparator circuit 6, and the output signal Vr- Vf2 is supplied to the amplifier circuit AMP.
It is supplied to the output control circuit 4 through. When the feedback signal is Vf 1 > Vf 2 , the output voltage or output current of the welding device increases as shown in Figure 4C, and when Vf 1 < Vf 2 , the output of the welding device decreases as shown by the dotted line in the same figure. do. At time t3 after the delay time has elapsed, the contact TDRb is opened, thereby opening the contact CR3c and cutting off the output of the welding device. The output signal Vf 2 of the second feedback circuit 7b is set so that the output current of the welding device within the above-described delay time exceeds the critical current value Ic. In the embodiment shown in FIGS. 4A and 4B above, the adjustment of the reference signal circuit 5 and the second feedback circuit 7b
For example, by mechanically or electrically interlocking the adjustment of the reference signal to increase the output current value during welding.
When Vr is set to a large value, the second feedback signal Vf 2 is set to a large value, and the output signal Vr−Vf 2 of the comparator circuit 6 at the end of welding exceeds the critical current value Ic and greatly reduces the depression of the crater. Welding completion processing current value that does not cause
Ie may be energized. Furthermore, a crater filler control circuit may be provided by adding a second reference signal circuit and its control circuit to the above configuration.
In addition to the above first and second embodiments, an amplifier circuit
AMP amplification, output control circuit thyristor SCR
By controlling the constants of the ignition circuit, etc., it is possible to apply a welding current such that the welding completion processing current value Ie exceeds the critical current value Ic and the welding current does not increase the size of the crater depression.

以上のように本発明のMIGアーク溶接方法に
よれば、不活性ガスを主成分とするシールドガス
の特性を利用して溶接終了時にワイヤ先端の溶融
金属をスプレー移行させ、かつクレータのくぼみ
を大にしない程度の溶接電流を通電してワイヤ先
端に溶融球を発生させることなく、ワイヤ送給を
停止させることができ、また溶接終了時にスプレ
ー移行をさせているためにアーク長が大であるの
でステイツクが生じない。また、従来のように溶
接終了時にパルス電流を供給していないので、溶
接終了処理電流値の大きさおよびその継続時間を
適正値に設定することが容易であるために、クレ
ータのくぼみを小さくしかつバーンバツクを防止
することができ種々の問題を同時に解決すること
ができる。
As described above, according to the MIG arc welding method of the present invention, the properties of the shielding gas mainly composed of inert gas are used to spray the molten metal at the tip of the wire at the end of welding, and to greatly reduce the depression of the crater. It is possible to stop the wire feeding without generating a molten ball at the tip of the wire by applying a welding current that does not exceed Stakes do not occur. In addition, since a pulse current is not supplied at the end of welding as in conventional methods, it is easy to set the magnitude of the welding end processing current value and its duration to an appropriate value, making the crater depression smaller. Moreover, burnback can be prevented and various problems can be solved at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A乃至Dは本発明のMIG溶接方法の実
施例を示す図、第2図A乃至Cは第1図Dに示す
本発明の溶接方法を実施した場合のワイヤ送給装
置の電動機の逆起電力、溶接電圧および溶接電流
の時間的経過を示す図、第3図A乃至Cはそれぞ
れ本発明の溶接方法を実施する装置の第1の実施
例の構成図、シーケンス回路図およびシーケンス
の説明図、第4図A乃至Cはそれぞれ第2の実施
例の構成図、シーケンス回路図およびシーケンス
の説明図である。 2…消耗性溶接電極、3…被溶接物、M…ワイ
ヤ送給装置、Ic…スプレー移行臨界溶接電流。
1A to 1D are diagrams showing an embodiment of the MIG welding method of the present invention, and FIGS. 2A to 2C are diagrams showing the electric motor of the wire feeding device when the welding method of the present invention shown in FIG. 1D is implemented. Figures 3A to 3C are diagrams showing the time course of back electromotive force, welding voltage, and welding current, and Figures 3A to 3C are a block diagram, a sequence circuit diagram, and a sequence diagram of a first embodiment of an apparatus for carrying out the welding method of the present invention, respectively. The explanatory diagram and FIGS. 4A to 4C are a configuration diagram, a sequence circuit diagram, and a sequence explanatory diagram of the second embodiment, respectively. 2...Consumable welding electrode, 3...Work to be welded, M...Wire feeding device, Ic...Spray transfer critical welding current.

Claims (1)

【特許請求の範囲】[Claims] 1 不活性ガスを主成分とするシールドガス中
で、消耗性溶接ワイヤと被溶接物との間でアーク
を発生させて、前記ワイヤ先端から溶滴を移行さ
せて溶接するMIGアーク溶接方法において、溶
接終了に際し、前記ワイヤ送給装置への電力の供
給が遮断される前の時点から遮断後であつて溶接
電流Idが漸減する途中の時点までのいずれかの間
に、前記ワイヤ先端から離脱する溶滴のスプレー
移行が可能であつて、かつクレータのくぼみを大
きくしない予め設定した溶接終了処理電流Ieを通
電して、前記ワイヤ送給装置が略停止した時点で
前記溶接終了処理電流を遮断するMIGアーク溶
接方法。
1 In a MIG arc welding method in which an arc is generated between a consumable welding wire and a workpiece in a shielding gas containing an inert gas as a main component, and welding is performed by transferring droplets from the tip of the wire, Upon completion of welding, the wire is detached from the tip of the wire sometime between before the power supply to the wire feeding device is cut off and after the power supply is cut off and the welding current Id is gradually decreasing. Applying a preset welding completion processing current Ie that allows spray transfer of droplets and not enlarging the crater depression, and cutting off the welding completion processing current when the wire feeding device almost stops. MIG arc welding method.
JP492080A 1980-01-19 1980-01-19 Welding method of mig arc Granted JPS56102380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP492080A JPS56102380A (en) 1980-01-19 1980-01-19 Welding method of mig arc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP492080A JPS56102380A (en) 1980-01-19 1980-01-19 Welding method of mig arc

Publications (2)

Publication Number Publication Date
JPS56102380A JPS56102380A (en) 1981-08-15
JPH0160355B2 true JPH0160355B2 (en) 1989-12-22

Family

ID=11597045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP492080A Granted JPS56102380A (en) 1980-01-19 1980-01-19 Welding method of mig arc

Country Status (1)

Country Link
JP (1) JPS56102380A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068171A (en) * 1983-09-21 1985-04-18 Matsushita Electric Ind Co Ltd Automatic arc welding machine
SE511463C2 (en) 1997-03-03 1999-10-04 Esab Ab Method of arc welding with melting electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148139A (en) * 1974-10-24 1976-04-24 Fuji Electric Co Ltd
JPS53119761A (en) * 1977-03-30 1978-10-19 Hitachi Seiko Kk Method of controlling welding machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148139A (en) * 1974-10-24 1976-04-24 Fuji Electric Co Ltd
JPS53119761A (en) * 1977-03-30 1978-10-19 Hitachi Seiko Kk Method of controlling welding machine

Also Published As

Publication number Publication date
JPS56102380A (en) 1981-08-15

Similar Documents

Publication Publication Date Title
EP2464489B1 (en) A method and apparatus for gmaw short circuit high deposition arc welding
US7304269B2 (en) Pulse welder and method of using same
US8203099B2 (en) Method and device to build-up, clad, or hard-face with minimal admixture
EP1509357B1 (en) Control method and system for metal arc welding
EP2010353B1 (en) Metal cored electrode for open root pass welding
JP6945290B2 (en) Welding system for AC welding with reduced spatter
US2868956A (en) Multi-arc welding
US2776361A (en) Sigma spot or tack welding
US4618760A (en) Shielded arc welding using auxiliary voltage
KR102493386B1 (en) A method for controlling a welding process with a consumable electrode and a welding device having a controller of this type
EP0949035B1 (en) Control method of welding arc length
JP2001246470A (en) Method of high-speed carbon di-oxide gas shielded welding
JP2016159316A (en) Arc welding method, arc welding device and control device for arc welding
JPH0160355B2 (en)
Chen et al. Laser-enhanced short-circuiting metal transfer in GMAW
US6013896A (en) Method of gas metal arc welding
JP3762476B2 (en) Pulse arc welding end method and welding apparatus
JPS60255276A (en) Consumable electrode type arc welding method
CN102218589A (en) Sacrificial electrode type arc welding method
JPS6255472B2 (en)
JP2002361414A (en) Method for completing consumable two-electrode arc welding, method for controlling completion of welding, and welding robot
EP3388180B1 (en) Welding system and method with short circuit welding using self-shielded electrode
US20220134462A1 (en) Systems and methods to mitigate fusion between a wire electrode and a welding torch
JPH0249828B2 (en)
CN116100121A (en) Welding or additive manufacturing systems employing discontinuous electrode feed