JPH0159819B2 - - Google Patents
Info
- Publication number
- JPH0159819B2 JPH0159819B2 JP7455782A JP7455782A JPH0159819B2 JP H0159819 B2 JPH0159819 B2 JP H0159819B2 JP 7455782 A JP7455782 A JP 7455782A JP 7455782 A JP7455782 A JP 7455782A JP H0159819 B2 JPH0159819 B2 JP H0159819B2
- Authority
- JP
- Japan
- Prior art keywords
- contact
- relay unit
- feeder
- circuit
- alarm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 19
- 230000007257 malfunction Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Emergency Protection Circuit Devices (AREA)
Description
【発明の詳細な説明】
本発明は、非接地式高圧配電系統の地絡事故を
検出する装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting a ground fault in an ungrounded high voltage distribution system.
非接地式高圧配電線には、対地静電容量がある
ため、いずれかの1フイーダに発生した地絡事故
であつても、他のフイーダに取り付けた零相変流
器にも零相電流が流れる。この電流は交流である
ので、零相変流器より負荷側にある事故、すなわ
ち自己のフイーダに発生したものか、零相変流器
より電源側の事故、すなわち他のフイーダに発生
したものか単独では判別し得ない。 Ungrounded high-voltage distribution lines have ground capacitance, so even if a ground fault occurs in any one feeder, zero-sequence current will also flow to the zero-sequence current transformers installed on other feeders. flows. Since this current is alternating current, either the fault occurs on the load side of the zero-phase current transformer, that is, the own feeder, or the fault occurs on the power supply side of the zero-phase current transformer, that is, it occurs on another feeder. It cannot be determined by itself.
このため、現状は、第1図の現行配電用変電所
の地絡保護方式の概要に示すようにバンクに1個
所接地変圧器1を設置するとともに、各フイーダ
2……ごとに設置されたしや断器3……の近くに
零相変流器4……を設置し、接地変圧器1が検出
した零相電圧と、各零相変流器4……が検出した
零相電流を、各フイーダ2……ごとに取り付けた
地絡方向継電器5……に入力するようにし、地絡
事故が発生すると、あらかじめ整定された零相電
流および零相電圧のしきい値ならびに零相電流と
零相電圧の位相の比較のアンド条件によつて事故
発生フイーダ2を判別している。 For this reason, at present, as shown in the outline of the ground fault protection system for current distribution substations in Figure 1, one grounding transformer 1 is installed in each bank, and one is installed at each feeder 2... A zero-phase current transformer 4... is installed near the disconnector 3..., and the zero-phase voltage detected by the grounding transformer 1 and the zero-phase current detected by each zero-phase current transformer 4... are The input is made to the ground fault direction relay 5 installed at each feeder 2, and when a ground fault occurs, the preset zero-sequence current and zero-sequence voltage threshold, The feeder 2 where the accident occurred is determined based on the AND condition of comparing the phases of the phase voltages.
近年都市化がすゝむにつれて高圧配電線に高圧
ケーブルが多く使用されるようになり、配電線と
大地間の静電容量も次第に増加しつつある。 As urbanization progresses in recent years, high-voltage cables are increasingly used in high-voltage power distribution lines, and the capacitance between power distribution lines and the ground is gradually increasing.
そのため、高圧配電線に地絡事故が発生した場
合に、同一地絡事故に対して発生する零相電圧の
値が小さくなり、検出しうる地絡事故インピーダ
ンスの下限値が高くなり、地絡方向継電器の感度
を鈍くする方向に働き、低抵抗の事故、すなわち
地絡電流の大きい事故、したがつて被害の比較的
大きくなるような事故しか検出しえなくなるとい
う問題点が発生している。 Therefore, when a ground fault occurs in a high-voltage distribution line, the value of the zero-sequence voltage that occurs for the same ground fault becomes smaller, the lower limit of the ground fault impedance that can be detected becomes higher, and the direction of the ground fault increases. A problem has arisen in that this works to reduce the sensitivity of the relay, making it only possible to detect low-resistance faults, that is, faults with large ground fault currents, and therefore faults that cause relatively large damage.
そこで、実開昭54−74230号公報記載の考案な
どの如く、地絡事故が発生した場合、事故電流の
方向は、事故発生フイーダでは負荷側に向けて、
他のフイーダでは電源側に向けて流れるというよ
うに電流位相がπ〔rad〕異なることを利用し、
その電流位相の比較によつて事故発生フイーダを
検出するようにすれば、一応解決される。 Therefore, when a ground fault occurs, as in the device described in Japanese Utility Model Application Publication No. 54-74230, the direction of the fault current is directed toward the load side at the feeder where the fault occurred.
In other feeders, the current phase is different by π (rad), so that it flows toward the power source.
The problem can be solved by detecting the feeder where the accident occurred by comparing the current phases.
しかしながら、上記位相比較のみによる地絡検
出装置においては、零相変流器の出力に大きな影
響を与える残留電流がほとんど高調波であり、ま
た地絡事故が高圧間欠地絡のような場合は、針状
電流等多次数の高調波成分が含まれており、誤動
作の危険性が多くなり、このための補償回路を付
加する必要があり、電子回路も複雑となつて、装
置が比較的に高価になる。また異相地絡の場合に
は、位相比較だけでは、事故を検出できないなど
の欠点がある。 However, in the above ground fault detection device using only phase comparison, the residual current that greatly affects the output of the zero-phase current transformer is mostly harmonics, and if the ground fault is a high voltage intermittent ground fault, Contains multi-order harmonic components such as needle currents, increasing the risk of malfunction, requiring the addition of a compensation circuit, making the electronic circuit complex, and making the device relatively expensive. become. Furthermore, in the case of a different-phase ground fault, there is a drawback that the fault cannot be detected by phase comparison alone.
この欠点を解決する案として、第2図において
事故地絡電流I´gは
I´g=I´g1+I´g′1
I´g1≒I´g2+I´g3+……+I´go
であるので、I´g1とI´g2、I´g3、……I´goは位相差
がπ
〔rad〕異なるほか、常に
|Ig1|>|Ig2|
|Ig1|>|Ig3|
〓
|Ig1|>|Igo|
であること、すなわち事故フイーダと他のフイー
ダに流れる零相電流の値が相異であることを用
し、零相変圧器を使用せず、高感度、高性能な零
相変流器で零相電流を検出し、一定レベル以上の
絶対値を比較することにより、事故発生フイーダ
を判別する案がある。 As a solution to this drawback, in Fig. 2, the fault ground fault current I' g is I' g = I' g1 + I' g ′ 1 I ' g1 ≒ I' g2 + I' g3 +... + I ' go Therefore, the phase difference between I´ g1 , I´ g2 , I´ g3 , ...I´ go is π
[rad] In addition to being different, it is always | I g1 |>|I g2 | |I g1 |>|I g3 | Using the fact that the current values are different, detect the zero-sequence current with a highly sensitive and high-performance zero-sequence current transformer without using a zero-sequence transformer, and compare the absolute values above a certain level. There is a plan to identify the feeder where the accident occurred.
その1つは、第3図示のように高圧母線6に接
続した各フイーダ7にしや断器8をそれぞれ設置
するとともに、各しや断器8の近くに高感度、高
性能な零相変流器9を設置し、各零相変流器9ご
とに検出された零相電流をバイナリートリー回路
などから成る比較器10及び表示部11に入力し
て、零相電流の最大値を発生している回路を判別
するものであるが、上記回路のハードウエアはか
なり複雑なものとなり、価格も高価になる。 One of them is to install a sheath disconnector 8 on each feeder 7 connected to the high voltage bus 6 as shown in Figure 3, and install a high-sensitivity, high-performance zero-phase current transformer near each sheath disconnector 8. A zero-sequence current transformer 9 is installed, and the zero-sequence current detected for each zero-sequence current transformer 9 is input to a comparator 10 consisting of a binary tree circuit and the like and a display section 11 to generate the maximum value of the zero-sequence current. However, the hardware of the circuit described above is quite complex and expensive.
他の1つは、各フイーダ7の零相変流器9から
の検出電流を第4図示のように対応する各表示器
11に入力して、それぞれデイジタル表示させ、
各表示器11において事故電流の最低レベルに設
定した接点回路12を並列に接続してあるブザー
などの警報器13が動作したとき、各デイジタル
表示を目視して最大値を判別するもの、あるいは
各フイーダ7ごとに設置した零相変流器9の出力
を、例えば第5図示のように8個のリレーR1〜
R8を介して30A以上を表示するランプL1、10A以
上を表示するランプL2、3A以上を表示するラン
プL3、1A以上を表示するランプL4、300mA以上
を表示するランプL5、100mA以上を表示するラ
ンプL6、60mA以上を表示するランプL7、ブザー
14、警報接点15を接続して成る1フイーダ分
の表示器16を第6図示のように数フイーダ分一
括して成る表示器17に入力し、最も多くのラン
プが点灯しているフイーダを事故発生フイーダと
判別するものであるが、これらは、価格的には安
価であるが、最終的な事故フイーダの選定は人間
が目視で行わなければならず、したがつて事故フ
イーダを自動的にしや断することはできない。 The other method is to input the detected current from the zero-phase current transformer 9 of each feeder 7 to each corresponding display 11 as shown in FIG.
When an alarm device 13 such as a buzzer connected in parallel with a contact circuit 12 set at the lowest level of fault current in each display device 11 is activated, each digital display is visually checked to determine the maximum value, or each The output of the zero-phase current transformer 9 installed for each feeder 7 is transmitted, for example, to eight relays R 1 to 8 as shown in Figure 5.
Lamp L1 that displays 30A or more through R8 , Lamp L2 that displays 10A or more, Lamp L3 that displays 3A or more, Lamp L4 that displays 1A or more, Lamp L5 that displays 300mA or more, The indicator 16 for one feeder is formed by connecting a lamp L 6 indicating 100 mA or more, a lamp L 7 indicating 60 mA or more, a buzzer 14, and an alarm contact 15 for several feeders as shown in the sixth figure. This input is input to the display 17, and the feeder with the most lit lamps is determined to be the feeder where the accident occurred.These feeders are inexpensive, but the final selection of the accident feeder is done by humans. This must be done visually, and therefore the accident feeder cannot be cut off automatically.
本発明は、以上の点に鑑み、価格を安価にし、
かつ事故フイーダを自動的に選択判別する装置を
提供しようとするものである。 In view of the above points, the present invention reduces the price and
The present invention also aims to provide a device that automatically selects and determines accident feeders.
以下図面第5図と第7図ないし第18図にもと
ずいて本発明の実施例を説明すると、第5図の回
路における接点素子R1〜R8を第7図示のように
2つのa接点a1,a2と、2つのb接点b1,b2で構
成し、それらのうちa1接点は、接点素子R1〜R8
の動作表示、例えばランプL1〜L7のONに用い、
他のa2接点と、b1接点、b2接点とを外部へ引き出
しておく。以下接点素子R1〜R8を含むセツト1
組を継電ユニツトと呼び、事故フイーダ選択機能
の説明は接点のみで示す。なお説明を簡明にする
ため、継電ユニツトをA,B,Cの3組、接点素
子もR1,R2,R3の3個のみ示すが、これらは何
個増加しても同じである。 Embodiments of the present invention will be described below based on FIG. 5 and FIGS. 7 to 18. Contact elements R 1 to R 8 in the circuit of FIG. 5 are connected to two a as shown in FIG. 7. Consists of contacts a 1 and a 2 and two b contacts b 1 and b 2 , of which the a 1 contact is connected to contact elements R 1 to R 8
operation display, for example, used to turn on lamps L 1 to L 7 ,
Pull out the other A2 contacts, B1 contacts, and B2 contacts to the outside. Set 1 including the following contact elements R 1 to R 8
The set is called a relay unit, and the explanation of the fault feeder selection function is shown using only the contacts. In order to simplify the explanation, only three sets of relay units A, B, and C and three contact elements R 1 , R 2 , and R 3 are shown, but these are the same no matter how many are added. .
第8図において各継電ユニツトA,B,Cごと
の接点素子R1,R2,R3は、各フイーダに流れた
零相電流値のレベルに応じて動作し、R1,R2,
R3の順に検出レベルが小さくなる、例えばR1が
2アンペア、R2が500ミリアンペア、R3が200ミ
リアンペアでそれぞれ動作するようにしてある。
すなわち、接点素子R1が動作するときは、接点
素子R2以下は全部動作することになる。 In FIG. 8, the contact elements R 1 , R 2 , R 3 of each relay unit A, B, C operate according to the level of the zero-sequence current value flowing through each feeder, and the contact elements R 1 , R 2 ,
The detection level decreases in the order of R3 , for example, R1 operates at 2 amperes, R2 operates at 500 milliamps, and R3 operates at 200 milliamps.
That is, when contact element R 1 operates, all contact elements R 2 and below operate.
上記各継電ユニツトA,B,Cのb2接点は最高
レベルの方から直列に第1段目、第2段目、第3
段目と下りながら全部接続し、a2接点は各継電ユ
ニツトA,B,C毎に1つにまとめてアラームま
たはしや断信号、機械的表示器18(以下アラー
ム18と略す)に接続し、継電ユニツトAのb2接
点と各アラーム18との間にバツテリー19を接
続する。 The b 2 contacts of each of the above relay units A, B, and C are connected to the 1st stage, 2nd stage, and 3rd stage in series from the highest level.
Connect all the steps as you go down, and connect the A2 contacts to the alarm or break signal and mechanical indicator 18 (hereinafter abbreviated as alarm 18) for each relay unit A, B, and C. Then, a battery 19 is connected between the b2 contact of relay unit A and each alarm 18.
なお、本発明は、各フイーダに高圧ケーブル等
が多く使用され、その静電容量のため、フイーダ
の電源側または他のフイーダの地絡事故において
も、零相電流が逆流し(この逆流する電流値は事
故電流に比較し常に小さい値である。)、健全フイ
ーダを誤動作しや断することを防ごうとするもの
で、第5図の継電ユニツトでは、第6段目以下が
逆流時誤動作するレベル値になるものとしている
が、第8図では第3段目が誤動作レベルの範囲と
する。 In addition, in the present invention, many high-voltage cables are used in each feeder, and due to their capacitance, even in the event of a ground fault on the power supply side of the feeder or other feeders, the zero-sequence current flows backward (this reverse current (The value is always small compared to the fault current.) This is to prevent a healthy feeder from malfunctioning and being cut off.In the relay unit shown in Figure 5, the 6th stage and below will malfunction when reverse current occurs. However, in FIG. 8, the third row is the malfunction level range.
次に第8図の回路の動作を次の場合に分けて説
明する。 Next, the operation of the circuit shown in FIG. 8 will be explained in the following cases.
I 地絡事故が1フイーダのみで発生した場合
地絡事故が継電ユニツトBに対応するフイー
ダで、かつレベル1の事故が発生したとする
と、第9図示のように、継電ユニツトBの接点
素子R1,R2,R3は全部動作し、他のフイーダ
では変電所バンクへ零相電流が逆流し、その零
相電流によつて継電ユニツトA,Cの3段目の
各接点素子R3が動作する。アラーム回路は、
バツテリー19からの電流が継電ユニツトBの
a2接点及び継電ユニツトAのb2接点を通つてバ
ツテリー19へ流れて、継電ユニツトBのアラ
ーム18をならすが、継電ユニツトBのアラー
ム18の出口で分岐した電流のうち第2段目の
接点素子R2のa2接点を通つた電流は継電ユニ
ツトBのb2接点の入口で止まり、第3段目の接
点素子R3のa2接点を通つた電流は継電ユニツ
トAの第3段目の接点素子R3のb2接点の入口
で止まり、他の継電ユニツトA,Cの各アラー
ム18には流れない。I. When a ground fault occurs on only one feeder If a ground fault occurs on the feeder corresponding to relay unit B, and a level 1 fault occurs, as shown in Figure 9, the contacts of relay unit B Elements R 1 , R 2 , and R 3 all operate, and the zero-sequence current flows back to the substation bank in the other feeders, and each contact element in the third stage of relay units A and C is activated by the zero-sequence current. R3 works. The alarm circuit is
Current from battery 19 flows to relay unit B.
The current flows through the a 2 contacts and the b 2 contacts of relay unit A to the battery 19 and sounds the alarm 18 of relay unit B, but the second stage of the current branched at the outlet of the alarm 18 of relay unit B The current passing through the a2 contact of the second contact element R2 stops at the inlet of the b2 contact of relay unit B, and the current passing through the a2 contact of the third stage contact element R3 reaches relay unit A. The signal stops at the entrance of the b2 contact of the third stage contact element R3 , and does not flow to the alarms 18 of the other relay units A and C.
これは、継電ユニツトA,C、また第2段目
の接点素子R2、第3段目の接点素子R3のいず
れで発生しても同じことで、事故発生フイーダ
のみが選択されることになる。例えば地絡事故
が継電ユニツトCに対応するフイーダで、かつ
レベル2の事故が発生したとすると、第10図
示のように、継電ユニツトCの接点素子R2と、
継電ユニツトA,B,Cの各接点素子R3の全
部とが動作し、アラーム回路は、バツテリー1
9からの電流が第10図中の矢印で示すように
継電ユニツトCのアラーム18には流れて、同
アラームをならすが、他の継電ユニツトA,B
のアラーム18には流れず、それらのアラーム
はならさない。第11図には継電ユニツトBの
第3段目すなわち誤動作レベルの接点素子R3
のみが動作した場合の各接点の動作と、アラー
ム回路の動作電流の径路が示してある。この第
11図の場合は高抵抗地絡であり、各継電ユニ
ツトA,Cに対応するフイーダの逆流電流はは
るかに小さく、接点素子R3は動作しない値で
ある。 This is the same regardless of whether the fault occurs in relay units A or C, the second stage contact element R2 , or the third stage contact element R3 ; only the feeder where the fault occurred is selected. become. For example, if a ground fault occurs at the feeder corresponding to relay unit C and a level 2 accident occurs, as shown in Figure 10, contact element R2 of relay unit C,
All contact elements R3 of relay units A, B, and C operate, and the alarm circuit is connected to battery 1.
9 flows to the alarm 18 of relay unit C as shown by the arrow in FIG.
The alarm 18 is not activated, and those alarms do not sound. Figure 11 shows the third stage of relay unit B, that is, the contact element R 3 at the malfunction level.
The operation of each contact and the path of the operating current of the alarm circuit when only the alarm circuit operates are shown. In the case of FIG. 11, there is a high resistance ground fault, and the reverse current in the feeder corresponding to each relay unit A, C is much smaller, and the value is such that contact element R3 does not operate.
地絡事故が2フイーダ以上で発生した場合
この場合は、先ずアラーム回路のバツテリー
19に近い継電ユニツトAが動作し、高圧回路
がしや断した時、継電ユニツトAも復帰するよ
うにしておけば、1つのユニツトが復帰した
時、次の事故フイーダの継電ユニツトが動作す
ることになる。例えば、継電ユニツトBとCに
それぞれ対応するフイーダで同時に地絡事故が
発生したとすると、第12図示のように継電ユ
ニツトBとCの接点素子R1,R2,R3の全部が
動作しているが、アラーム回路だけは、継電ユ
ニツトBのアラーム18が動作し、継電ユニツ
トBに対応するフイーダがしや断し、事故電流
が消滅すると、第13図示のように継電ユニツ
トCのアラーム18が動作する。 If a ground fault occurs on two or more feeders, in this case, relay unit A near battery 19 of the alarm circuit operates first, and when the high voltage circuit is interrupted, relay unit A is also restored. If this is done, when one unit returns to normal operation, the relay unit of the next failed feeder will operate. For example, if a ground fault occurs simultaneously in the feeders corresponding to relay units B and C, all contact elements R 1 , R 2 , and R 3 of relay units B and C will be damaged as shown in Figure 12. However, only the alarm circuit is activated, when the alarm 18 of relay unit B is activated, the feeder corresponding to relay unit B is cut off, and the fault current disappears, the relay is activated as shown in Figure 13. Alarm 18 of unit C is activated.
地絡事故が各フイーダの零相変流器の電源側
で発生した場合
この電源側には、主変圧器・母線の場合と、
他のフイーダの場合が含まれる。 If a ground fault occurs on the power supply side of the zero-phase current transformer of each feeder, this power supply side includes the main transformer/bus,
Cases of other feeders are included.
他のフイーダの場合:
同一変圧器バンク内の高圧フイーダが全部
同一電気所内にある場合、すなわちアラー
ム、しや断回路が1回路ですむ場合
この場合は事故回線が必ずあるはずである
から、全部の継電ユニツトA,B,Cの誤動
作レベルの接点素子R3が動作しても前記I
の場合と同じようにアラームあるいはしや断
するのは事故回線だけである。In the case of other feeders: If all high voltage feeders in the same transformer bank are located in the same electrical station, that is, only one circuit is required for alarm and breakage circuits.In this case, there will always be a faulty circuit, so all Even if the contact element R3 of the relay units A, B, and C operates at the malfunction level, the above I
As in the case of , only the fault line is alarmed or disconnected.
同一変圧器バンク内の高圧フイーダが2つ
以上の電気所にまたがり、アラーム、しや断
回路が別個の場合
この場合はさらに次の2つに分けられる。 When a high voltage feeder within the same transformer bank spans two or more electrical stations, and the alarm and breakage circuits are separate. This case can be further divided into the following two types.
a 事故フイーダがしや断するシステムの場
合
各継電ユニツトA,B,Cの誤動作レベ
ルの接点素子R3に第14図示のようにタ
イマまたは遅延回路20を取付け、しや断
信号の開始時間を少しずらせる。他の変電
所のフイーダで地絡事故が発生すると、こ
の変電所の継電ユニツトA,B,Cとも第
15図示のように逆電流で接点素子R3は
全部動作するのがアラームへ行く回路はタ
イマー20で止まつており、事故回線がし
や断すれば、逆流分はなくなるので、各接
点素子R3は自動的に復帰する。 a. In the case of a system in which the fault feeder is interrupted, a timer or delay circuit 20 is installed as shown in Figure 14 to the contact element R3 at the malfunction level of each relay unit A, B, and C, and the start time of the interruption signal is Shift it slightly. When a ground fault occurs in the feeder of another substation, the relay units A, B, and C of this substation all operate with reverse current as shown in Figure 15, and all contact elements R3 operate in the circuit that goes to the alarm. is stopped by the timer 20, and if the fault line is eventually disconnected, the backflow will disappear, so each contact element R3 will automatically return to its normal state.
b 事故フイーダは警報のみでしや断させな
い場合
この場合は、第16図示のように各接点
素子R3の残りの接点b1を使用し、アラー
ム18へ行く接点a2の出口を一旦隣接の継
電ユニツトのもう1つの接点b1を通してか
ら出力させ、最終のものは最初の接点b1を
利用する、すなわちループになるように接
続する。 b When the accident feeder is not shut off only by the alarm In this case, as shown in Figure 16, use the remaining contact B 1 of each contact element R 3 and temporarily connect the exit of contact A 2 going to the alarm 18 to the adjacent one. Pass through another contact b 1 of the relay unit before outputting, and the final one uses the first contact b 1 , that is, connect it in a loop.
このようにすれば、電源側(他の電気所
のフイーダ)で事故があり、全部の誤動作
レベルの接点素子R3が動作したときは、
第17図示のようにアラーム18に行く回
路は、隣接の継電ユニツトの接点b1が全部
開放しているので、アラーム18はどれも
動作しないことになる。 In this way, if there is an accident on the power supply side (feeder of another electric station) and all contact elements R3 of malfunction level operate,
As shown in Figure 17, in the circuit going to the alarm 18, all the contacts b1 of the adjacent relay units are open, so none of the alarms 18 will operate.
誤動作レベルの地絡事故の負荷側で同時に発
生した時は、(隣接接点b1が動作していない)
フイーダの継電ユニツトのアラームが先ず動作
し、これを復帰すれば、他のフイーダのアラー
ムが動作することになる。この回路はしや断す
る場合も応用できる、すなわち第16図におい
て逆電流でなく、実際に継電ユニツトBおよび
Cに対応する各フイーダに高抵抗地絡が発生し
たとき、第18図示のように継電ユニツトB,
Cの各接点素子R3は動作し、継電ユニツトA
の接点素子R3は動作していないため、その接
点b1がONしているので、継電ユニツトCに対
応するフイーダをしや断し、継電ユニツトCを
復帰させると、継電ユニツトCの接点素子R3
の接点b1がONになり、継電ユニツトに対応す
るフイーダをしや断することになるように回路
を構成する。 When ground faults at the malfunction level occur simultaneously on the load side, (adjacent contact B 1 is not operating)
The alarm of the relay unit of the feeder is activated first, and when it is restored, the alarms of the other feeders are activated. This circuit can also be applied to the case of sudden disconnection, that is, when a high resistance ground fault actually occurs in each feeder corresponding to relay units B and C, instead of a reverse current in Fig. 16, as shown in Fig. 18. relay unit B,
Each contact element R3 of C operates, and relay unit A
Since contact element R3 is not operating, its contact b1 is ON, so when the feeder corresponding to relay unit C is cut off and relay unit C is restored, relay unit C Contact element R 3
Configure the circuit so that contact b 1 of the relay unit turns ON and immediately disconnects the feeder corresponding to the relay unit.
全フイーダの負荷側に同時に誤動作レベルの
事故が発生した時は、このシステムは動作しな
いという問題点が残るが、全部のフイーダに同
時に(約1秒程度の間に)ある狭い幅の抵抗値
の高抵抗地絡事故が発生するような確率は非常
に小さいものであり無視してよい。 There remains the problem that this system will not operate if a malfunction-level accident occurs simultaneously on the load side of all feeders. The probability that a high resistance ground fault will occur is very small and can be ignored.
主変圧器・高圧母線の地絡事故の場合:
誤動作レベルについては、前記他のフイーダ
の場合のうち、bの場合で防止でき、地絡保護
については本発明に含まれない。In the case of a ground fault accident in the main transformer/high voltage bus: Regarding the malfunction level, it can be prevented in case b among the other feeder cases, and ground fault protection is not included in the present invention.
本発明は、叙上のように構成したから、価格を
安価にし、かつ事故フイーダを自動的に選択判別
しうる非接地系統高圧配電線地絡事故フイーダ選
択検出装置を提供することができる。 Since the present invention is configured as described above, it is possible to provide an ungrounded system high voltage distribution line ground fault fault feeder selection detection device that is inexpensive and can automatically select and discriminate fault feeders.
第1図は現行配電用変電所の非接地式電線路の
地絡事故保護方式の概要図、第2図は高圧フイー
ダ1線地絡事故時の事故電流の大きさを示す概念
図、第3図は零相電流絶対値比較方式・地絡保護
回路の説明図、第4図は複数フイーダごとの零相
電流を一個所でデイジタル表示する表示装置の説
明図、第5図は同表示装置の内部接続図、第6図
は上記表示装置を数フイーダ分一括して成る表示
器の略図、第7図は第5図の各リレーの内部接続
図、第8図は第7図における接点素子を3個組み
入れたものを1継電ユニツトとし、これを3セツ
ト組み込んだ場合の各接点ならびにアラーム回路
の接続の説明図、第9図はB電路に地絡が発生
し、継電ユニツトBは各接点素子R1,R2,R3が
動作し、継電ユニツトA,Cは接点素子R3のみ
がそれぞれ動作し、アラーム回路は継電ユニツト
Bのみが回路を構成する説明図、第10図はC電
路に中程度の地絡が起り、継電ユニツトCは接点
素子R2,R3が動作し、継電ユニツトA,Bは接
点素子R3がそれぞれ動作し、アラーム回路は継
電ユニツトCのみが回路を構成する説明図、第1
1図はB電路に微地絡事故が発生し、継電ユニツ
トBの接点素子R3のみが動作し、他は全部動作
せず、アラーム回路は継電ユニツトBのみが回路
を構成する説明図、第12図はB、C電路に同時
に地絡が起つた場合、継電ユニツトB,Cは全部
の接点素子が動作し、継電ユニツトAは接点素子
R3のみが動作し、アラーム回路はバツテリに近
いアラームが動作している説明図、第13図は第
12図において継電ユニツトBが復帰し、継電ユ
ニツトCのアラーム回路が動作している説明図、
第14図は各継電ユニツトの接点素子R3のアラ
ーム回路への出口にタイマーを取付けた説明図、
第15図は高圧電路の逆流電流で各継電ユニツト
の接点素子R3は動作したが、アラームへの電路
はタイマーで阻止している説明図、第16図は誤
動作範囲の接点素子R3のみ隣のb接点と直列に
結び、継電ユニツトAとCについてはループにな
るように接続した説明図、第17図は第15図と
同様高圧電路に逆流電流が流れ接点素子は全部動
作したが、隣接のb接点によりアラーム回路は阻
止されている説明図、第18図はB、C電路に微
地絡が起り、継電ユニツトの接点素子R3は動作
しているが、継電ユニツトAの接点素子R3は動
作していないので、即ちこのb1接点が接している
ので、アラーム電源に近い継電ユニツトCのアラ
ームが先に動作している説明図である。
A,B,C……継電ユニツト、R1,R2,R3…
…接点素子、18……アラーム、19……バツテ
リー、20……タイマー。
Figure 1 is a schematic diagram of the ground fault protection method for ungrounded power lines in current distribution substations, Figure 2 is a conceptual diagram showing the magnitude of fault current in the event of a ground fault in one wire of a high voltage feeder, and Figure 3 The figure is an explanatory diagram of the zero-sequence current absolute value comparison method and ground fault protection circuit. Figure 4 is an explanatory diagram of a display device that digitally displays the zero-sequence current of multiple feeders at one place. Figure 5 is an explanatory diagram of the display device. Internal connection diagram, Figure 6 is a schematic diagram of a display device made up of several feeders of the above display devices, Figure 7 is an internal connection diagram of each relay in Figure 5, and Figure 8 shows the contact elements in Figure 7. The combination of 3 relay units is considered to be 1 relay unit. Figure 9 is an explanatory diagram of the connection of each contact and alarm circuit when 3 sets of these are assembled. Fig. 10 is an explanatory diagram in which contact elements R 1 , R 2 , and R 3 operate, only contact element R 3 of relay units A and C operates, and only relay unit B constitutes the alarm circuit. When a moderate ground fault occurs in the C circuit, contact elements R 2 and R 3 of relay unit C operate, contact elements R 3 of relay units A and B each operate, and the alarm circuit is activated by the relay unit. Explanatory diagram where only C constitutes a circuit, 1st
Figure 1 is an explanatory diagram in which a slight ground fault occurs in the B circuit, and only contact element R3 of relay unit B operates, all others do not operate, and only relay unit B constitutes the alarm circuit. , Fig. 12 shows that when a ground fault occurs simultaneously in the B and C circuits, all contact elements of relay units B and C operate, and relay unit A operates only when the contact elements of relay unit A operate.
An explanatory diagram showing that only R 3 is operating and the alarm circuit is close to running out of battery. Figure 13 shows that in Figure 12, relay unit B has been restored and the alarm circuit of relay unit C is operating. Explanatory diagram,
Figure 14 is an explanatory diagram showing a timer installed at the outlet of contact element R3 of each relay unit to the alarm circuit.
Figure 15 is an explanatory diagram showing that contact element R 3 of each relay unit operates due to reverse current in the high-voltage circuit, but the circuit to the alarm is blocked by a timer. Figure 16 shows only contact element R 3 in the malfunction range. Figure 17 is an explanatory diagram in which relay units A and C are connected in series with the adjacent b contact and connected to form a loop. Figure 17 shows that, similar to Figure 15, reverse current flows through the high voltage circuit and all contact elements operate. , an explanatory diagram in which the alarm circuit is blocked by the adjacent B contact, and Fig. 18 shows that a slight ground fault has occurred in the B and C circuits, and the contact element R3 of the relay unit is operating, but the relay unit A This is an explanatory diagram in which the alarm of the relay unit C, which is closer to the alarm power source, is activated first because the contact element R3 is not operating, that is, this b1 contact is in contact. A, B, C...Relay unit, R1 , R2 , R3 ...
...Contact element, 18...Alarm, 19...Battery, 20...Timer.
Claims (1)
に属する複数回線の全フイーダに設置した高感
度、高性能零相変流器により検出した零相電流を
各フイーダごとに入力する継電ユニツトを、事故
電流の大きさによつて数段に区分して動作する数
個のスイツチング素子で構成し、この各スイツチ
ング素子は1つのa接点と2つのb接点とし、a
接点と第1b接点を直列に接続し、その接続点と
上記第1b接点を経た出力端子を、各継電ユニツ
トの分全部直列に接続し、この直列回路の一端に
単相電源の一極を接続し、上記a接点の出力端子
は各継電ユニツトごとに並列に接続してアラー
ム、しや断信号などの回路を経て上記単相電源の
他の一極に接続して成る非接地系統高圧配電線地
絡事故フイーダ選択検出装置。 2 相隣る継電ユニツトの一方のa接点の出力端
子から他方の第2b接点を経てアラーム、しや断
信号などの回路へ接続して成る特許請求の範囲第
1項記載の非接地系統高圧配電線地絡事故フイー
ダ選択検出装置。[Scope of Claims] 1. In an ungrounded system high-voltage distribution line, zero-sequence current detected by highly sensitive and high-performance zero-sequence current transformers installed in all feeders of multiple lines belonging to the same bank is input for each feeder. The relay unit is composed of several switching elements that operate in several stages depending on the magnitude of the fault current, and each switching element has one A contact and two B contacts.
Connect the contact and the 1B contact in series, connect that connection point and the output terminal via the 1B contact above in series, and connect one pole of the single-phase power supply to one end of this series circuit. The output terminal of the a-contact point is connected in parallel to each relay unit and connected to the other pole of the single-phase power supply through a circuit for alarm, break signal, etc. Distribution line ground fault feeder selection detection device. 2. The high voltage non-grounded system according to claim 1, which is connected from the output terminal of one A contact of adjacent relay units to a circuit for alarm, failure signal, etc. via the other 2B contact. Distribution line ground fault feeder selection detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7455782A JPS58192434A (en) | 1982-05-06 | 1982-05-06 | Groundless system high voltage ground-fault defect feeder selecting and detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7455782A JPS58192434A (en) | 1982-05-06 | 1982-05-06 | Groundless system high voltage ground-fault defect feeder selecting and detecting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58192434A JPS58192434A (en) | 1983-11-09 |
JPH0159819B2 true JPH0159819B2 (en) | 1989-12-19 |
Family
ID=13550646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7455782A Granted JPS58192434A (en) | 1982-05-06 | 1982-05-06 | Groundless system high voltage ground-fault defect feeder selecting and detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58192434A (en) |
-
1982
- 1982-05-06 JP JP7455782A patent/JPS58192434A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58192434A (en) | 1983-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8502416B2 (en) | Method and circuit arrangement for connecting at least one string of a photovoltaic system to an inverter | |
US5825599A (en) | Ground fault circuit interrupter system with uncommitted contacts | |
CN100391072C (en) | Apparatus for monitoring neutral wire and earth wire, and electric switch device containing the same | |
JP2011091995A (en) | String and system using direct-current power module and lots of string protection apparatuses | |
CN1155357A (en) | Detector for monitoring integrity of ground connection of electrical appliance | |
US20070159738A1 (en) | Receptacle providing sustained excessive voltage protection | |
CN109119964B (en) | Intelligent controller for preventing switch tripping coil from burning | |
RU2304339C1 (en) | Method for checking automatic load transfer center for off-operation failure with its circuit breaker adjusted to respond to steady short circuit in ring circuit | |
US6867958B2 (en) | Loop restoration scheme for distribution feeders | |
CN111799749A (en) | Electrical protection system and method | |
JPH0159819B2 (en) | ||
CN107515353A (en) | PT/CT secondary neutral line operation intelligent monitor | |
JP3925966B2 (en) | Distribution board with seismic relay | |
RU2788519C1 (en) | Method for disconnecting a damaged connection with a single-phase earth fault in networks with an isolated neutral | |
CN219980426U (en) | DC protection power supply system | |
US11594875B1 (en) | Ground fault overvoltage detection using negative sequence voltage monitoring | |
JPS5947923A (en) | Disconnection detecting system for groundless power distribution line | |
JPH0237235Y2 (en) | ||
JP2916148B2 (en) | Line selection relay | |
JP3641567B2 (en) | Ground fault protection device for distribution substation | |
JP2024015626A (en) | Distribution system of dispersed power supply and control method of the same | |
CN104155579B (en) | 10KV distribution line and fault detection method of the M types based on on-pole switch | |
RU2251187C2 (en) | Device for protecting electrical installation against abnormal operation | |
JPH0510512Y2 (en) | ||
JPH0216093B2 (en) |