JPH0159745B2 - - Google Patents

Info

Publication number
JPH0159745B2
JPH0159745B2 JP54092247A JP9224779A JPH0159745B2 JP H0159745 B2 JPH0159745 B2 JP H0159745B2 JP 54092247 A JP54092247 A JP 54092247A JP 9224779 A JP9224779 A JP 9224779A JP H0159745 B2 JPH0159745 B2 JP H0159745B2
Authority
JP
Japan
Prior art keywords
infrared
elements
target
signal
target object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54092247A
Other languages
Japanese (ja)
Other versions
JPS5617084A (en
Inventor
Hiroshi Takigawa
Shoji Doi
Soichi Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9224779A priority Critical patent/JPS5617084A/en
Publication of JPS5617084A publication Critical patent/JPS5617084A/en
Publication of JPH0159745B2 publication Critical patent/JPH0159745B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14875Infrared CCD or CID imagers
    • H01L27/14881Infrared CCD or CID imagers of the hybrid type

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 本発明は赤外線検知装置、とくに目標の追跡用
に好適な多素子型の赤外線検知装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared detection device, and particularly to a multi-element infrared detection device suitable for tracking a target.

赤外線により目標探索と追跡とを行う飛翔体に
搭載する赤外線検知装置として、4個またはそれ
以上の赤外線検知素子を十字型に配列した光電変
換部を有するものがすでに周知である。第1図に
このような光電変換部の一例を示した。本図にお
いて1,2,3,4はたがいに電気的に独立した
赤外線検知素子で、絶縁物から成る支持板5上に
十字型に配列固定されて、多素子型検知器を形成
している。この検知器上に目標の像が投射され
る。なお結像用光学系については図示を省略し
た。
2. Description of the Related Art As an infrared detection device mounted on a flying object that performs target search and tracking using infrared rays, one having a photoelectric conversion unit in which four or more infrared detection elements are arranged in a cross shape is already well known. FIG. 1 shows an example of such a photoelectric conversion section. In this figure, numerals 1, 2, 3, and 4 are infrared detection elements that are electrically independent from each other, and are arranged and fixed in a cross shape on a support plate 5 made of an insulator to form a multi-element type detector. . An image of the target is projected onto this detector. Note that illustration of the imaging optical system is omitted.

しかしながら第1図のような検知器を使用した
場合には、目標の方向に関して粗い情報しか得ら
れない不利がある。その理由は目標の像が1個の
赤外線検知素子上の面上にあつて、他の素子の面
上に全くかかつていないときには、たとえば図の
aの位置にあつてもbの位置にあつても赤外線検
知素子1からは同一の信号が得られるからであつ
て、この場合には目標の方向を区別することがで
きないことになる。
However, the use of a detector such as that shown in FIG. 1 has the disadvantage of providing only coarse information regarding the direction of the target. The reason for this is that when the target image is on the surface of one infrared sensing element and never on the surface of other elements, for example, even if it is at position a in the figure, it will be at position b. This is because the same signal is obtained from the infrared detecting element 1 in both cases, and in this case, the direction of the target cannot be distinguished.

この外に、第1図の多素子検知器は不当に雑音
が多いという欠点を有している。この基本的理由
は各素子の面積が広いためで、赤外線検知素子の
熱雑音はおよそ面積の平方根に比例するから、点
光源と見なすことができるような小面積の目標像
に対しては検知素子の面積が大きいことは信号対
雑音の面で不利を免かれ得ない。
In addition to this, the multi-element detector of FIG. 1 has the disadvantage of being unduly noisy. The basic reason for this is that each element has a large area, and the thermal noise of an infrared sensing element is approximately proportional to the square root of the area. The large area of the sensor is unavoidably disadvantageous in terms of signal-to-noise.

本発明は前述の点に鑑みなされたもので、扇形
の赤外線検知素子を円周上に配列した多素子型赤
外線検知器と電荷転送素子とを結合した光電変換
部を有し、光電変換部の出力信号中における目標
を示す信号の時間的位置に基づいて目標の方向を
知る新規な赤外線検知装置を提供せんとするもの
である。
The present invention has been made in view of the above-mentioned points, and has a photoelectric conversion section that combines a multi-element infrared detector in which fan-shaped infrared detection elements are arranged on the circumference and a charge transfer element. It is an object of the present invention to provide a novel infrared detection device that determines the direction of a target based on the temporal position of a signal indicating the target in an output signal.

以下図面を用いて本発明の一実施例につき詳細
に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図は本発明に係る赤外線検知装置の一実施
例の構造を示したもので、Dは多素子型赤外線検
知器(以下単に検知器と言う)、Sは該検知器D
の出力を受けてこれを時系列信号に変換出力す
る、電荷転送素子を用いたシフトレジスタであ
る。検知器Dは多数の扇形の赤外線検知素子(以
下検知素子と略記する)101,102,10
3,…112を配列した構造となつている。検知
素子の種類は、本実施例ではインジウムアンチモ
ナイド(InSb)を構成材料とする光起電力型と
する。そして各素子は共通のp型基板上に形成さ
れたn型領域である。なお5は上記検知素子の支
持板である。シフトレジスタとして用いる電荷転
送素子(CTD)は、シリコンSiを基板材料とす
る2相駆動型のものを用いる。該CTD20の、
転送電極201,202,203,…224と検
知器Dとの間には入力ダイオード301,30
2,303,…,312、入力ゲート電極21、
一時蓄積電極22および移転(transfer)ゲート
電極23が同一Si基板表面上に設けられている。
上記入力ダイオード群中のダイオードの個数は検
知素子の数と一致しており、検知素子101,1
02,103,…はそれぞれ入力ダイオード30
1,302,303,…と直結されている。した
がつて検知器D中の各個の検知素子の光電流はす
べて同時に各入力ダイオード中に流入する。この
電流は入力ゲート電極21を通じて一時蓄積電極
22下に流入して電荷として蓄えられ、移転ゲー
ト電極23が開いたとき(通過可能になつたと
き)同時にCTD20の各ビツトに流入し、該
CTD20のチヤンネル内を矢印イの方向に転送
されて行く。本実施例の動作については後に目標
の方向検出のしくみと関連してさらに詳細に説明
するが、ここではCTD20の出力回路の構成に
ついてのみ述べておく。
FIG. 2 shows the structure of an embodiment of the infrared detection device according to the present invention, where D is a multi-element infrared detector (hereinafter simply referred to as a detector), and S is the detector D.
This is a shift register using a charge transfer element, which receives the output of a signal, converts it into a time-series signal, and outputs it. Detector D includes a large number of fan-shaped infrared detection elements (hereinafter abbreviated as detection elements) 101, 102, 10.
It has a structure in which 3, . . . 112 are arranged. In this embodiment, the sensing element is a photovoltaic type whose constituent material is indium antimonide (InSb). Each element is an n-type region formed on a common p-type substrate. Note that 5 is a support plate for the detection element. The charge transfer device (CTD) used as the shift register is a two-phase drive type whose substrate material is silicon Si. of the CTD20,
Input diodes 301, 30 are connected between the transfer electrodes 201, 202, 203, ... 224 and the detector D.
2,303,...,312, input gate electrode 21,
A temporary storage electrode 22 and a transfer gate electrode 23 are provided on the same Si substrate surface.
The number of diodes in the input diode group matches the number of sensing elements, and the number of sensing elements 101, 1
02, 103, ... are input diodes 30, respectively.
It is directly connected to 1,302,303,... The photocurrents of each individual sensing element in detector D therefore all flow simultaneously into each input diode. This current flows under the temporary storage electrode 22 through the input gate electrode 21 and is stored as a charge, and when the transfer gate electrode 23 opens (can pass through), it simultaneously flows into each bit of the CTD 20, and the current flows into each bit of the CTD 20.
It is transferred within the channel of CTD 20 in the direction of arrow A. The operation of this embodiment will be explained in more detail later in connection with the target direction detection mechanism, but only the configuration of the output circuit of the CTD 20 will be described here.

CTD20の出力側には出力ゲート電極24、
電荷検出用拡散層25、リセツト用電極26、電
荷廃棄のためのドレイン領域27が設けられてお
り、電荷検出用拡散層25から取り出されている
端子P5が検出信号の出力端子である。P1〜P3
それぞれ入力ゲート電極21、一時蓄積電極2
2、移転ゲート電極23に対する電圧供給用端
子、P4およびP6はそれぞれ出力ゲート電極24
およびリセツト用電極26に対する電圧供給用端
子である。
On the output side of the CTD 20, an output gate electrode 24,
A charge detection diffusion layer 25, a reset electrode 26, and a drain region 27 for charge disposal are provided, and a terminal P5 taken out from the charge detection diffusion layer 25 is an output terminal for a detection signal. P 1 to P 3 are input gate electrode 21 and temporary storage electrode 2, respectively.
2. Voltage supply terminals P 4 and P 6 for the transfer gate electrode 23 are output gate electrodes 24, respectively.
and a voltage supply terminal for the reset electrode 26.

次に第2図の実施例における目標の存否および
その方向の検出動作について説明する。
Next, the operation of detecting the presence or absence of a target and its direction in the embodiment shown in FIG. 2 will be explained.

第2図における各検知素子101,102,1
03,…とCTD20の入力ダイオード301,
302,303,…との接続、およびCTD20
の電荷転送方向(矢印イ)から明らかなように、
出力端子P5からは検知素子101,102,1
03,……112において発生された信号が上記
符号の順序と同一の時間的順序で現れて来る。そ
こで理解の便宜のために、検知器Dの面上に投与
された目標の像を微小な光点と仮定し、いまこの
像すなわち光点が28のように検知素子101上
にあるものとすると、全素子の電荷が同時に
CTD20のチヤンネル内に移転を完了した後、
上記赤外線検知素子101が目標の結像光により
発生した電荷は最初の転送パルスで電荷検出用拡
散層25内に入り、そのイメージ電荷が出力端子
P5から出力信号として取り出される。一方転送
されて来た信号電荷はリセツト電極26下を経て
ドレイン電極27に入り、端子P7から外部へ廃
棄される。もし目標の像が29のごとく検知素子
102上にあるときは、前述の場合よりも像によ
る信号の出力端子P5に現れる時刻が遅れ、両方
の場合の時刻差が転送用パルス列の繰返し周期
(以後Tで表す)に等しくなることは容易に理解
されるところである。
Each detection element 101, 102, 1 in FIG.
03,... and the input diode 301 of CTD20,
Connection with 302, 303,... and CTD20
As is clear from the charge transfer direction (arrow A),
From output terminal P5 , detection elements 101, 102, 1
The signals generated at 03, . . . 112 appear in the same temporal order as the above code order. For convenience of understanding, let us assume that the image of the target applied onto the surface of the detector D is a minute light spot, and that this image, that is, the light spot, is now on the detection element 101 as shown at 28. , the charges of all elements are simultaneously
After completing the transfer within the CTD20 channel,
The charges generated by the target imaging light in the infrared sensing element 101 enter the charge detection diffusion layer 25 with the first transfer pulse, and the image charges are transferred to the output terminal.
It is taken out as an output signal from P5 . On the other hand, the transferred signal charge passes under the reset electrode 26, enters the drain electrode 27, and is discarded to the outside from the terminal P7 . If the target image is on the detection element 102 as shown in 29, the time at which the signal from the image appears at the output terminal P5 is delayed compared to the case described above, and the time difference in both cases is equal to the repetition period of the transfer pulse train ( It is easy to understand that it is equal to (hereinafter referred to as T).

以上の説明からわかるように、目標の像が検知
素子102,103,104,…上にあるとき、
出力端子P5に信号の現れる時刻は、像が検知素
子101上にあるときに比し符号順にそれぞれ
T,2T,3T,…遅れる。そこで出力信号の現
れる時刻から、目標の像がどの検知素子上にある
かがわかり、したがつて1個の検知素子の有する
頂角の範囲内の誤差で目標の方向を知ることがで
きる。
As can be seen from the above explanation, when the target image is on the detection elements 102, 103, 104,...
The times at which the signals appear at the output terminal P5 are delayed by T, 2T, 3T, . Therefore, from the time when the output signal appears, it is known which sensing element the image of the target is on, and therefore the direction of the target can be determined with an error within the range of the apex angle of one sensing element.

第3図は前述した目標の像の位置と信号の現れ
る時刻との関係をグラフとして示したもので、便
宜上信号の波形は一定の幅および波高を有するパ
ルスとする。パルス31a,31b,31cは目
標の像がそれぞれ赤外線検知素子101,10
3,107上にある場合に対応するもので、パル
ス31bはパルス31aに比べて2T,パルス3
1cは同じく6T遅れている。このように、信号
の時間関係から目標の像がどの検知素子上にある
かを知ることができる。
FIG. 3 is a graph showing the relationship between the position of the target image and the time at which the signal appears. For convenience, the waveform of the signal is assumed to be a pulse having a constant width and wave height. Pulses 31a, 31b, and 31c have target images detected by infrared detection elements 101 and 10, respectively.
3,107, and pulse 31b is 2T and pulse 3 is lower than pulse 31a.
1c is also 6T behind. In this way, it is possible to know on which sensing element the target image is located from the time relationship of the signals.

第2図の検知器は便宜上12個の検知素子を有す
るものを示したが、各検知素子の頂角を小さく
し、これに対応して素子数を増すことにより目標
の方向の測定誤差を減少させることができる。な
お、CTD20を検知素子と同一の半導体材料で
製してもよい。
The detector in Figure 2 is shown as having 12 sensing elements for convenience, but by reducing the apex angle of each sensing element and correspondingly increasing the number of elements, the measurement error in the direction of the target can be reduced. can be done. Note that the CTD 20 may be made of the same semiconductor material as the sensing element.

以上の考察においては便宜上目標の像の光点と
仮定したが、目標の像がある面積を有している場
合には、検知素子の配列されている円周の中心を
極とする極座標系における像位置の動径をも知る
ことができる。この点につき次に第4図を用いて
説明する。
In the above discussion, we assumed the light spot of the target image for convenience, but if the target image has a certain area, it can be expressed in a polar coordinate system whose pole is the center of the circumference where the detection elements are arranged You can also know the radius of the image position. This point will be explained next using FIG. 4.

第4図Aには理解の便宜のために検知素子群1
01〜112を簡略化しかつ若干縮小して示し、
同図Bには信号波形を示した。
For convenience of understanding, FIG. 4A shows the sensing element group 1.
01 to 112 are simplified and slightly reduced,
Figure B shows the signal waveform.

第4図Aにおいて4つの円41〜44は目標の
像のそれぞれ異なる4種類の位置を表したもの
で、該像はある大きさを有しており、像41の中
心は検知素子群の配列されている円の中心とほぼ
一致し、他は符号順に上記円の中心から離れてい
る。同図Bは信号波形を示したもので、波形51
〜54は同図Aの像の位置41〜44にそれぞれ
対応している。信号波形51はほぼ直流に近く、
同じく52は幅が広くピークの値の低いパルスで
あり、同じく53波形52よりも幅狭くピークが
高くなつており、最後に54は最も幅狭くかつピ
ークの高い波形となつている。ただし本図の波形
はCTD20の出力信号を平滑化した後のもので
ある。上述したところから明らかなように、信号
波形のピーク値と半値幅から検知素子面上に投与
された目標物体の像と円板状の上記赤外線検知器
の中心との距離、換言すれば赤外線検知器の中心
を極とし、検知素子面上に定義された極座標にお
ける目標物体の像の位置の動径を知ることができ
る。
In FIG. 4A, four circles 41 to 44 represent four different positions of the target image, each of which has a certain size, and the center of the image 41 is the arrangement of the sensing element group. It almost coincides with the center of the circle shown above, and the others are separated from the center of the circle in the order of the numbers. Figure B shows the signal waveform, waveform 51
54 correspond to the image positions 41 to 44 in FIG. 5A, respectively. The signal waveform 51 is almost direct current,
Similarly, 52 is a pulse with a wide width and a low peak value, which is also narrower and has a higher peak than waveform 53, and finally 54 is a waveform with the narrowest width and higher peak value. However, the waveform in this figure is after smoothing the output signal of the CTD 20. As is clear from the above, from the peak value and half-width of the signal waveform, the distance between the image of the target object applied onto the sensing element surface and the center of the disc-shaped infrared detector, in other words, the distance between the center of the disc-shaped infrared detector With the center of the device as the pole, it is possible to know the radius vector of the position of the image of the target object in polar coordinates defined on the sensing element surface.

なお、目標物体が点光源と見做せない場合は動
径が増える方向に変化しているか、減る方向に変
化しているかがわかり、目標物体が遠方にあり点
光源と見做せる場合は、赤外線検知器を焦点位置
から少しずらした位置に置けば投射された目標物
体のサイズは焦点ずれに対応した一定の大きさを
示すので、平滑化された時系列の信号出力の波形
の半値幅は動径の絶対値と一対1の関係があるの
で動径を知ることができる。
In addition, if the target object cannot be regarded as a point light source, it can be determined whether the radius vector is changing in the direction of increasing or decreasing, and if the target object is far away and can be regarded as a point light source, If the infrared detector is placed at a position slightly shifted from the focal point, the size of the projected target object will show a constant size corresponding to the focal shift, so the half-width of the waveform of the smoothed time-series signal output is Since there is a one-to-one relationship with the absolute value of the radius vector, the radius vector can be known.

したがつて、この動径と、ピーク状の信号波形
の時間的位置(信号波形が現れるまでの時間)か
らわかる目標物体の像の位置の、上記極座標にお
ける偏角とから目標物体の像の極座標上の2次元
的位置を知ることができる。
Therefore, the polar coordinates of the image of the target object can be determined from this vector radius and the declination angle in the polar coordinates of the position of the image of the target object, which can be determined from the temporal position of the peak signal waveform (time until the signal waveform appears). You can know the two-dimensional position above.

以上の説明から明らかなように、本発明の赤外
線検知器は完全に固体化されており、かつ検知素
子の幅を狭くすることによつて目標の方向の測定
精度を充分に高くすることができ、目標の像が微
小な場合にも充分な信号対雑音比が得られ、また
機械的走査を行わずCTDによる電子的走査によ
つているから高速走査が可能である等種々の優れ
た利点を有しているから、赤外線を利用する探索
追尾系の光電変換部等に用いて効果大である。
As is clear from the above description, the infrared detector of the present invention is completely solid-state, and by narrowing the width of the detection element, the accuracy of measuring the target direction can be made sufficiently high. It has various advantages such as a sufficient signal-to-noise ratio even when the target image is minute, and high-speed scanning is possible because it relies on electronic scanning using a CTD instead of mechanical scanning. Because of this, it is highly effective for use in photoelectric conversion sections of search and tracking systems that utilize infrared rays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の赤外線検知装置の要部上面図、
第2図は本発明に係る赤外線検知装置の簡略上面
図、第3図は前図の実施例において目標が点光源
である場合の出力信号波形を示す図、第4図A,
Bは同じく目標の像がある大きさを有する場合の
出力信号波形と像位置との関係を説明するための
図である。 1〜4:赤外線検知素子、5:支持板、D:赤
外線検知器、S:CTD、101〜112:扇形
の検知素子、201〜224:転送電極、301
〜312:入力ダイオード、21:入力ゲート電
極、22:一時蓄積電極、23:移転ゲート電
極、24:出力ゲート電極、25:電荷検出用拡
散層、26:リセツト電極、27:ドレイン領
域。
Figure 1 is a top view of the main parts of a conventional infrared detection device.
FIG. 2 is a simplified top view of the infrared detection device according to the present invention, FIG. 3 is a diagram showing the output signal waveform when the target is a point light source in the embodiment shown in the previous figure, and FIG.
Similarly, B is a diagram for explaining the relationship between the output signal waveform and the image position when the target image has a certain size. 1-4: Infrared sensing element, 5: Support plate, D: Infrared detector, S: CTD, 101-112: Fan-shaped sensing element, 201-224: Transfer electrode, 301
~312: input diode, 21: input gate electrode, 22: temporary storage electrode, 23: transfer gate electrode, 24: output gate electrode, 25: charge detection diffusion layer, 26: reset electrode, 27: drain region.

Claims (1)

【特許請求の範囲】 1 目標物体の探索と追跡を行うため、該目標物
体からの赤外線を複数の検知素子で受光する構成
の赤外線検知装置において、 上記個々の検知素子が扇形の形状を有し、該扇
形の尖端が一点に向かつた状態で同一円周上に配
列され、互いに電気的に独立した赤外線検知素子
と、電荷転送素子とを備え、上記各個の赤外線検
知素子の出力する電気信号を全部同時に上記電荷
転送素子のそれぞれ異なつた転送段に入力し、こ
の入力に対応する電荷は上記電荷転送素子の出力
端まで転送されて該出力端から上記各赤外線検知
素子の配列に対応する時系列信号として出力さ
れ、該出力信号波形を用いて極座標における上記
目標物体の方向と動径を検出するようにしたこと
を特徴とする赤外線検知装置。
[Scope of Claims] 1. An infrared detection device configured to receive infrared rays from a target object using a plurality of detection elements in order to search and track a target object, wherein each of the detection elements has a fan-shaped shape. , comprising infrared sensing elements and charge transfer elements that are electrically independent from each other and arranged on the same circumference with the fan-shaped tips facing one point, and the electrical signals outputted by each of the infrared sensing elements. are input to different transfer stages of the charge transfer element at the same time, and the charges corresponding to these inputs are transferred to the output terminal of the charge transfer element and from the output terminal correspond to the array of each of the infrared detection elements. An infrared detection device characterized in that the signal is output as a series signal, and the output signal waveform is used to detect the direction and radius of the target object in polar coordinates.
JP9224779A 1979-07-19 1979-07-19 Infrared ray detector Granted JPS5617084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9224779A JPS5617084A (en) 1979-07-19 1979-07-19 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9224779A JPS5617084A (en) 1979-07-19 1979-07-19 Infrared ray detector

Publications (2)

Publication Number Publication Date
JPS5617084A JPS5617084A (en) 1981-02-18
JPH0159745B2 true JPH0159745B2 (en) 1989-12-19

Family

ID=14049089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9224779A Granted JPS5617084A (en) 1979-07-19 1979-07-19 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPS5617084A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131712A (en) * 1974-04-04 1975-10-18
JPS5184633A (en) * 1975-01-23 1976-07-24 Asahi Optical Co Ltd
JPS52137921A (en) * 1976-05-14 1977-11-17 Toshiba Corp Solid photographing device
JPS5430787A (en) * 1977-08-12 1979-03-07 Fujitsu Ltd Infrared-ray detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131712A (en) * 1974-04-04 1975-10-18
JPS5184633A (en) * 1975-01-23 1976-07-24 Asahi Optical Co Ltd
JPS52137921A (en) * 1976-05-14 1977-11-17 Toshiba Corp Solid photographing device
JPS5430787A (en) * 1977-08-12 1979-03-07 Fujitsu Ltd Infrared-ray detector

Also Published As

Publication number Publication date
JPS5617084A (en) 1981-02-18

Similar Documents

Publication Publication Date Title
US6414746B1 (en) 3-D imaging multiple target laser radar
US11221400B2 (en) Dual mode stacked photomultipliers suitable for use in long range time of flight applications
EP3602110B1 (en) Time of flight distance measurement system and method
JPS5958306A (en) Range finder
US7622704B2 (en) Optoelectronic detector with multiple readout nodes and its use thereof
US20210344864A1 (en) Photodetection device, semiconductor photodetection element, and method for driving semiconductor photodetection element
JP5869293B2 (en) Radiation detector
JP4757779B2 (en) Distance image sensor
US20200103526A1 (en) Time of flight sensor
US10972688B2 (en) Pixel architecture and an image sensor
US4314275A (en) Infrared time delay with integration CTD imager
JP6026755B2 (en) Distance sensor and distance image sensor
US4585934A (en) Self-calibration technique for charge-coupled device imagers
JP5823813B2 (en) Radiation detector
US4979816A (en) Range sensing system
JPH0159745B2 (en)
JP3351946B2 (en) Light receiving position detecting circuit and distance detecting device using the same
US4429330A (en) Infrared matrix using transfer gates
KR20120106865A (en) Device for detecting laser spot with matrix deviometer
KR102028223B1 (en) Range sensor and range image sensor
JPH065832A (en) Apparatus and method for position detection
JP2658843B2 (en) Single photon measuring device
EP0543537A2 (en) Photodetector having reduced blind area
JP2510999B2 (en) Infrared solid-state imaging device
EP0065599B1 (en) Infrared imaging system with infrared detector matrix, and method of imaging infrared energy