JPH0159961B2 - - Google Patents

Info

Publication number
JPH0159961B2
JPH0159961B2 JP58049708A JP4970883A JPH0159961B2 JP H0159961 B2 JPH0159961 B2 JP H0159961B2 JP 58049708 A JP58049708 A JP 58049708A JP 4970883 A JP4970883 A JP 4970883A JP H0159961 B2 JPH0159961 B2 JP H0159961B2
Authority
JP
Japan
Prior art keywords
reaction
chlorine
solution
sodium hypochlorite
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58049708A
Other languages
Japanese (ja)
Other versions
JPS59182204A (en
Inventor
Shinji Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4970883A priority Critical patent/JPS59182204A/en
Publication of JPS59182204A publication Critical patent/JPS59182204A/en
Publication of JPH0159961B2 publication Critical patent/JPH0159961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、水酸化ナトリウムを含む水溶液と、
塩素とを気一液接触により反応せしめ次亜塩素酸
ナトリウム水溶液を製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an aqueous solution containing sodium hydroxide;
The present invention relates to a method for producing an aqueous sodium hypochlorite solution by reacting with chlorine through gas-liquid contact.

詳しくは、次亜塩素酸ナトリウムの製造に用い
られている、通常の反応槽を用いて高濃度の次亜
塩素酸ナトリウム水溶液を容易に、効率よく製造
することを主な目的とする。
Specifically, the main objective is to easily and efficiently produce a highly concentrated aqueous solution of sodium hypochlorite using a normal reaction tank used in the production of sodium hypochlorite.

水酸化ナトリウムと塩素を反応させると、次式
に従い、2NaOH+Cl2→NaClO+NaCl+H2O次
亜塩素酸ナトリウムと塩化ナトリウムが当量づつ
生成するが、次亜塩素酸ナトリウムの分解を抑制
する為に若干の未反応水酸化ナトリウムを溶存さ
せる必要があり、通常の次亜塩素酸ナトリウムの
水溶液は次亜塩素酸ナトリウム、塩化ナトリウ
ム、水酸化ナトリウムを主成分とし、これらの成
分の水に対する溶解度によつて組成が決定され
る。即ち、原料の水酸化ナトリウム水溶液濃度に
よつて、生成される次亜塩素酸ナトリウムの濃度
及びその水溶液組成はほぼ決まる。しかし、これ
ら三者が液相で共存し得る領域を越えると、溶解
度の一番小さい塩化ナトリウムの結晶が析出す
る。
When sodium hydroxide and chlorine are reacted, equivalent amounts of sodium hypochlorite and sodium chloride are produced according to the following formula: 2NaOH + Cl 2 →NaClO + NaCl + H 2 O. However, in order to suppress the decomposition of sodium hypochlorite, some unused amount is generated. It is necessary to dissolve the reactive sodium hydroxide, and a normal aqueous solution of sodium hypochlorite has sodium hypochlorite, sodium chloride, and sodium hydroxide as its main components, and the composition varies depending on the solubility of these components in water. It is determined. That is, the concentration of sodium hypochlorite produced and the composition of the aqueous solution are approximately determined by the concentration of the sodium hydroxide aqueous solution of the raw material. However, beyond the range where these three can coexist in the liquid phase, crystals of sodium chloride, which has the lowest solubility, precipitate.

これを具体的に説明すると、20%の水酸化ナト
リウム水溶液に塩素を導入して、次亜塩素酸ナト
リウムを製造する場合には、未反応水酸化ナトリ
ウムを2〜3%残存させる程度で反応を止めれ
ば、次亜塩素酸ナトリウムは、約16%、塩化ナト
リウム約13%の次亜塩素酸ナトリウム水溶液が生
成する。この組成では常温下で溶解の領域内にあ
り、均一な反応マスが得られる。しかし、原料の
水酸化ナトリウムの濃度が25%以上になると、常
温で塩化ナトリウムの結晶が析出し、反応マスが
スラリー状となる。
To explain this specifically, when producing sodium hypochlorite by introducing chlorine into a 20% aqueous sodium hydroxide solution, the reaction is carried out to the extent that 2 to 3% of unreacted sodium hydroxide remains. If stopped, a sodium hypochlorite aqueous solution containing approximately 16% sodium hypochlorite and approximately 13% sodium chloride will be produced. This composition is within the melting range at room temperature, and a uniform reaction mass can be obtained. However, when the concentration of the raw material sodium hydroxide exceeds 25%, sodium chloride crystals precipitate at room temperature, and the reaction mass becomes a slurry.

例えば高濃度次亜塩素酸ナトリウムを得るた
め、30%の水酸化ナトリウム水溶液に塩素を導入
した場合、未反応水酸化ナトリウムを2〜3%残
存させたところで反応を止めると、次亜塩素酸ナ
トリウムは約25%、塩化ナトリウム約20%とな
り、これは常温下の溶解の領域外で、塩化ナトリ
ウムは一部析出し、反応液中の塩化ナトリウム濃
度は約7%になる。
For example, when introducing chlorine into a 30% sodium hydroxide aqueous solution to obtain high concentration sodium hypochlorite, if the reaction is stopped when 2 to 3% of unreacted sodium hydroxide remains, the sodium hypochlorite is about 25%, and sodium chloride is about 20%, which is outside the range of dissolution at room temperature, so some of the sodium chloride precipitates, and the sodium chloride concentration in the reaction solution becomes about 7%.

この様に、高濃度の次亜塩素酸ナトリウムを製
造する場合には、反応中に塩化ナトリウムの結晶
析出は避けることが出来ず、反応終了後は過分
離の操作が必要になるとともに、反応マス中に導
入した塩素吹き込み管に塩化ナトリウムの結晶が
析出し、導入管の閉塞を生じる。この為反応を中
断し、管の洗浄等、繁雑な作業が必要となる他、
閉塞傾向になると塩素の導入が局部的に反応液と
接触する原因となつたり、また反応中断による反
応時間の延長は生成した次亜塩素酸ナトリウムの
分解や塩素酸塩の副生を促進する結果、収率の低
下をもたらす。更に析出する塩化ナトリウムの結
晶粒度にも悪影響を及ぼし、反応終了後の過分
離操作が悪くなり、過の目的生成物の収率に影
響を与える。
In this way, when producing high-concentration sodium hypochlorite, precipitation of sodium chloride crystals during the reaction cannot be avoided, and over-separation is required after the reaction is completed. Sodium chloride crystals precipitate in the chlorine injection pipe introduced into the system, causing blockage of the introduction pipe. This requires cumbersome work such as interrupting the reaction and cleaning the tubes.
If there is a tendency for blockage, the introduction of chlorine may cause local contact with the reaction solution, and prolongation of the reaction time due to interruption of the reaction may result in the decomposition of the sodium hypochlorite produced and the by-product of chlorate. , resulting in a decrease in yield. Furthermore, the crystal grain size of the precipitated sodium chloride is also adversely affected, and the over-separation operation after the reaction is completed becomes difficult, thereby affecting the yield of the desired product.

以上の如く、高濃度の次亜塩素酸ナトリウム水
溶液を製造する場合には、塩素導入方法に工夫を
こらす必要がある。この方法として、一般的には
水による塩化ナトリウムの溶解、機械的な方法に
より付着した塩化ナトリウムの除去等の他、反応
液の流動方向に沿つて開口する二重の塩素導入管
を設けて反応液を高速循環させながら反応させる
方法(特開昭56−114807)、二重管式のサイクロ
ン型反応器により、塩素含有ガスを内管より供給
し、新たな水酸化ナトリウム水溶液を含む循環反
応液を外管に接線方向から供給し、サイクロン下
部で両者を、接触反応させつつ下方に流出させる
方法(特開昭58−20703)等が提案されている。
これ等は、かなり繁雑な方法であるばかりでな
く、付着を完全に防止することは出来ず、また設
備費や、動力費のコスト高となるだけでなく、操
作上も厄介である。
As described above, when producing a highly concentrated sodium hypochlorite aqueous solution, it is necessary to devise a chlorine introduction method. In general, this method involves dissolving sodium chloride with water, removing attached sodium chloride using mechanical methods, and installing a double chlorine introduction pipe that opens along the flow direction of the reaction solution. A method of reacting while circulating the liquid at high speed (Japanese Patent Application Laid-open No. 56-114807), in which a chlorine-containing gas is supplied from the inner tube using a double-tube cyclone reactor, and a circulating reaction liquid containing a fresh sodium hydroxide aqueous solution is generated. A method has been proposed (Japanese Unexamined Patent Publication No. 58-20703) in which the liquid is supplied to the outer tube from a tangential direction, and the two are brought into contact and reacted at the bottom of the cyclone while flowing downward.
These methods are not only quite complicated, but also cannot completely prevent adhesion, and are not only expensive in terms of equipment and power costs, but also troublesome to operate.

例えば前記特開昭56−114807では、反応器の上
部に二重の反応管を設け、循環ポンプにより内管
外側を流れる循環反応液の流速と、内管より導入
される塩素ガスとの流速を調節することにより塩
素導入管先端部を液圧状態の空間部をつくり、塩
化ナトリウムの結晶付着を防止しながら実施され
ているが、反応液流速と塩素ガス流速の制御に問
題がある。
For example, in JP-A-56-114807, a double reaction tube is installed in the upper part of the reactor, and a circulation pump controls the flow rate of the circulating reaction liquid flowing outside the inner tube and the flow rate of chlorine gas introduced from the inner tube. By adjusting this method, a space is created at the tip of the chlorine introduction tube under a hydraulic pressure state, and the process is carried out while preventing the adhesion of sodium chloride crystals, but there is a problem in controlling the flow rate of the reaction solution and the flow rate of the chlorine gas.

本発明者は、これらの点を改善すべく鋭意研究
の結果、塩化ナトリウムの結晶の付着、閉塞が全
くなく、しかも通常使用されている反応槽を用い
た簡便な方法を見い出し本発明を完成させた。
As a result of intensive research to improve these points, the present inventor discovered a simple method that does not cause any adhesion or blockage of sodium chloride crystals and uses a commonly used reaction tank, and completed the present invention. Ta.

即ち、本発明方法は、水酸化ナトリウム水溶液
と塩素を反応させて高濃度次亜塩素酸ナトリウム
水溶液を製造するに際して、反応槽の反応液の最
終液面より上に塩素導入管の開口位置を設けて、
反応槽の液面上に塩素を供給し、反応液を充分撹
拌しながら、25〜42重量%の水酸化ナトリウム水
溶液と塩素を反応させることを特徴とする高濃度
次亜塩素酸ナトリウム水溶液の製造方法であり、
これにより、管のつまりが無くなり、塩素の流量
も変動なく所定時間流すことが可能となつた。こ
の為、反応がスムーズに進行するとともに、析出
する塩化ナトリウムの結晶性も良くなり、いわゆ
る液切れも向上した。その結果液中の次亜塩素
酸ナトリウムの収率も6〜7%改善されるもので
ある。
That is, in the method of the present invention, when producing a high concentration sodium hypochlorite aqueous solution by reacting an aqueous sodium hydroxide solution with chlorine, the opening position of the chlorine introduction pipe is provided above the final liquid level of the reaction solution in the reaction tank. hand,
Production of a highly concentrated sodium hypochlorite aqueous solution characterized by supplying chlorine above the liquid surface of a reaction tank and reacting 25 to 42% by weight aqueous sodium hydroxide with chlorine while sufficiently stirring the reaction liquid. is a method,
This eliminated clogging of the pipes and made it possible to flow chlorine for a predetermined period of time without fluctuations in the flow rate. For this reason, the reaction proceeded smoothly, and the crystallinity of the precipitated sodium chloride also improved, resulting in improved so-called liquid drainage. As a result, the yield of sodium hypochlorite in the liquid is also improved by 6 to 7%.

本発明は、気一液接触反応であるので、反応中
は撹拌は必要条件である。撹拌が少ないと、反応
液が局部的に、塩素と接触する時間が長くなる為
に、生成した次亜塩素酸ナトリウムの分解反応が
促進される結果、塩素酸ナトリウムが副生する等
好ましくなく、ある程度以上の撹拌が必要であ
る。しかし、この反応は迅速に行なわれるので、
激しい撹拌は必要としない。具体的には10m3の反
応槽で60rpm程度であり、これは通常の反応の撹
拌と大差ない。撹拌速度が早い分には、反応自身
に悪影響はないが、あまり早いと反応液の飛沫が
反応槽の上部に付着する他余分の動力コストを要
することになりなんらメリツトはない。撹拌速度
は反応液量や、撹拌翼の形状などの設計にもとず
き適宜最適条件を設定すればよい。
Since the present invention is a gas-liquid contact reaction, stirring is a necessary condition during the reaction. If the stirring is insufficient, the reaction liquid will be in contact with chlorine locally for a long time, which will accelerate the decomposition reaction of the generated sodium hypochlorite, resulting in undesirable side production of sodium chlorate. A certain level of stirring is required. However, this reaction occurs quickly, so
Vigorous stirring is not required. Specifically, the stirring speed is about 60 rpm in a 10 m 3 reaction tank, which is not much different from normal reaction stirring. As long as the stirring speed is fast, there will be no adverse effect on the reaction itself, but if the stirring speed is too fast, droplets of the reaction liquid will adhere to the upper part of the reaction tank, and extra power costs will be required, so there is no advantage. The optimum stirring speed may be set as appropriate based on the design of the reaction liquid volume, the shape of the stirring blade, etc.

本発明の方法に用いる水酸化ナトリウム水溶液
の濃度は、25〜42重量%の水酸化ナトリウム水溶
液が好ましい。25重量%以下では高濃度の次亜塩
素酸ナトリウム水溶液が得られない、さらに反応
液が均一な溶液となる為、本発明の方法を適用す
る必要がない。また、水酸化ナトリウム水溶液の
濃度が42重量%を越えると、反応生成物として析
出するNaClの量が多量になり、撹拌が困難とな
る。あるいは、反応終了後、反応液を静置しても
沈降速度が遅い微細な濾過性の悪いNaCl結晶と
なり、析出したNaClを濾過分離する為に、多大
の時間を要する。さらに濾過の際、液ぎれが悪
く、NaCl結晶濾滓中に次亜塩素酸ナトリウム水
溶液が残り収率が低下する等の問題があり好まし
くない。
The concentration of the sodium hydroxide aqueous solution used in the method of the present invention is preferably 25 to 42% by weight. If it is less than 25% by weight, a highly concentrated aqueous sodium hypochlorite solution cannot be obtained, and the reaction solution becomes a homogeneous solution, so there is no need to apply the method of the present invention. Furthermore, if the concentration of the aqueous sodium hydroxide solution exceeds 42% by weight, a large amount of NaCl will precipitate as a reaction product, making stirring difficult. Alternatively, even if the reaction solution is allowed to stand after the reaction is completed, it becomes fine NaCl crystals with a slow sedimentation rate and poor filterability, and it takes a long time to filter and separate the precipitated NaCl. Furthermore, during filtration, there are problems such as poor liquid drainage and a sodium hypochlorite aqueous solution remaining in the NaCl crystal filtrate, resulting in a decrease in yield, which is undesirable.

塩素導入管の形状については特に限定する必要
はなく、また開穴口も、反応液面へ垂直、直角方
向いずれでも構わない。液面から導入管までの距
離も特に限定するものでないが、あまり接近して
いると、反応液の飛沫が付着するので約1cm以上
離した方が好ましい。前述の如く、本反応は迅速
であり液面より上の吹込みであつても、未反応塩
素はほとんど系外へ逃散することはない。
There is no particular limitation on the shape of the chlorine introduction tube, and the opening may be perpendicular or perpendicular to the reaction liquid surface. The distance from the liquid surface to the introduction tube is not particularly limited either, but if they are too close, droplets of reaction liquid will adhere, so it is preferable to keep the distance at least about 1 cm. As mentioned above, this reaction is rapid, and even if the chlorine is blown above the liquid level, almost no unreacted chlorine escapes out of the system.

本発明によれば、塩素導入管の閉塞は全く起こ
らず、長時間にわたり塩素化反応を円滑に、しか
も容易に行なうことが出来るため、特に、原料の
水酸化ナトリウムを高濃度水溶液として用い、高
濃度次亜塩素酸ナトリウムを製造するのに効果的
である。また設備の省力化、作業の労務軽減にも
役立つものである。
According to the present invention, there is no clogging of the chlorine introduction pipe, and the chlorination reaction can be carried out smoothly and easily over a long period of time. Effective for producing concentrated sodium hypochlorite. It is also useful for saving equipment and reducing labor.

以下に本発明の実施例および比較例を挙げて、
具体的に説明するが、もちろん、これにより本発
明は何ら限定されるものではない。なお%は重量
%を示す。
Examples and comparative examples of the present invention are listed below.
Although a specific explanation will be given, the present invention is of course not limited to this in any way. Note that % indicates weight %.

実施例 1 直径105mm、高さ110mmのセパラブルの4つ口フ
ラスコに、直径60mmの半円形の撹拌翼を持つた撹
拌棒、温度計、直径8mmの塩素導入管(開穴口を
液面と直角に、反応終了時の液面上1cmに設置。)
と、廃ガスの排気管(排気管は15%の水酸化ナト
リウムの吸引槽に導いた。)を設置して反応装置
として用いた。
Example 1 A separable four-necked flask with a diameter of 105 mm and a height of 110 mm was equipped with a stirring bar with a semicircular stirring blade of 60 mm in diameter, a thermometer, and a chlorine introduction tube with a diameter of 8 mm (with the hole opening perpendicular to the liquid level). , installed 1 cm above the liquid surface at the end of the reaction.)
A waste gas exhaust pipe (the exhaust pipe led to a 15% sodium hydroxide suction tank) was installed and used as a reactor.

40%の水酸化ナトリウム700gを仕込んだ後、
塩素を57g/hrで4.1hrs導入した。この間反応マ
スは30℃に維持し、撹拌は500rpmであつた。こ
の間、塩素導入管内に塩化ナトリウムの結晶付着
は見られず、反応はスムーズに完結した。また排
ガス吸収槽の増加も認められなかつた。生成した
塩化ナトリウムの結晶分を過した後、次亜塩素
酸ナトリウム濃度29.5%の液715gを得た。対
塩素収率は86%であつた。
After adding 700g of 40% sodium hydroxide,
Chlorine was introduced at 57g/hr for 4.1hrs. During this time, the reaction mass was maintained at 30° C. and stirring was at 500 rpm. During this time, no sodium chloride crystals were observed in the chlorine introduction tube, and the reaction was completed smoothly. Also, no increase in the number of exhaust gas absorption tanks was observed. After filtering out the formed sodium chloride crystals, 715 g of a solution with a sodium hypochlorite concentration of 29.5% was obtained. The yield based on chlorine was 86%.

実施例 2 反応マスの温度を20℃に替えた以外は実施例1
と同様に行なつた。
Example 2 Example 1 except that the temperature of the reaction mass was changed to 20°C
I did the same thing.

得られた液は次亜塩素酸ナトリウム濃度30.5
%で710gであつた。対塩素収率は88%であつた。
The obtained liquid has a sodium hypochlorite concentration of 30.5
It was 710g in percent. The yield based on chlorine was 88%.

実施例 3 原料の水酸化ナトリウムの濃度を35%に替える
とともに塩素導入速度を50g/hrにした以外は、
実施例1と同様に行なつた。
Example 3 Except for changing the concentration of sodium hydroxide as a raw material to 35% and changing the chlorine introduction rate to 50 g/hr.
The same procedure as in Example 1 was carried out.

29%の次亜塩素酸ナトリウム700gの液が得
られた。対塩素収率は94%であつた。
A solution of 700 g of 29% sodium hypochlorite was obtained. The yield based on chlorine was 94%.

実施例 4 原料の水酸化ナトリウムの濃度を42%に替える
以外は、実施例1と同様に行つた。
Example 4 The same procedure as in Example 1 was carried out except that the concentration of sodium hydroxide as a raw material was changed to 42%.

29.9%の次亜塩素酸ナトリウム720gの濾液が
得られた。対塩素収率は87.8%であつた。
A filtrate of 720 g of 29.9% sodium hypochlorite was obtained. The yield based on chlorine was 87.8%.

比較例 1 実施例1と同様に行つたが、ただし塩素導入管
を原料の水酸化ナトリウム液中に浸漬させて、行
なつた。反応中、塩素導入管がしばしば塩化ナト
リウムの結晶で閉塞するので10〜20minごとに付
着した結晶を取り除きつつ、反応を行なつた。反
応開始から終了までに8時間を要した。
Comparative Example 1 The same procedure as in Example 1 was carried out, except that the chlorine inlet tube was immersed in the sodium hydroxide solution as the raw material. During the reaction, the chlorine introduction tube was often clogged with sodium chloride crystals, so the reaction was carried out while removing the attached crystals every 10 to 20 minutes. It took 8 hours from the start to the end of the reaction.

29%の次亜塩素酸ナトリウム680gの液を得
た。対塩素収率は80%であつた。
A liquid containing 680 g of 29% sodium hypochlorite was obtained. The yield based on chlorine was 80%.

比較例 2 実施例3と同様であるが、塩素導入管を原料の
水酸化ナトリウム液中に浸漬させて行なつた。反
応中塩素導入管がしばしば、塩化ナトリウムの結
晶で閉塞するので、10〜20minごとに付着した結
晶を取り除きつつ反応を行なつた。反応開始から
終了までに8時間を要した。
Comparative Example 2 This was carried out in the same manner as in Example 3, except that the chlorine inlet tube was immersed in the raw material sodium hydroxide solution. During the reaction, the chlorine introduction tube was often clogged with sodium chloride crystals, so the reaction was carried out while removing the attached crystals every 10 to 20 minutes. It took 8 hours from the start to the end of the reaction.

28%の次亜塩素酸ナトリウム670gの液を得
た。対塩素収率は87%であつた。
A liquid containing 670 g of 28% sodium hypochlorite was obtained. The yield based on chlorine was 87%.

比較例 3 撹拌の回転数を実施例1の500rpmに替えて
300rpmに低減して実施した以外は、実施例1と
全く同じ方法で行つた。結果は29%の次亜塩素酸
ナトリウム670gの液が得られ、対塩素収率は
79%であつた。また撹拌速度300、400、500rpm
で実施した場合の、対次亜塩素酸ナトリウム収率
との関係は図1に示すとおりであり、300rpmで
は撹拌が不充分であることがわかる。
Comparative example 3 The rotation speed of stirring was changed to 500 rpm as in Example 1.
The same method as in Example 1 was carried out except that the speed was reduced to 300 rpm. As a result, 670g of 29% sodium hypochlorite solution was obtained, and the yield relative to chlorine was
It was 79%. Also stirring speed 300, 400, 500rpm
The relationship between the yield and the sodium hypochlorite yield when carried out at 300 rpm is as shown in FIG. 1, and it can be seen that stirring is insufficient at 300 rpm.

比較例 4 原料の水酸化ナトリウムの濃度を45%に替える
とともに塩素の導入速度を60g/hrにした以外は
実施例1と同様に行つた。
Comparative Example 4 The same procedure as in Example 1 was carried out except that the concentration of sodium hydroxide as a raw material was changed to 45% and the chlorine introduction rate was changed to 60 g/hr.

反応終了後、静置したがNaClの沈降が遅く、
さらに濾過分離に時間を要した。生成した塩化ナ
トリウムの結晶分を濾過した後、次亜塩素酸ナト
リウム濃度30.5%の濾液600gを得た。対塩素収
率は71%であつた。
After the reaction was completed, it was allowed to stand still, but the precipitation of NaCl was slow.
Furthermore, time was required for filtration and separation. After filtering the produced sodium chloride crystals, 600 g of a filtrate with a sodium hypochlorite concentration of 30.5% was obtained. The yield based on chlorine was 71%.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は本発明実施例1を行つた場合の反応液
の撹拌速度と、導入した塩素に対する液中の次
亜塩素酸ナトリウムの収率との関係を示したもの
である。
Figure 1 shows the relationship between the stirring speed of the reaction solution and the yield of sodium hypochlorite in the solution with respect to the introduced chlorine when carrying out Example 1 of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 水酸化ナトリウム水溶液と塩素を反応させて
高濃度次亜塩素酸ナトリウム水溶液を製造するに
際して、反応槽の反応液の最終液面より上に塩素
導入管の開口位置を設けて、反応槽の液面上に塩
素を供給し、反応液を充分撹拌しながら25〜42重
量%の水酸化ナトリウム水溶液と塩素を反応させ
ることを特徴とする高濃度次亜塩素酸ナトリウム
水溶液の製造方法。
1. When producing a high-concentration sodium hypochlorite aqueous solution by reacting a sodium hydroxide aqueous solution with chlorine, the opening position of the chlorine introduction pipe is set above the final liquid level of the reaction liquid in the reaction tank, and the liquid in the reaction tank is A method for producing a highly concentrated aqueous sodium hypochlorite solution, which comprises supplying chlorine onto the surface and reacting the chlorine with a 25 to 42% by weight aqueous sodium hydroxide solution while sufficiently stirring the reaction solution.
JP4970883A 1983-03-26 1983-03-26 Production of aqueous solution of sodium hypochlorite Granted JPS59182204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4970883A JPS59182204A (en) 1983-03-26 1983-03-26 Production of aqueous solution of sodium hypochlorite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4970883A JPS59182204A (en) 1983-03-26 1983-03-26 Production of aqueous solution of sodium hypochlorite

Publications (2)

Publication Number Publication Date
JPS59182204A JPS59182204A (en) 1984-10-17
JPH0159961B2 true JPH0159961B2 (en) 1989-12-20

Family

ID=12838685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4970883A Granted JPS59182204A (en) 1983-03-26 1983-03-26 Production of aqueous solution of sodium hypochlorite

Country Status (1)

Country Link
JP (1) JPS59182204A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241713B (en) * 2013-05-15 2015-01-14 乳源东阳光电化厂 Preparation method of sodium hypochlorite
JP6190718B2 (en) 2013-12-26 2017-08-30 昭和電工株式会社 Method for producing sodium hypochlorite aqueous solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328382A (en) * 1976-07-27 1978-03-16 Mitsubishi Electric Corp Production method of semiconductor devi ce

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328382A (en) * 1976-07-27 1978-03-16 Mitsubishi Electric Corp Production method of semiconductor devi ce

Also Published As

Publication number Publication date
JPS59182204A (en) 1984-10-17

Similar Documents

Publication Publication Date Title
US3975503A (en) Method for producing alkali carbonate
TWI635043B (en) Production process of aqueous sodium hypochlorite solution
JP4828180B2 (en) Method for producing nitrogen trifluoride
JP2000290003A (en) Production of sodium hypochlorite 5-hydrate
JPH0159961B2 (en)
JP2557578B2 (en) Method for recovering liquid phase oxidation catalyst for paraxylene
EP1773715B1 (en) Manufacture of high-strength, low-salt hypochlorite bleach
JPH11255503A (en) Production of aqueous solution of sodium hypochlorite having low common salt content
US4647697A (en) Process for producing azine compounds
US3225026A (en) Method of producing azobisformamides
GB2034294A (en) Process for Producing Sodium Bicarbonate
US20100084605A1 (en) Process to prepare concentrated alkali metal hypo-chlorite
JP5776666B2 (en) Method and apparatus for producing sodium hypochlorite aqueous solution
JP2009132583A (en) Method for producing sodium hypochlorite and method for storing the same
SE438503B (en) PROCEDURE FOR THE PREPARATION OF CHLORIDE Dioxide BY REDUCING A CHLORATE
JPS591201B2 (en) Method for producing high concentration sodium hypochlorite aqueous solution
JP3559789B2 (en) Calcium fluoride recovery method
JP2004203713A (en) Method and apparatus for manufacturing high purity aluminum chloride
JP3394980B2 (en) Method for producing free hydroxylamine aqueous solution
JP2917498B2 (en) Process for producing 1,3-phenylenedioxydiacetic acid
JP2504731B2 (en) Method for producing concentrated solution of alkali metal hypochlorite
JPS59102806A (en) Production of aqueous solution of sodium hypochlorite having high concentration
US3462241A (en) Direct production of solid calcium bromite
JPH0234881B2 (en)
JPS586681B2 (en) Method for producing sodium hypochlorite pentahydrate