JPH0159443B2 - - Google Patents

Info

Publication number
JPH0159443B2
JPH0159443B2 JP61240204A JP24020486A JPH0159443B2 JP H0159443 B2 JPH0159443 B2 JP H0159443B2 JP 61240204 A JP61240204 A JP 61240204A JP 24020486 A JP24020486 A JP 24020486A JP H0159443 B2 JPH0159443 B2 JP H0159443B2
Authority
JP
Japan
Prior art keywords
bearing
sleeve
bearing member
contacts
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61240204A
Other languages
Japanese (ja)
Other versions
JPS6293514A (en
Inventor
Juji Shiotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP24020486A priority Critical patent/JPS6293514A/en
Publication of JPS6293514A publication Critical patent/JPS6293514A/en
Publication of JPH0159443B2 publication Critical patent/JPH0159443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

【発明の詳細な説明】 本発明は回転軸軸受装置に関し、特に軸受部材
の摩耗による軸受部の遊隙を自動的に調整して回
転軸の安定回転等を図つた軸受装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotating shaft bearing device, and more particularly to a bearing device that automatically adjusts play in a bearing portion due to wear of a bearing member to ensure stable rotation of a rotating shaft.

化学プラトン、水処理設備における撹拌装置、
沈澱装置(クラリフアイア、シツクナ等)、スク
リユーコンベア等の駆動装置によつて回転駆動さ
れる回転軸を有する機器では、反駆動装置例の軸
端部を軸受によつて支持するようにしている。
Chemistry Plato, stirring equipment in water treatment equipment,
In equipment having a rotating shaft that is rotationally driven by a drive device such as a sedimentation device (clarifier, shaker, etc.) or a screw conveyor, the shaft end of the anti-drive device is supported by a bearing.

特に撹拌装置における撹拌軸、クラリフアイ
ア、シツクナ等の沈澱装置におけるスクレーパ回
転軸のようなオーバハング軸における軸端部の軸
受は、軸端の撓み防止即ち、軸振れ防止用として
重要なものである。又、上記軸受は機器容器内に
内装される場合が多い。これは、軸受を機器容器
外に設けた場合、どうしても回転軸の軸封部が必
要となるが、該軸封部を設けても機器容器内部液
中の微細固体粒子等の影響により完全なシールが
困難であり、特に内部液漏洩によつて危険が生じ
たり、軸封部の設置位置によつては軸封部が上記
の様に液相と接するのではなく気相と接する場合
もあり、内部気体漏洩により危険が生ずることも
あるため軸受を内装することにより極力軸封部を
なくして内部液又は内部気体の漏洩を防止する必
要があるからである。
In particular, bearings at the end of an overhanging shaft such as a stirring shaft in a stirring device, a scraper rotating shaft in a settling device such as a clarifier, or a shaker are important for preventing deflection of the shaft end, that is, for preventing shaft vibration. Further, the above-mentioned bearing is often housed inside the equipment container. This is because when a bearing is installed outside the equipment container, a shaft seal for the rotating shaft is required, but even if such a shaft seal is provided, a complete seal cannot be achieved due to the influence of fine solid particles in the liquid inside the equipment container. This is difficult, especially due to internal liquid leakage, and depending on the installation position of the shaft seal, the shaft seal may come into contact with the gas phase instead of the liquid phase as described above. This is because internal gas leakage may cause danger, so it is necessary to prevent leakage of internal liquid or internal gas by installing the bearing internally and eliminating shaft seals as much as possible.

第1図A〜Cは上記撹拌装置、沈澱装置、スク
リユーコンベアの各構造を示す図で、各図におい
て、Aはモータ等の駆動装置、Bはカツプリン
グ、Cは回転軸、Dは駆動装置側の軸受、Eは軸
封部、F又はF′は反駆動装置側の軸受である。
Figures 1 A to C are diagrams showing the structures of the stirring device, sedimentation device, and screw conveyor. In each figure, A is a drive device such as a motor, B is a coupling, C is a rotating shaft, and D is a drive device. The bearing on the side, E is the shaft seal, and F or F' is the bearing on the side opposite to the drive device.

上記軸受F又はF′の構造を撹拌装置におけるフ
ートベアリングを例にとつて第2図に基づき説明
する。
The structure of the bearing F or F' will be explained with reference to FIG. 2, taking a foot bearing in a stirring device as an example.

即ち、第2図において、1は回転軸、2はその
軸端部外周に嵌着固定されたスリーブ、3は該ス
リーブ2外周面に摺接して該スリーブ2を回転自
由に支持する軸受部材としての軸受ブツシユで、
円筒形状の軸受ハウジング4内周に嵌合固定され
ている。5は該軸受ハウジング4を撹拌装置本体
底部6に固定支持するための軸受マウントであ
る。
That is, in FIG. 2, 1 is a rotating shaft, 2 is a sleeve fitted and fixed on the outer periphery of the shaft end, and 3 is a bearing member that slides on the outer peripheral surface of the sleeve 2 and supports the sleeve 2 freely. With the bearing bush,
It is fitted and fixed to the inner periphery of the cylindrical bearing housing 4. Reference numeral 5 designates a bearing mount for fixedly supporting the bearing housing 4 on the bottom portion 6 of the stirring device main body.

かかる軸受装置においては、スリーブ2外周面
と軸受ブツシユ3内周面との摺接面に撹拌装置本
体の内部液中に含まれる微細固体粒子等の異物が
入り込んで、該軸受ブツシユ3内周面が次第に摩
耗し、前記摺接面に遊隙が生じることになり、次
のような諸問題が生じる。
In such a bearing device, foreign matter such as fine solid particles contained in the internal liquid of the stirring device body enters the sliding contact surface between the outer circumferential surface of the sleeve 2 and the inner circumferential surface of the bearing bushing 3, and the inner circumferential surface of the bearing bushing 3 is damaged. gradually wears out, and a gap is created in the sliding contact surface, resulting in the following problems.

即ち、上述のような軸端部での遊隙及び軸に掛
かるアンバランス荷重によつて生ずる軸端部の撓
みは軸系の危険速度と関係し、その結果、軸は激
しく振動することになる。
In other words, the deflection of the shaft end caused by the play at the shaft end and the unbalanced load applied to the shaft as described above is related to the critical speed of the shaft system, and as a result, the shaft vibrates violently. .

その振動が原因で駆動装置部の歯車の損傷、軸
封部のパツキン、ラビリンスパツキン、メカニカ
ルシール等を損傷することになる。
The vibrations cause damage to the gears of the drive unit, the packing of the shaft seal, the labyrinth packing, the mechanical seal, etc.

特に、撹拌装置等の化学プラトンにおける機器
においては、回転軸及び軸受部の破損の原因とな
り、又、軸封部からの危険な内部液又は内部気体
の漏洩等の思わぬ事故が発生する虞がある。
In particular, in chemical Plato equipment such as stirring devices, it may cause damage to the rotating shaft and bearings, and there is a risk of unexpected accidents such as dangerous internal liquid or gas leaking from the shaft seal. be.

このような問題点を解消すべく、従来、特公昭
45−37083号公報に示す技術が知られている。
In order to solve these problems, the
A technique disclosed in Japanese Patent No. 45-37083 is known.

かかる技術は、ベアリング装置を担持しかつ支
持するスリーブ端部との間にばねを介装し、該ば
ねの弾性力により該ベアリング装置を軸端部表面
のテーパ面に押し付けることにより、軸とスリー
ブとの接触面の摩損を自動的に補整するようにし
たものである。
In this technique, a spring is interposed between the end of the sleeve that carries and supports the bearing device, and the elastic force of the spring presses the bearing device against the tapered surface of the end of the shaft. This system automatically compensates for wear and tear on the contact surface.

しかしながら、このような従来のものでは、軸
と軸受との摺接面に異物が入り込んで、該軸受が
次第に摩耗し、前記摺接面に遊隙が生じた場合の
解決策にはなるが、その時の摩耗量を知ることは
できず、軸受寿命と保守点検時期を事前に知るこ
とはできない。
However, such conventional devices provide a solution when foreign matter gets into the sliding contact surface between the shaft and the bearing, causing the bearing to gradually wear out and creating a play in the sliding contact surface. It is not possible to know the amount of wear at that time, and it is not possible to know in advance the bearing life and maintenance inspection timing.

尚、従来、実公昭29−2593号公報に示されるよ
うに、軸受の摩耗量を検出するに当たつて、軸受
の摩耗により移動する回転軸の移動量を検出する
べく、回転軸の移動に応じて変化する光源からの
光の映像を目視して、回転軸の移動量を知る構成
のものがある。
In addition, as shown in Japanese Utility Model Publication No. 29-2593, in order to detect the amount of wear on a bearing, the amount of movement of the rotating shaft due to wear of the bearing is detected. There is a configuration in which the amount of movement of the rotation axis can be determined by visually observing an image of light from a light source that changes accordingly.

しかし、このものでは、例えば機器本体内にだ
け回転軸が配設される軸受装置の場合や上記のよ
うな接触面の摩損を実動的に補正し、回転軸が移
動しないように構成された軸受装置の場合は、軸
受部材の摩耗量を知ることができない。さらに、
回転軸の非常に小さい移動量を目視した場合に、
見誤つたりする可能性が大きく、確実かつ正確に
摩耗量を知ることはできないという欠点がある。
However, in this case, for example, in the case of a bearing device in which the rotating shaft is disposed only inside the device body, or the above-mentioned wear and tear on the contact surface is actually compensated for, the rotating shaft is configured to not move. In the case of a bearing device, the amount of wear on the bearing member cannot be known. moreover,
When visually observing a very small amount of movement of the rotating shaft,
There is a high possibility of misjudgment, and the disadvantage is that the amount of wear cannot be determined reliably and accurately.

そこで、本発明は以上のような従来のような従
来の実情に鑑み、軸受部材と回転軸に設けたスリ
ーブとの軸受部摺接面う円錐台の外周面形状をな
すテーパ面に形成すると共に、前記スリーブ又は
軸受部材の少なくともいずれか一方の部材を相手
側と摺接する方向に常時押圧付勢する構成によ
り、軸受部材の摩耗による軸受部の遊隙をなく
し、該遊隙が生じることにより派生する諸々の欠
点を悉く解消し、しかも、軸受若しくはスリーブ
の押圧移動量を利用して摩耗量の検出を行う構成
を備え、もつて軸受部材の保守、点検性の向上並
びに軸受部材の寿命向上を図り、特に、例えば機
器本体内にだけ回転軸が配設される軸受装置の場
合にあつても、軸受部材の摩耗量を知ることがで
きると共に、確実かつ正確に摩耗量を知ることの
できる軸受装置を提供するものである。
Therefore, in view of the conventional circumstances as described above, the present invention provides a tapered surface that forms the outer peripheral surface shape of a truncated cone on the sliding contact surface of the bearing member and the sleeve provided on the rotating shaft. , the construction that constantly presses and biases at least one of the sleeve and the bearing member in the direction of sliding contact with the other party eliminates the play in the bearing part due to wear of the bearing member, and the generated play is caused by the play. In addition, it is equipped with a configuration that detects the amount of wear using the amount of pressure movement of the bearing or sleeve, thereby improving maintenance and inspection of the bearing member and extending the life of the bearing member. In particular, even in the case of a bearing device in which the rotating shaft is disposed only within the equipment body, the amount of wear on the bearing member can be known, and the amount of wear can be determined reliably and accurately. It provides equipment.

以下、本発明の実施例を第3図〜第7図に基づ
いて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 7.

第3図において、12は図示しない回転軸下端
部に軸着された円筒状のスリーブであり、該スリ
ーブ12は回転軸下端部外周に設けられた小径部
外周に嵌合されかつ後端壁から図示しないナツト
部材を介して回転軸にねじ込んだ図示しないボル
トにより固定されている。40はスリーブ12内
周面に摺接して該スリーブ12を回転自由に支持
する軸受部材である。スリーブ12内周面と軸受
部材40外周面との摺接面は上方に向かつてすぼ
まる円錐台外周面形状をなすテーパ面12a,4
0aに形成されている。
In FIG. 3, reference numeral 12 denotes a cylindrical sleeve that is pivotally attached to the lower end of the rotating shaft (not shown). It is fixed by a bolt (not shown) screwed into the rotating shaft via a nut member (not shown). Reference numeral 40 denotes a bearing member that slides on the inner circumferential surface of the sleeve 12 and supports the sleeve 12 in a freely rotatable manner. The sliding surfaces between the inner circumferential surface of the sleeve 12 and the outer circumferential surface of the bearing member 40 are tapered surfaces 12a and 4 having a truncated conical outer circumferential shape that tapers upward.
It is formed at 0a.

尚、本実施例においては、上記スリーブ12の
材質は主として摺接するテーパ面12aを表面硬
化処理した金属材料であり、軸受部材40の材質
は銅合金、アルミ合金、合成樹脂材料であるが、
特に限定されるものではない。
In this embodiment, the material of the sleeve 12 is mainly a metal material whose surface hardening is applied to the tapered surface 12a that comes into sliding contact, and the material of the bearing member 40 is a copper alloy, an aluminum alloy, or a synthetic resin material.
It is not particularly limited.

そして、軸受部材40を、軸方向移動可能に支
持しかつ常時スリーブ12に摺接する方向に押圧
付勢する加圧装置が設けられない。即ち、41は
軸受部材40外周に設けられ該軸受部材40を支
持する支持部材としての有底円筒状の軸受ハウジ
ングである。軸受部材40は、この軸受ハウジン
グ41内周部に軸方向摺動可能に嵌入されてい
る。
Further, a pressurizing device that supports the bearing member 40 so as to be movable in the axial direction and always presses the bearing member 40 in a direction in which it comes into sliding contact with the sleeve 12 is not provided. That is, 41 is a cylindrical bearing housing with a bottom, which is provided on the outer periphery of the bearing member 40 and serves as a support member for supporting the bearing member 40. The bearing member 40 is fitted into the inner peripheral portion of the bearing housing 41 so as to be slidable in the axial direction.

尚、軸受部材40外周面には縦方向に図示しな
いキー溝が形成され、該キー溝内に軸受ハウジン
グ41周壁にねじ込み固定された図示しない棒先
止めねじの頭部が突入されて該軸受部材40の回
転を止めている。又、図示していないが棒先めね
じの代わりにスベリキーを使用しても良い。13
は軸受ハウジング41上端部内周面と軸受部材4
0外周面との摺接面に介装されたシール部材とし
てのOリングである。
A key groove (not shown) is formed in the outer circumferential surface of the bearing member 40 in the vertical direction, and the head of a set screw (not shown) screwed into the peripheral wall of the bearing housing 41 is inserted into the key groove. 40 rotation is stopped. Also, although not shown, a slip key may be used instead of the female thread at the end of the rod. 13
is the inner peripheral surface of the upper end of the bearing housing 41 and the bearing member 4
This is an O-ring as a sealing member interposed in the sliding contact surface with the outer peripheral surface.

そして、軸受部材40下端面と軸受ハウジング
41内空間との間に密閉された圧力室Hが形成さ
れ、この圧力室Hに、先端加圧流体供給口42a
が軸受ハウジング41周壁を貫通して接続された
加圧空気供給管42を介して第4図に示すような
加圧空気供給回路57からの加圧空気を供給し
て、該圧力室Hを加圧し、軸受部材40をスリー
ブ12方向に押し付けるように構成されている。
A sealed pressure chamber H is formed between the lower end surface of the bearing member 40 and the inner space of the bearing housing 41, and the tip pressurized fluid supply port 42a is connected to the pressure chamber H.
The pressure chamber H is pressurized by supplying pressurized air from a pressurized air supply circuit 57 as shown in FIG. It is configured to press the bearing member 40 in the direction of the sleeve 12.

上記加圧空気供給回路57において、57aは
エアコンプレツサー等を備えた加圧空気源、57
bは圧力調整弁、57cはチエツク弁、57dは
リリーフ弁、57eは圧力計であり、このような
加圧空気供給回路57によつて圧力室Hに常時圧
力調整された加圧空気が供給される。
In the pressurized air supply circuit 57, 57a is a pressurized air source equipped with an air compressor or the like;
b is a pressure regulating valve, 57c is a check valve, 57d is a relief valve, and 57e is a pressure gauge, and such pressurized air supply circuit 57 constantly supplies pressurized air to the pressure chamber H. Ru.

尚、上記実施例における加圧空気源は、機器に
付随する空気系統から取り出せば良く、又、空気
の他N2ガス等の不活性ガス等を使用しても良い。
Note that the pressurized air source in the above embodiments may be taken out from the air system attached to the equipment, and in addition to air, an inert gas such as N 2 gas may be used.

上記実施例では、圧力室Hの加圧流体として空
気を用いたが、機器紛体内部液と共通の液を加圧
流体として用いても良く。この場合は、第5図に
示すように加圧空気供給回路と圧力室Hとの間に
機器本体内部液と共通の液を入れたタンク58を
介装し、加圧空気圧を液圧に変換して圧力室間K
に激圧を加えるようにする。加圧流体として共通
の液がスラリー等の内部液中に微細固体粒子が多
くある場合、該微細固体粒子を取り除いたものを
使用する。
In the above embodiment, air was used as the pressurized fluid in the pressure chamber H, but a liquid common to the internal liquid of the device powder may be used as the pressurized fluid. In this case, as shown in Fig. 5, a tank 58 containing a liquid common to the internal liquid of the device is interposed between the pressurized air supply circuit and the pressure chamber H to convert pressurized air pressure into liquid pressure. between pressure chambers
Apply extreme pressure to the When a common liquid as a pressurized fluid has many fine solid particles in the internal liquid such as slurry, the liquid from which the fine solid particles have been removed is used.

かかる構成において、回転軸に図示しないモー
タ等の駆動装置から回転駆動力が伝達されると、
該回転軸はスリーブ12を介して軸受部材40に
軸受されて回転する。
In such a configuration, when rotational driving force is transmitted to the rotating shaft from a driving device such as a motor (not shown),
The rotating shaft is rotated while being supported by a bearing member 40 via the sleeve 12.

ここで、機器本体の内部に含まれる微細固体粒
子等の異物はスリーブ12下端面と軸受部材40
外周面との境部に噛み込まれて該スリーブ12と
軸受部材40との摺接面に浸入することになり、
このため、軸受部材40外周のテーパ面40aは
次第に摩耗する。
Here, foreign matter such as fine solid particles contained inside the device main body is removed from the lower end surface of the sleeve 12 and the bearing member 40.
It gets caught in the boundary between the sleeve 12 and the bearing member 40 and enters the sliding contact surface between the sleeve 12 and the bearing member 40.
Therefore, the tapered surface 40a on the outer periphery of the bearing member 40 gradually wears out.

しかし、上記構成の軸受装置によれば、軸受部
材40が加圧空気によつて上方向に付勢されてい
るため、前記軸受部材40外周のテーパ面40a
の摩耗が生じてもこの摩耗の分だけ軸受部材40
が軸受ハウジング41内を上方向に摺動して該テ
ーパ面40aがスリーブ12内周のテーパ面12
aに押し付けられて両テーパ面12a,40aの
状態を維持するから両テーパ面12a,45aの
間には遊隙が生じない。
However, according to the bearing device configured as described above, since the bearing member 40 is urged upward by pressurized air, the tapered surface 40a on the outer periphery of the bearing member 40
Even if wear occurs, the bearing member 40 will be damaged by the amount of wear.
slides upward within the bearing housing 41, and the tapered surface 40a forms the tapered surface 12 on the inner circumference of the sleeve 12.
Since both the tapered surfaces 12a and 40a maintain their state by being pressed by the contact point a, no play is generated between the two tapered surfaces 12a and 45a.

以上の軸受装置において、本発明は更に、押圧
移動される軸受部材40の移動量を検出して、該
軸受部材40の外周のテーパ面40aの摩耗量を
検出する摩耗量検出装置43を設ける。
In the above bearing device, the present invention further includes a wear amount detection device 43 that detects the amount of movement of the bearing member 40 that is pressed and moved, and detects the amount of wear on the tapered surface 40a on the outer periphery of the bearing member 40.

この摩耗量検出装置43は押圧移動される軸受
部材40が摩耗に伴つて所定量移動したことを検
出回路により電気的に検出して報知する構成であ
る。
This wear amount detection device 43 is configured to electrically detect and notify by a detection circuit that the bearing member 40 that is pressed and moved has moved by a predetermined amount due to wear.

即ち、図中、44,45は軸受ハウジング41
内壁の凹部47に締付具46を用いて夫々固定し
た第6図に示すような検出回路の一対の接点で、
先端部が軸受部材40外周に設けられた溝48内
に突入配設されている。49は接点44,45
夫々に接続された電源リード線で機器容器外部か
ら軸受ハウジング41外部に至り、更に、軸受ハ
ウジング41壁内を通つて凹部47内に突入して
いる。
That is, in the figure, 44 and 45 indicate the bearing housing 41.
A pair of contacts of a detection circuit as shown in FIG.
The tip portion is arranged to protrude into a groove 48 provided on the outer periphery of the bearing member 40. 49 is contact point 44, 45
The power lead wires connected to each other extend from the outside of the equipment container to the outside of the bearing housing 41, and further extend into the recess 47 through the inside of the wall of the bearing housing 41.

50は前記接点44,45同士を接続して第6
図に示す検出回路を閉にするための、即ち、接点
用の通電路を構成する金属リングで、前記軸受部
材40外周の溝48に嵌め込まれ、該金属リング
50外周面は軸受部材40外周面と同一面に露呈
するように取り付けられている。
50 connects the contacts 44 and 45 to form a sixth
This is a metal ring that is used to close the detection circuit shown in the figure, that is, to constitute an energizing path for the contact, and is fitted into the groove 48 on the outer periphery of the bearing member 40, and the outer periphery of the metal ring 50 is the outer periphery of the bearing member 40. It is attached so that it is exposed on the same surface as the

尚、第6図において、51は接点44に接続さ
れた電源リード線49に介装されたブザー若しく
はランプ等の警報器である。
In FIG. 6, reference numeral 51 indicates an alarm device such as a buzzer or a lamp connected to the power lead wire 49 connected to the contact point 44.

従つて、軸受部材40の摩耗に伴い該軸受部材
40が所定距離上方向に移動すると、金属リング
50が両接点44,45に接触し、これにより第
6図に示す検出回路が閉となり、ブザー若しくは
ランプ等の警報器51がオンとなつて、軸受部材
40が所定量摩耗したことを報知する。
Therefore, when the bearing member 40 moves upward by a predetermined distance due to wear of the bearing member 40, the metal ring 50 comes into contact with both contacts 44 and 45, thereby closing the detection circuit shown in FIG. Alternatively, an alarm 51 such as a lamp is turned on to notify that the bearing member 40 has worn out a predetermined amount.

そして、予め知りたい摩耗量に対応して、金属
リング50と接点44,45の取付位置を設定し
ておけば、軸受部材40の交換時期を自動的に知
らせることができるわけである。
If the mounting positions of the metal ring 50 and the contacts 44, 45 are set in accordance with the amount of wear that is desired to be known in advance, it is possible to automatically notify the user when it is time to replace the bearing member 40.

上記の構成における接点用の通電路は、実施例
のように金属リング50に限定されず、例えば、
軸受部材40内を直線的に結ぶような棒状部材に
より構成しても良い。
The energizing path for the contact in the above configuration is not limited to the metal ring 50 as in the embodiment, but for example,
The bearing member 40 may be configured by a rod-shaped member that connects the inside of the bearing member 40 linearly.

又、軸受部材40が銅合金等の導電性の場合
は、当然該軸受部材40を接点用の通電路とする
ことができるが、その場合、第3図の接点44の
如く該軸受部材40に溝を掘る等してその接点が
予め知りたい摩耗量に対応する位置まで該軸受部
材40と接しないようにしなければならない。
In addition, if the bearing member 40 is made of conductive material such as a copper alloy, the bearing member 40 can of course be used as a conductive path for the contact, but in that case, the bearing member 40 may be It is necessary to prevent the contact point from coming into contact with the bearing member 40 to a position corresponding to the amount of wear that is desired to be known in advance, such as by digging a groove.

上記に示した実施例は、本発明をスリーブ内周
面と軸受部材外周面とが摺接する構造の軸受装置
に適用した例を示したが、スリーブ外周面と軸受
部材内周面とが摺接する構造の軸受装置に適用し
ても良い。
The embodiment shown above shows an example in which the present invention is applied to a bearing device having a structure in which the inner circumferential surface of the sleeve and the outer circumferential surface of the bearing member are in sliding contact, but the outer circumferential surface of the sleeve and the inner circumferential surface of the bearing member are in sliding contact. It may also be applied to structural bearing devices.

この実施例を第7図A,Bに示すと、同図Aの
場合は、回転軸11先端外周に嵌着固定したスリ
ーブ60が円筒状に形成された軸受部材61内周
部に嵌入され、該スリーブ60外周面と軸受部材
61内周面との摺接面は上方に向けて拡がる円錐
台外周面形状をなすテーパ面となる。
This embodiment is shown in FIGS. 7A and 7B. In the case of FIG. 7A, a sleeve 60 fitted and fixed to the outer periphery of the tip end of the rotating shaft 11 is fitted into the inner periphery of the cylindrical bearing member 61. The sliding contact surface between the outer circumferential surface of the sleeve 60 and the inner circumferential surface of the bearing member 61 is a tapered surface in the shape of a truncated conical outer circumferential surface that expands upward.

そして、加圧装置としては、圧縮スプリング6
3の弾性力を利用して軸受ハウジング62に摺動
自由に支持した軸受部材を常時スリーブ60に摺
接させる方向に押し付ける構成にする。
As a pressurizing device, a compression spring 6
The bearing member, which is slidably supported by the bearing housing 62, is always pressed in a direction in which it is brought into sliding contact with the sleeve 60 by using the elastic force of No. 3.

尚、この実施例では、摺接面に入り込んだスラ
リー等は、軸受部材61の空間Cに入り、ここか
らスラリー排出口64を介して軸受ハウジング6
2内空間Dに至り、更に、スラリー排出口65を
介して機器本体内空間Eに効率良く排出される。
In this embodiment, the slurry and the like that have entered the sliding surface enter the space C of the bearing member 61, and from there, the slurry and the like enter the bearing housing 6 through the slurry discharge port 64.
The slurry is further efficiently discharged to the internal space E of the device main body via the slurry discharge port 65.

第7図Bに示した実施例は、スリーブ側を軸受
部材側に押し付ける構造であり、スリーブ70は
先端が閉塞された円筒状に形成されて、回転軸1
1先端外周に摺動自由に嵌挿されている。そし
て、スリーブ70はこれの先端部内面と回転軸1
1先端面との間に介装された圧縮スプリング73
により常時外周のテーパ面が軸受部材71内周の
テーパ面に押し付けられて摺接する方向に付勢さ
れる。この場合、軸受部材71は軸受ハウジング
72内に固定される。尚、この実施例において、
スリーブ70先端に形成された流体移動用孔74
はスリーブ70を回転軸11に組み付ける場合の
スリーブ70内空間Fのエア抜き並びに回転軸1
1の回転時の軽い軸振動に伴うスリーブ70の上
下エキスパンドをざ許容するため前記空間Fの流
体移動を行なわせるものである。尚、第7図A,
Bに示した実施例において、支持部材24、軸受
マウント21′及び機器本体底部22′によつて空
間Kを気密に形成し、機器本体底部22′に溜ま
つたスラリー等を該空間Kの機器本体底部22′
に設けられたドレーン弁(図示せず)により排出
させても良く、又、該空間Kに空気、不活性ガス
等の流体を送り、機器本体内部圧力より僅かに高
い圧力に保持してもさしつかえない。
The embodiment shown in FIG. 7B has a structure in which the sleeve side is pressed against the bearing member side, and the sleeve 70 is formed in a cylindrical shape with a closed end, and the rotating shaft 70 is
1. It is slidably inserted into the outer periphery of the tip. The sleeve 70 is connected to the inner surface of the tip end of the sleeve 70 and the rotating shaft 1.
1 compression spring 73 interposed between the tip end surface
As a result, the tapered surface on the outer circumference is always pressed against the tapered surface on the inner circumference of the bearing member 71 and is biased in the direction of sliding contact. In this case, the bearing member 71 is fixed within the bearing housing 72. In this example,
Fluid movement hole 74 formed at the tip of the sleeve 70
is for removing air from the inner space F of the sleeve 70 and rotating shaft 1 when the sleeve 70 is assembled to the rotating shaft 11.
This is to allow fluid movement in the space F to allow vertical expansion of the sleeve 70 due to slight shaft vibration when the shaft rotates. In addition, Fig. 7A,
In the embodiment shown in B, a space K is airtightly formed by the support member 24, the bearing mount 21', and the bottom part 22' of the equipment body, and the slurry etc. accumulated in the bottom part 22' of the equipment body is removed from the equipment in the space K. Main body bottom 22'
It may be discharged by a drain valve (not shown) provided in the space K, or a fluid such as air or inert gas may be sent to the space K to maintain the pressure slightly higher than the internal pressure of the device body. do not have.

以上のような軸受装置において、本発明では第
3図に示したような摩耗量検出装置を夫々適用す
れば良い。
In the present invention, a wear amount detection device as shown in FIG. 3 may be applied to each of the bearing devices as described above.

以上説明したように、本発明によれば、回転軸
側のスリーブと軸受部材との摺接面を円錐台外周
面形状をなすテーパ面に形成し、該スリーブ又は
軸受部材の少なくともいずれか一方の部材を相手
側と摺接する方向に押し付けて、テーパ面相互を
常時摺接させる加圧装置を設けた構成により、軸
受部材が摩耗を生じても、該軸受部材とスリーブ
間に遊隙が生じることがなく、回転軸の軸振れを
防止して該軸の安定回転を図れると共に、該軸振
れが原因で生じる軸封部からの機器内部液の漏洩
を効果的に防止でき、特に、内部液に危険なもの
を使用したものでは、安全性を高めることができ
る。又、以上のような効果により、軸受部材が摩
耗してもその機能は持続することができるので軸
受部材の寿命向上を図れる。
As explained above, according to the present invention, the sliding contact surface between the sleeve on the rotating shaft side and the bearing member is formed into a tapered surface having a truncated conical outer circumferential shape, and at least one of the sleeve or the bearing member is Due to the configuration provided with a pressure device that presses the member in the direction of sliding contact with the other side and constantly brings the tapered surfaces into sliding contact with each other, even if the bearing member wears out, there is no play between the bearing member and the sleeve. It is possible to prevent shaft runout of the rotating shaft and achieve stable rotation of the shaft, and also to effectively prevent leakage of the internal fluid of the equipment from the shaft seal caused by the shaft runout. Safety can be increased if dangerous materials are used. Further, due to the above-described effects, even if the bearing member is worn out, its function can be maintained, so that the life of the bearing member can be extended.

特に、本発明では、摩耗に伴つて押圧移動され
るスリーブ若しくは軸受部材の移動量を検出し
て、該軸受部材の摩耗量を検出するように構成し
たので、摩耗量を容易に確認でき、軸受寿命と保
守・点検時期を事前に知ることができ、ひいては
軸受寿命の向上と保守・点検作業性が良くなり、
保守・点検の面倒な内装形軸受装置に最適であ
り、この場合には、回転軸の軸封部を不用とする
ことができるので、軸封部があることによる機器
内部液漏洩の危険性を極力防止できるという利点
がある。
In particular, the present invention is configured to detect the amount of wear of the bearing member by detecting the amount of movement of the sleeve or bearing member that is pressed and moved due to wear, so the amount of wear can be easily confirmed, and the bearing member You can know the lifespan and maintenance/inspection timing in advance, which in turn improves bearing life and maintenance/inspection workability.
It is ideal for internal bearing devices that require troublesome maintenance and inspection.In this case, the shaft seal of the rotating shaft can be made unnecessary, reducing the risk of fluid leakage inside the device due to the shaft seal. The advantage is that it can be prevented as much as possible.

又、本発明による摩耗量検出装置は、押圧移動
される部材を移動可能に支持する支持部材に固定
された検出回路の少なくとも一対の接点と、該一
対の接点夫々に接続された検出回路の電源リード
線と、押圧移動される部材に取り付けられた前記
接点用の通電路と、から構成され、軸受部材の摩
耗に伴う移動時に、前記一対の接点が接点用の通
電路に接触することにより前記検出回路を作動さ
せるようにした構成であるから、例えば、機器本
体内だけに回転軸が配設される軸受装置であつて
も、機器本体外部に設置された検出回路の作動に
より軸受部材の摩耗量を容易に知ることができる
と共に、軸受部材の摩耗に伴う軸受部材またはス
リーブの非常に小さい移動量を目視する必要がな
く、確実かつ正確に摩耗量を知ることができる。
Further, the wear amount detection device according to the present invention includes at least one pair of contacts of a detection circuit fixed to a support member that movably supports a member to be pressed and moved, and a power source of the detection circuit connected to each of the pair of contacts. It is composed of a lead wire and an energizing path for the contact that is attached to a member that is pressed and moved, and when the bearing member is moved due to wear, the pair of contacts contact the energizing path for the contact, thereby causing the contact to energize. Since the configuration is such that the detection circuit is activated, for example, even in a bearing device where the rotating shaft is installed only inside the equipment body, the wear of the bearing member due to the activation of the detection circuit installed outside the equipment body can be avoided. In addition to being able to easily determine the amount of wear, there is no need to visually observe the very small amount of movement of the bearing member or sleeve due to wear of the bearing member, and the amount of wear can be determined reliably and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Cは夫々撹拌装置、沈澱装置、スク
リユーコンベアを示す概略図、第2図は第1図A
の撹拌装置における軸受装置の従来例を示す縦断
面図、第3図は本発明に係わる軸受装置の構造を
示す縦断面図、第4図及び第5図は加圧装置とし
て加圧流体圧を利用した例を示す加圧流体供給回
路図、第6図は第3図に示した摩耗量検出装置の
一例である表示回路を示す図、第7図は他の実施
例を示す縦断面図である。 12,60,70……スリーブ、15,40,
61,71……軸受部材、12a,40a……テ
ーパ面、41,62,72……軸受ハウジング、
63,73……圧縮スプリング、42……加圧空
気供給管、43……摩耗量検出装置、44,45
……接点、49……電源リード線、50……金属
リング、51……警報器、57……加圧空気供給
回路、H……圧力室。
Figures 1A to 1C are schematic diagrams showing the stirring device, sedimentation device, and screw conveyor, respectively, and Figure 2 is the same as Figure 1A.
FIG. 3 is a longitudinal sectional view showing the structure of the bearing device according to the present invention, and FIGS. 4 and 5 show a conventional example of a bearing device in a stirring device. FIG. 6 is a diagram showing a pressurized fluid supply circuit illustrating an example of its use, FIG. 6 is a diagram showing a display circuit which is an example of the wear amount detection device shown in FIG. 3, and FIG. 7 is a longitudinal sectional view showing another embodiment. be. 12,60,70...sleeve, 15,40,
61, 71... Bearing member, 12a, 40a... Tapered surface, 41, 62, 72... Bearing housing,
63, 73... Compression spring, 42... Pressurized air supply pipe, 43... Wear amount detection device, 44, 45
... Contact, 49 ... Power lead wire, 50 ... Metal ring, 51 ... Alarm, 57 ... Pressurized air supply circuit, H ... Pressure chamber.

Claims (1)

【特許請求の範囲】 1 回転軸に設けられたスリーブと該スリーブを
その内周面又は外周面に摺接して回転自由に軸受
する軸受部材との摺接面をテーパ面に形成する一
方、前記スリーブ又は軸受部材の少なくともいず
れか一方の部材を軸方向に移動可能に構成し、該
部材を軸方向に常時押圧付勢して他方の部材に摺
接させる加圧装置を設ける一方、押圧移動される
部材を移動可能に支持する支持部材に固定された
検出回路の少なくとも一対の接点と、該一対の接
点夫々に接続された検出回路の電源リード線と、
押圧移動される部材に取り付けられた前記接点用
の通電路と、から構成され、軸受部材の摩耗に伴
う一方の部材の移動時に、前記一対の接点が接点
用の通電路に接触することにより前記検出回路を
作動させるようにした摩耗量検出装置を設けたこ
とを特徴とする軸受装置。 2 スリーブ外周面と軸受部材内周面とが摺接す
る構成で、該スリーブ外周形状が先細り形状に、
該軸受部材内周形状が先端に向かつて径が大とな
る形状に形成されてなる特許請求の範囲第1項記
載の軸受装置。 3 スリーブ内周面と軸受部材外周面とが摺接す
る構成で、該スリーブ内周形状が先端に向かつて
径が大となる形状に、該軸受部材外周形状が先細
り形状に形成されてなる特許請求の範囲第1項記
載の軸受装置。 4 加圧装置はスプリング力によつて押圧力を作
用させる構成である特許請求の範囲第1項〜第3
項のいずれかに記載の軸受装置。 5 加圧装置は加圧流体によつて押圧力を作用さ
せる構成である特許請求の範囲第1項〜第3項の
いずれかに記載の軸受装置。
[Scope of Claims] 1. The sliding contact surface between the sleeve provided on the rotating shaft and the bearing member that freely rotatably supports the sleeve by slidingly contacting the inner peripheral surface or outer peripheral surface of the sleeve is formed into a tapered surface. At least one of the sleeve and the bearing member is configured to be movable in the axial direction, and a pressurizing device is provided that constantly presses and urges the member in the axial direction to slide into contact with the other member. at least one pair of contacts of a detection circuit fixed to a support member movably supporting a member that supports the member, and a power lead wire of the detection circuit connected to each of the pair of contacts;
an energizing path for the contacts attached to a member that is moved by pressure, and when one of the members moves due to wear of the bearing member, the pair of contacts contacts the energizing path for the contacts, thereby A bearing device characterized by being provided with a wear amount detection device that operates a detection circuit. 2. The outer peripheral surface of the sleeve is in sliding contact with the inner peripheral surface of the bearing member, and the outer peripheral shape of the sleeve is tapered,
2. The bearing device according to claim 1, wherein the inner peripheral shape of the bearing member is formed such that the diameter increases toward the tip. 3. A patent claim in which the inner circumferential surface of the sleeve and the outer circumferential surface of the bearing member are in sliding contact with each other, and the inner circumferential shape of the sleeve is formed in a shape whose diameter increases toward the tip, and the outer circumferential shape of the bearing member is formed in a tapered shape. The bearing device according to item 1. 4. Claims 1 to 3, wherein the pressurizing device is configured to apply a pressing force using a spring force.
The bearing device according to any of paragraphs. 5. The bearing device according to any one of claims 1 to 3, wherein the pressurizing device is configured to apply a pressing force using pressurized fluid.
JP24020486A 1986-10-11 1986-10-11 Bearing device Granted JPS6293514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24020486A JPS6293514A (en) 1986-10-11 1986-10-11 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24020486A JPS6293514A (en) 1986-10-11 1986-10-11 Bearing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5430081A Division JPS57171115A (en) 1981-04-13 1981-04-13 Bearing

Publications (2)

Publication Number Publication Date
JPS6293514A JPS6293514A (en) 1987-04-30
JPH0159443B2 true JPH0159443B2 (en) 1989-12-18

Family

ID=17056000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24020486A Granted JPS6293514A (en) 1986-10-11 1986-10-11 Bearing device

Country Status (1)

Country Link
JP (1) JPS6293514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389650U (en) * 1989-12-29 1991-09-12

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939052B2 (en) 2012-06-26 2016-06-22 株式会社Ihi Turbocharger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389650U (en) * 1989-12-29 1991-09-12

Also Published As

Publication number Publication date
JPS6293514A (en) 1987-04-30

Similar Documents

Publication Publication Date Title
US4889184A (en) Polished rod stuffing box with safety valve for a beam pumped production well
EP0738184B1 (en) Adjustable crusher
EP2965818B1 (en) Cone shaped crusher
JPH0159443B2 (en)
JPS6314204B2 (en)
US4721003A (en) Mixer drive apparatus
JPS63190976A (en) Mechanical shaft seal
CA2957533C (en) Top service clamping cylinders for a gyratory crusher
JPS6150165B2 (en)
JPS6311532B2 (en)
JP2019211003A (en) Electric cylinder
US5362201A (en) Water pump lubricating chamber arrangement for motor vehicles
WO2009139694A1 (en) Anti-spin assembly
JPS6293521A (en) Bearing device
KR20030007295A (en) Self alignment type lower bearing and lubricating system for screw pump
JP3017449B2 (en) Vertical mill
JP2012077771A (en) Stirring device
JP2005256959A (en) Piston advancing limit alarming device of disc brake device
CN212296287U (en) Packing box
KR970006664B1 (en) Device for producing granulates
JPH11343995A (en) Shaft seal part structure of impeller shaft of pump
US5909170A (en) Speed reducer with pressure sensor
KR960006420B1 (en) Automatic lubrication device
CN2097919U (en) Machinery sealed device of impurity pump
GB2261265A (en) Mechanical face seals