JPS6311532B2 - - Google Patents

Info

Publication number
JPS6311532B2
JPS6311532B2 JP56054299A JP5429981A JPS6311532B2 JP S6311532 B2 JPS6311532 B2 JP S6311532B2 JP 56054299 A JP56054299 A JP 56054299A JP 5429981 A JP5429981 A JP 5429981A JP S6311532 B2 JPS6311532 B2 JP S6311532B2
Authority
JP
Japan
Prior art keywords
bearing
sleeve
space
bearing member
pressurized fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56054299A
Other languages
Japanese (ja)
Other versions
JPS57171114A (en
Inventor
Juji Shiotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP5429981A priority Critical patent/JPS57171114A/en
Publication of JPS57171114A publication Critical patent/JPS57171114A/en
Publication of JPS6311532B2 publication Critical patent/JPS6311532B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/02Sliding-contact bearings
    • F16C25/04Sliding-contact bearings self-adjusting

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 本発明は回転軸軸受装置に関し、特に軸受部材
の摩擦による軸受部の隙間を調整し回転軸の安定
回転等を図つた軸受装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotating shaft bearing device, and more particularly to a bearing device that achieves stable rotation of a rotating shaft by adjusting a gap in a bearing portion caused by friction between bearing members.

化学プラント、水処理設備における撹拌装置、
沈澱装置(クラリフアイア、シツクナ等)、スク
リユーコンベア等駆動装置によつて回転駆動され
る回転軸を有する機器では、反駆動装置側の軸端
部を軸受によつて支持するようにしている。
Stirring equipment in chemical plants and water treatment equipment,
In equipment having a rotating shaft that is rotationally driven by a drive device, such as a sedimentation device (clarifier, shaker, etc.) or a screw conveyor, the end of the shaft on the opposite side of the drive device is supported by a bearing.

特に撹拌装置における撹拌軸、クラリフアイ
ア、シツクナ等の沈澱装置におけるスクレーパ回
転軸のようなオーバハング軸における軸端部の軸
受は、軸端の撓み防止即ち、軸振れ防止用として
重要なものである。又、上記軸受は機器本体内に
内装される場合が多い。これは、軸受を機器本体
外に設けた場合、どうしても回転軸の軸封部が必
要となるが、該軸封部を設けても機器本体内部液
中の微細固体粒子等の影響により完全なシールが
困難であり、特に内部液漏洩によつて危険が生じ
たり、軸封部の設置位置によつて軸封部が上記の
様に液相と接するのではなく気相と接する場合も
あり、内部気体漏洩により危険が生じることもあ
るため軸受を内装することにより極力軸封部をな
くして内部液又は内部気体の漏洩を防止する必要
があるからである。
In particular, bearings at the end of an overhanging shaft such as a stirring shaft in a stirring device, a scraper rotating shaft in a settling device such as a clarifier, or a shaker are important for preventing deflection of the shaft end, that is, for preventing shaft vibration. Further, the above-mentioned bearing is often installed internally within the main body of the device. This is because when a bearing is installed outside the equipment body, a shaft seal for the rotating shaft is required, but even if such a shaft seal is provided, a complete seal cannot be achieved due to the influence of fine solid particles in the internal liquid of the equipment body. This can be difficult, especially due to internal liquid leakage, and depending on the installation position of the shaft seal, the shaft seal may come into contact with the gas phase instead of the liquid phase as described above. This is because gas leakage may pose a danger, so it is necessary to prevent leakage of internal liquid or internal gas by installing the bearing internally and eliminating shaft seals as much as possible.

第1図A〜Cは上記撹拌装置、沈澱装置、スク
リユーコンベアの各構造を示す図で、各図におい
て、Aはモータ等の駆動装置、Bはカツプリン
グ、Cは回転軸、Dは駆動装置側の軸受、Eは軸
封部、F又はF′は反駆動装置側の軸受である。
Figures 1A to 1C are diagrams showing the structures of the stirring device, sedimentation device, and screw conveyor. In each figure, A is a drive device such as a motor, B is a coupling, C is a rotating shaft, and D is a drive device. The bearing on the side, E is the shaft seal, and F or F' is the bearing on the side opposite to the drive device.

上記軸受F又はF′の構造を撹拌装置におけるフ
ートベアリングを例にとつて第2図に基づき説明
する。
The structure of the bearing F or F' will be explained with reference to FIG. 2, taking a foot bearing in a stirring device as an example.

即ち、第2図において、1は回転軸、2はその
軸端部外周に嵌着固定されたスリーブ、3は該ス
リーブ2外周面に摺接して該スリーブ2を回転自
在に支持する軸受部材としての軸受ブツシユで、
円筒形状の軸受ハウジング4内周に嵌合固定され
ている。5は該軸受ハウジング4を撹拌装置本体
底部6に固定支持するための軸受マウントであ
る。
That is, in FIG. 2, 1 is a rotating shaft, 2 is a sleeve fitted and fixed on the outer periphery of the shaft end, and 3 is a bearing member that slides on the outer peripheral surface of the sleeve 2 and supports the sleeve 2 in a rotatable manner. With the bearing bush,
It is fitted and fixed to the inner periphery of the cylindrical bearing housing 4. Reference numeral 5 designates a bearing mount for fixedly supporting the bearing housing 4 on the bottom portion 6 of the stirring device main body.

かかる軸受装置3においては、スリーブ2外周
面と軸受ブツシユ3内周面との摺接面に撹拌装置
本体の内部液中に含まれる微細固体粒子等の異物
が入り込んで、該軸受ブツシユ3内周面が次第に
摩耗し、前記摺接面に遊隙が生じることになり、
次のような諸問題が生じる。
In such a bearing device 3, foreign matter such as fine solid particles contained in the internal liquid of the stirring device body enters the sliding contact surface between the outer circumferential surface of the sleeve 2 and the inner circumferential surface of the bearing bushing 3, and the inner circumferential surface of the bearing bushing 3. The surface gradually wears out and a gap is created in the sliding contact surface,
The following problems arise.

即ち、上述のような軸端部での遊隙及び軸に掛
かるアンバランス荷重によつて生ずる軸端部の撓
みは軸系の危険速度と関係し、その結果、軸は激
しく振動することになる。
In other words, the deflection of the shaft end caused by the play at the shaft end and the unbalanced load applied to the shaft as described above is related to the critical speed of the shaft system, and as a result, the shaft vibrates violently. .

その振動が原因で駆動装置部の歯車の損傷、軸
封部のパツキン、ラビリンスパツキン、メカニカ
ルシール等を損傷することになる。
The vibrations cause damage to the gears of the drive unit, the packing of the shaft seal, the labyrinth packing, the mechanical seal, etc.

特に、撹拌装置等の化学プラントにおける機器
においては、回転軸及び軸受部の破損の原因とな
り、又、軸封部からの危険な内部液又は内部気体
の漏洩等の思わぬ事故が発生する虞がある。
In particular, in chemical plant equipment such as stirring equipment, it can cause damage to the rotating shaft and bearings, and there is a risk of unexpected accidents such as dangerous internal liquid or gas leaking from the shaft seal. be.

従つて上述のような理由により前記軸受ブツシ
ユ3等の軸受部材は、常時その摩耗状態の有無を
チエツクして交換する必要があり、保守・点検が
面倒である。又、軸受装置として寿命も短いとい
う欠点があつた。
Therefore, for the above-mentioned reasons, the bearing members such as the bearing bush 3 must be constantly checked for wear or not and replaced, which makes maintenance and inspection troublesome. Another disadvantage was that it had a short life as a bearing device.

このような問題点を解消すべく、従来、実公昭
35−15313号公報、特公昭27−211号公報及び特公
昭45−37083号公報に示す技術が知られている。
In order to solve these problems, conventional
Techniques disclosed in Japanese Patent Publication No. 35-15313, Japanese Patent Publication No. 27-211, and Japanese Patent Publication No. 37083-1983 are known.

かかる技術は、回転軸と軸受部材との摺接面を
テーパ面に形成し、該回転軸若しくは軸受部材を
相手側と摺接する方向に押し付けて、これら両部
材相互の摺接面の隙間を調整する隙間調整手段を
設けたものである。
This technique involves forming the sliding surface between the rotating shaft and the bearing member into a tapered surface, pressing the rotating shaft or the bearing member in the direction of sliding contact with the other side, and adjusting the gap between the sliding surfaces of these two members. This device is equipped with a gap adjustment means.

かかる従来技術における隙間調整手段について
簡単に説明すると、まず、実公昭35−15313号公
報のものは、軸受保持部材に対して上下の軸方向
に移動可能に設けられた軸受を、該軸受保持部材
にネジ止めし、このネジの出し入れによつて上動
又は下動させるようにして、軸受との間隙を適正
に維持するようにしたものである。
To briefly explain the gap adjusting means in such prior art, first, the one disclosed in Japanese Utility Model Publication No. 35-15313 uses a bearing that is provided to be movable in the vertical and axial directions with respect to a bearing holding member. The bearing is screwed into the bearing and moved upward or downward by inserting and removing the screw, thereby maintaining an appropriate gap between the bearing and the bearing.

又、特公昭27−211号公報のものは、回転軸に
回転方向には一体となりかつ軸方向には移動し得
るコーンを取り付け、このコーン外面のテーパ面
に接触するテーパ面を内面に形成した軸受として
の中空体をこれの端部に螺合した袋ナツトの回転
により移動させることにより、コーンと中空体と
の接触の間隙を調整し得るようにしたものであ
る。
In addition, the one disclosed in Japanese Patent Publication No. 27-211 has a cone attached to the rotating shaft that is integral with the rotational direction and movable in the axial direction, and a tapered surface that contacts the tapered surface of the outer surface of this cone is formed on the inner surface. By moving the hollow body serving as a bearing by rotating a cap nut screwed onto the end of the hollow body, the contact gap between the cone and the hollow body can be adjusted.

更に、特公昭45−37083号公報のものは、ベア
リング装置を担持しかつ支持するスリーブ端部と
ベアリング装置との間にばねを介装し、該ばねの
弾性力により該ベアリング装置を軸端部表面のテ
ーパ面に押し付けるこきにより、軸きスリーブと
の接触面の摩損を自動的に補整するようにしたも
のである。
Furthermore, in the device disclosed in Japanese Patent Publication No. 45-37083, a spring is interposed between the end of the sleeve that carries and supports the bearing device and the bearing device, and the elastic force of the spring causes the bearing device to be attached to the shaft end. By pressing against the tapered surface, wear and tear on the contact surface with the shafted sleeve is automatically compensated for.

しかしながら、かかる従来例のものでは、軸と
軸受との摺接面に異物が入り込んで、該軸受が次
第に摩耗し、前記摺接面に遊隙が生じた場合の解
決策にはなるが、軸と軸受との摺接面に異物が入
り込むという根本的な問題点を解消していないの
で、充分満足できる技術とはいえない。
However, in such a conventional example, foreign matter gets into the sliding contact surface between the shaft and the bearing, and the bearing gradually wears out, and although it is a solution to the case where a play occurs in the sliding contact surface, the shaft This technology cannot be said to be completely satisfactory because it does not solve the fundamental problem of foreign matter getting into the sliding contact surface between the bearing and the bearing.

そこで、本発明は以上のような従来の実情に鑑
み、回転軸に設けられたスリーブと該スリーブを
その内周面又は外周面に摺接して回転自由に軸受
する軸受部材との摺接面を、テーパ面に形成する
一方、前記スリーブ又は軸受部材の少なくともい
ずれか一方の部材を軸方向に移動可能に構成し、
該部材と該部材を移動可能に保持する保持部材と
の間に空間部を設け、該空間部に加圧流体を供給
する加圧流体供給装置を設け、その流体圧により
前記スリーブ又は軸受部材の少なくともいずれか
一方の部材を軸方向に常時押圧付勢して他方の部
材に摺接させる加圧装置と、前記空間部に供給さ
れた加圧流体の一部をスリーブと軸受部材との間
に形成され前記空間部より軸横断方向の面積が小
さい空間部に導いて前記摺接面間に異物が侵入す
るのを防止する異物侵入防止装置と、を設けた構
成により、軸受部材の摩耗による軸受部の隙間を
調整し、該隙間が生ずることにより派生する諸々
の欠点を悉く解消し、もつて軸受部材のメンテナ
ンスを緩めると共に該軸受部材の寿命の向上を図
り、さらにその構成を筒略化すると共に前記摺接
面間に異物が侵入するのを防止し、また仮に摺接
面間に異物が侵入したとしても、その異物を容易
に排出できる軸受装置を提供することを目的とす
る。
In view of the above-mentioned conventional circumstances, the present invention provides a sliding contact surface between a sleeve provided on a rotating shaft and a bearing member that freely rotates by slidingly contacting the sleeve with its inner peripheral surface or outer peripheral surface. , while forming a tapered surface, at least one of the sleeve and the bearing member is configured to be movable in the axial direction,
A space is provided between the member and a holding member that movably holds the member, and a pressurized fluid supply device is provided for supplying pressurized fluid to the space, and the fluid pressure causes the sleeve or bearing member to A pressurizing device that constantly presses and urges at least one member in the axial direction to slide into contact with the other member, and a part of the pressurized fluid supplied to the space between the sleeve and the bearing member. A foreign matter intrusion prevention device that prevents foreign matter from entering between the sliding surfaces by introducing the foreign matter into a space formed in the space and having a smaller area in the axial transverse direction than the space, prevents foreign matter from entering the bearing due to wear of the bearing member. To adjust the gap between the parts and eliminate all the various defects that arise due to the gap, thereby easing the maintenance of the bearing member and improving the life of the bearing member, and further simplifying the structure. Another object of the present invention is to provide a bearing device that prevents foreign matter from entering between the sliding surfaces and, even if foreign matter enters between the sliding surfaces, can easily discharge the foreign matter.

以下、本発明の実施例を第3図〜第6図に基づ
いて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 6.

この発明の一実施例を示す第3図において、1
1は回転軸、12は該回転軸下端部に軸着された
円筒状のスリーブであり、該スリーブ12は回転
軸11下端部外周に設けられた小径部11a外周
に嵌合されかつ段付面11bに当接係止された状
態で、転軸11下端面にボルト13締めされたエ
ンドプレート14により押さえ固定されている。
In FIG. 3 showing an embodiment of the present invention, 1
1 is a rotating shaft; 12 is a cylindrical sleeve pivotally attached to the lower end of the rotating shaft; the sleeve 12 is fitted on the outer periphery of a small diameter portion 11a provided on the outer periphery of the lower end of the rotating shaft 11; 11b, the rotary shaft 11 is pressed and fixed by an end plate 14 fastened with bolts 13 to the lower end surface of the rolling shaft 11.

15はスリーブ12外周面に摺接して該スリー
ブ12を回転自由に支持する軸受部材としての軸
受ブツシユで有底円筒状をなしている。
Reference numeral 15 denotes a bearing bush as a bearing member that slides on the outer peripheral surface of the sleeve 12 and supports the sleeve 12 freely in rotation, and has a cylindrical shape with a bottom.

スリーブ12外周面と軸受ブツシユ15内周面
との摺接面は上方に向かつて拡がる円錐台外周面
形状をなすテーパ面に形成されている。
The sliding surface between the outer circumferential surface of the sleeve 12 and the inner circumferential surface of the bearing bush 15 is formed into a tapered surface having a truncated conical outer circumferential shape that widens upward.

尚、本実施例においては、上記スリーブ12の
材質は主として摺接するテーパ面12aを表面硬
化処理した金属材料であり、軸受ブツシユ15の
材質は銅合金、アルミ合金、合成樹脂材料である
が、特に限定されるものではない。
In this embodiment, the material of the sleeve 12 is mainly a metal material whose tapered surface 12a in sliding contact is surface-hardened, and the material of the bearing bush 15 is a copper alloy, an aluminum alloy, or a synthetic resin material. It is not limited.

そして、16は軸受ブツシユ15を軸方向移動
可能に支持しかつ常時スリーブ12に摺接する方
向に押圧する加圧装置である。即ち、17は軸受
ブツシユ15外周に設けられ該軸受ブツシユ15
を支持する有底円筒状の軸受ハウジングである。
軸受ブツシユ15は、この軸受ハウジング17内
周部に軸方向摺動可能に嵌入され、後述する加圧
流体により常時軸受ブツシユ15内周のテーパ面
15aがスリーブ12外周のテーパ面12aに押
し付けられて摺接する方向に付勢される。軸受ブ
ツシユ15外周面には縦方向にキー溝15bが形
成され、該キー溝15a内に軸受ハウジング17
周壁にねじ込み固定された棒先止めねじ19の頭
部が突入されて該軸受ブツシユ15の回転を止め
ている。
A pressure device 16 supports the bearing bush 15 so as to be movable in the axial direction and constantly presses the bearing bush 15 in a direction in which it comes into sliding contact with the sleeve 12. That is, 17 is provided on the outer periphery of the bearing bush 15 and
This is a cylindrical bearing housing with a bottom that supports the bearing housing.
The bearing bush 15 is fitted into the inner periphery of the bearing housing 17 so as to be able to slide in the axial direction, and a tapered surface 15a on the inner periphery of the bearing bush 15 is constantly pressed against a tapered surface 12a on the outer periphery of the sleeve 12 by pressurized fluid, which will be described later. It is biased in the direction of sliding contact. A key groove 15b is formed in the vertical direction on the outer peripheral surface of the bearing bush 15, and a bearing housing 17 is formed in the key groove 15a.
The head of a rod-end set screw 19 screwed into the peripheral wall is inserted to stop the rotation of the bearing bush 15.

又、図示していないが棒先止めねじ19の代わ
りにスベリキーを使用しても良い。20は軸受ハ
ウジング17上端部内周面と軸受ブツシユ15外
周面との摺接面に介装されたシール部材としての
0リングである。
Further, although not shown, a slip key may be used instead of the bar end set screw 19. Reference numeral 20 denotes an O-ring as a sealing member interposed between the sliding contact surface between the inner circumferential surface of the upper end of the bearing housing 17 and the outer circumferential surface of the bearing bush 15.

軸受ブツシユ15内に形成された空間Aは、該
軸受ブツシユ15底壁に貫通形成された後述する
加圧流体供給口15cを介して軸受ハウジング1
7内空間Bと連通し、該空間Bは該軸受ハウジン
グ17底壁に形成される加圧流体供給口17aを
介して気密空間Kに通じている。この空間Aは、
空間Bより軸横断方向の面積が小さく形成されて
いる。
The space A formed in the bearing bush 15 is connected to the bearing housing 1 through a pressurized fluid supply port 15c, which will be described later, and which is formed through the bottom wall of the bearing bush 15.
7, and the space B communicates with the airtight space K via a pressurized fluid supply port 17a formed in the bottom wall of the bearing housing 17. This space A is
The space B has a smaller area in the axial transverse direction than the space B.

上記気密空間Kは、機器本前底部22にボルト
23締めされて固定支持され、上端部に軸受ハウ
ジング17上端部外周に装着された支持部材24
をボルトナツト25により締結して固定支持して
いる軸受マウント21を円筒状に、前記支持部材
24を環状にすることにより、軸受マウント2
1、支持部材24及び機器本体底部22によつて
機器本体内空間Cとは気密に仕切形成されるもの
である。この気密空間Kに第4図に示す加圧流体
供給装置60から供給される空気、不活性ガス、
内部液と共通の液等の加圧流体を送り、この加圧
流体と加圧流体供給口17aを介して軸受ハウジ
ング17内空間Bへ送つて、該空間Bを加圧し、
軸受ブツシユ15をスリーブに方向に押し付ける
ように構成されている。
The airtight space K is fixedly supported by bolts 23 fastened to the front bottom part 22 of the device, and a support member 24 attached to the outer periphery of the upper end of the bearing housing 17 at the upper end.
The bearing mount 21, which is fastened and fixedly supported by bolts and nuts 25, has a cylindrical shape, and the support member 24 has an annular shape.
1. The support member 24 and the bottom portion 22 of the device body form an airtight partition from the space C within the device body. Air, inert gas,
Sending a pressurized fluid such as a liquid common to the internal liquid, and sending this pressurized fluid and the pressurized fluid supply port 17a to the internal space B of the bearing housing 17 to pressurize the space B,
It is configured to press the bearing bush 15 directionally against the sleeve.

一方、スリーブ12と軸受ブツシユ15との間
に形成され上記空間Bより軸横断方向の面積が小
さい前記軸受ブツシユ15内空間Aに加圧流体を
供給してスリーブ12の外周テーパ面12aと軸
受ブツシユ15の内周テーパ面15aとの摺接面
間に異物が侵入するのを防止する異物侵入防止装
置が設けられる。
On the other hand, pressurized fluid is supplied to the internal space A of the bearing bushing 15, which is formed between the sleeve 12 and the bearing bushing 15 and has a smaller area in the axial transverse direction than the space B, so that the outer circumferential tapered surface 12a of the sleeve 12 and the bearing bushing are A foreign matter intrusion prevention device is provided to prevent foreign matter from entering between the sliding contact surfaces with the inner circumferential tapered surface 15a of 15.

この異物侵入防止装置は、前記空間Bに第4図
に示す加圧流体供給装置60から供給される空
気、不活性ガス、内部液と共通の液等の加圧液体
の一部を軸受ブツシユ15に形成された加圧流体
供給口15cを介して空間Aへと、送つて該空間
Aを機器本体内部圧力より高い圧力に保つことに
より、前記テーパ面12aとテーパ面15aとの
摺接面間に微細固体粒子等の異物が侵入する即
ち、異物が噛み込むのを防止する構成となつてい
る。
This foreign matter intrusion prevention device supplies a portion of the pressurized liquid such as air, inert gas, and liquid common to the internal liquid supplied from the pressurized fluid supply device 60 shown in FIG. By supplying pressurized fluid to the space A through a pressurized fluid supply port 15c formed in and maintaining the space A at a pressure higher than the internal pressure of the device body, the pressure between the sliding surfaces of the tapered surface 12a and the tapered surface 15a is increased. The structure is designed to prevent foreign matter such as fine solid particles from entering, that is, from being bitten by foreign matter.

上記加圧流体供給装置60は、例えば、加圧空
気供給回路57からの加圧空気を供給するように
構成される。この加圧空気供給回路57におい
て、57aはエアコンプレツサー等を備えた加圧
空気源、57bは圧力調整弁、57cはチエツク
弁、57bはリリーフ弁、57eは圧力計、56
は加圧流体供給管であり、このような加圧空気供
給回路57によつて気密空間Kに常時圧力調整さ
れた加圧空気が供給される。
The pressurized fluid supply device 60 is configured to supply pressurized air from the pressurized air supply circuit 57, for example. In this pressurized air supply circuit 57, 57a is a pressurized air source including an air compressor, 57b is a pressure regulating valve, 57c is a check valve, 57b is a relief valve, 57e is a pressure gauge, 56
is a pressurized fluid supply pipe, and pressurized air whose pressure is constantly adjusted is supplied to the airtight space K by such a pressurized air supply circuit 57.

尚、上記実施例における加圧気体源は、通常の
空気の他N2ガス等の不活性ガス等を使用すれば
良い。上記実施例では、気密空間Kの加圧流体と
して空気を用いたが、機器本体内部液と共通の液
を加圧流体として用いても良く、この場合は、第
5図に示すように加圧流体供給回路と気密空間K
との間に機器本体内部液と共通の液を封入したタ
ンク58を介装し、加圧空気圧を液圧に変換して
気密空間Kに液圧を加えるようにする。加圧流体
として共通の液がスラリー等の内部液中に微細固
体粒子が多くある場合、該微細固体粒子を取り除
いたものを使用する。
In addition, as the pressurized gas source in the above embodiment, in addition to normal air, an inert gas such as N2 gas may be used. In the above embodiment, air was used as the pressurized fluid in the airtight space K, but a liquid common to the internal liquid of the device body may also be used as the pressurized fluid. In this case, as shown in FIG. Fluid supply circuit and airtight space K
A tank 58 containing a liquid common to the internal liquid of the device body is interposed between the two and converts the pressurized air pressure into liquid pressure to apply the liquid pressure to the airtight space K. When a common liquid as a pressurized fluid has many fine solid particles in the internal liquid such as slurry, the liquid from which the fine solid particles have been removed is used.

かかる構成において、回転軸11に図示しない
モータ等の駆動装置から回転駆動力が伝達される
と、該回転軸11はスリーブ12を介して軸受ブ
ツシユ15に軸受されて回転する。
In this configuration, when rotational driving force is transmitted to the rotating shaft 11 from a drive device such as a motor (not shown), the rotating shaft 11 is rotated while being supported by the bearing bush 15 via the sleeve 12.

ここで、機器本体の内部に含まれる微細固体粒
子等の異物はスリーブ12外周面と軸受ブツシユ
15上端面との境部から図示矢印の如く、噛み込
まれて外スリーブ12と軸受ブツシユ15との摺
接面に侵入することになり、このため、軸受ブツ
シユ15内周のテーパ15aは次第に摩耗する。
Here, foreign matter such as fine solid particles contained inside the main body of the device is bitten from the boundary between the outer circumferential surface of the sleeve 12 and the upper end surface of the bearing bushing 15, as shown by the arrow in the figure. As a result, the taper 15a on the inner circumference of the bearing bush 15 gradually wears out.

しかし、上記構成の軸受装置によれば、軸受ブ
ツシユ15が加圧流体によつて上方向に付勢され
ているため、前記軸受ブツシユ15内周のテーパ
面15aの摩耗が生じてもこの摩耗の分だけ軸受
ブツシユ15が軸受ハウジング17内を上方向に
摺動して該テーパ面15aがスリーブ12外周の
テーパ面12aに押し付けられて両テーパ面12
a,15aの状態を維持するから両テーパ面12
a,15a間には遊隙が生じない。
However, according to the bearing device configured as described above, since the bearing bushing 15 is urged upward by the pressurized fluid, even if the tapered surface 15a on the inner circumference of the bearing bushing 15 is worn, this wear will be suppressed. The bearing bush 15 slides upward within the bearing housing 17 by the same amount, and the tapered surface 15a is pressed against the tapered surface 12a on the outer periphery of the sleeve 12, causing both tapered surfaces 12
Since the states of a and 15a are maintained, both tapered surfaces 12
There is no play between a and 15a.

又、上記構成の軸受装置によれば、気密空間K
に空気、不活性ガス、内部液と共通の液等の加圧
流体を送り、この加圧流体を空間Aに送つて該空
間Aを機器本体内部圧より高い圧力に保つことに
より、前記テーパ面12aとテーパ面15aとの
摺接面間に微細固体粒子等の異物が侵入するのを
防止することができ、さらに前記摺接面間に異物
が侵入したとしても、その異物を容易に加圧流体
により排出でき、軸受ブツシユ15内周のテーパ
面15aの摩耗の根本的な原因を取り除くことが
できる。
Further, according to the bearing device having the above configuration, the airtight space K
By sending a pressurized fluid such as air, an inert gas, or a liquid common to the internal liquid, and sending this pressurized fluid to the space A to maintain the space A at a pressure higher than the internal pressure of the device body, the tapered surface It is possible to prevent foreign matter such as fine solid particles from entering between the sliding contact surfaces of the tapered surface 12a and the tapered surface 15a, and even if foreign matter enters between the sliding contact surfaces, the foreign matter can be easily pressurized. The fluid can be discharged, and the fundamental cause of wear on the tapered surface 15a on the inner circumference of the bearing bush 15 can be eliminated.

更に、本構成では、仮に空間Aに内部液中のス
ラリー等の異物が入り込んでも、該異物を容易に
排出し得る構成になつている。
Furthermore, with this configuration, even if foreign matter such as slurry in the internal liquid enters the space A, the foreign matter can be easily discharged.

即ち、前記軸受ブツシユ15とスリーブ12と
の間の空間Aを外気に連通させる図示しないドレ
ーン口と該ドレーン口を開閉する図示しないドレ
ーン弁を設けるようにする。
That is, a drain port (not shown) that communicates the space A between the bearing bush 15 and the sleeve 12 with the outside air, and a drain valve (not shown) that opens and closes the drain port are provided.

この場合、前述のように、前記空間Aと加圧流
体供給口15c、空間B及び加圧流体供給口17
を介して連通する気密空間Kが設けられており、
前記ドレーン口とドレーン弁は気密空間Kの機器
本体底部22に設けられる。
In this case, as described above, the space A and the pressurized fluid supply port 15c, the space B and the pressurized fluid supply port 17
An airtight space K is provided which communicates through the
The drain port and drain valve are provided at the bottom 22 of the device body in the airtight space K.

そして、仮に、空間Aに内部液中のスラリー等
の異物が入り込むとすると、この異物は空間Bを
介して気密空間Kに至り、機器本体底部に溜ま
る。
If a foreign substance such as a slurry in the internal liquid enters the space A, this foreign substance reaches the airtight space K via the space B and accumulates at the bottom of the device main body.

従つて、この状態でドレーン弁を開くと、加圧
流体が気密空間Kにあるので、該加圧流体により
容易にスラリー等の異物を外部に排出でき、異物
を掻き出す等の面倒な作業が不要であり、しか
も、衛生的で食品等を取り扱う機器等に使用でき
ると共に、該異物の蓄積による軸受部への影響等
を未然に防止できる。特に、異物侵入防止用の加
圧流体を併用することによつて、強制的にスラリ
ーを排出するため、新たな手段が不要で、構造的
に簡略化できる利点がある。
Therefore, when the drain valve is opened in this state, the pressurized fluid is present in the airtight space K, and foreign matter such as slurry can be easily discharged to the outside by the pressurized fluid, eliminating the need for troublesome work such as scraping out foreign matter. Furthermore, it is hygienic and can be used in equipment that handles food and the like, and it is possible to prevent the bearing from being affected by the accumulation of foreign matter. In particular, since the slurry is forcibly discharged by using a pressurized fluid for preventing the intrusion of foreign matter, there is no need for new means and there is an advantage that the structure can be simplified.

又、日常ドレーン弁を定期的に開いて、その時
のスラリーの排出量を点検するようにすれば、軸
受部の異常を容易に判別できる。即ち、異物の排
出量が多ければ、軸受部に異常があり、少なけれ
ば問題がないと判別できるのであり、軸受部の定
期的な保守・点検に便利であり、煩雑な作業が不
要である。
Moreover, if the daily drain valve is opened regularly and the amount of slurry discharged at that time is checked, abnormalities in the bearing can be easily determined. That is, if the amount of foreign matter discharged is large, it can be determined that there is an abnormality in the bearing section, and if the amount of foreign matter discharged is small, it can be determined that there is no problem.This is convenient for periodic maintenance and inspection of the bearing section, and no complicated work is required.

又、回転軸11は温度変化により伸縮するが、
この伸縮は軸受ブツシユ15を介して圧流体によ
り吸収される。
Also, the rotating shaft 11 expands and contracts due to temperature changes,
This expansion and contraction is absorbed by the pressure fluid through the bearing bush 15.

上記第3図に示した実施例は、本発明をスリー
ブ外周面と軸受ブツシユ即ち軸受部材内周とを摺
接する構造の軸受装置に適用した例を示したが
が、スリーブ内周面と軸受部材外周面とを摺接さ
せる構造の軸受装置に適用しても良い。
The embodiment shown in FIG. 3 above shows an example in which the present invention is applied to a bearing device having a structure in which the outer circumferential surface of the sleeve and the bearing bush, that is, the inner circumference of the bearing member are in sliding contact, but the inner circumferential surface of the sleeve and the bearing member The present invention may also be applied to a bearing device having a structure in which the present invention makes sliding contact with the outer circumferential surface.

この実施例を第6図に示すと、この場合は、回
転軸11先端外周部に嵌合された円筒条のスリー
ブ42の内周部に軸状に形成された軸受部材55
が嵌入され、該スリーブ42内周面と軸受部材5
5の外周面との摺接面は下方に向けて拡がる円錐
台外周面形状をなすテーパ面となる。
This embodiment is shown in FIG. 6. In this case, a bearing member 55 is formed in the shape of a shaft on the inner circumference of a cylindrical sleeve 42 fitted on the outer circumference of the tip end of the rotating shaft 11.
is inserted, and the inner peripheral surface of the sleeve 42 and the bearing member 5
The sliding contact surface with the outer circumferential surface of 5 is a tapered surface forming a truncated conical outer circumferential surface shape that expands downward.

そして、軸受部浄55下端面と軸受ハウジング
47内空間との間に密閉された圧力室Hを形成
し、そして、この圧力室Hに、先端加圧流体供給
口56aが軸受ハウジング47周壁を貫通して接
続された加圧流体供給管56を介して第4図に示
すような加圧流体供給装置60の加圧流体供給回
路57からの加圧流体を供給して、該圧力室Hを
加圧し、軸受部材55をスリーブ42方向に押し
付けるように構成されている。一方、スリーブ4
2と軸受部材55との間に形成される軸受部材5
5内空間Gに加圧流体を供給してスリーブ42の
内周テーパ面42aと軸受部材55の外周テーパ
面55aとの摺接面間に異物が侵入するのを防止
する異物侵入防止装置が設けられる。
A sealed pressure chamber H is formed between the lower end surface of the bearing part cleaner 55 and the inner space of the bearing housing 47, and a tip pressurized fluid supply port 56a penetrates the peripheral wall of the bearing housing 47 into this pressure chamber H. The pressure chamber H is pressurized by supplying pressurized fluid from a pressurized fluid supply circuit 57 of a pressurized fluid supply device 60 as shown in FIG. It is configured to press the bearing member 55 in the direction of the sleeve 42. On the other hand, sleeve 4
2 and the bearing member 55
5. A foreign matter intrusion prevention device is provided that supplies pressurized fluid to the internal space G to prevent foreign matter from entering between the sliding contact surfaces of the inner circumferential tapered surface 42a of the sleeve 42 and the outer circumferential tapered surface 55a of the bearing member 55. It will be done.

この異物侵入防止装置は、前記圧力室Hに加圧
流体供給装置60から供給される空気、不活性ガ
ス、内部液と共通の液等の加圧流体の一部を軸受
部材55に形成された加圧流体通路62を介して
軸受部材55の断面積が圧力室Hより小さい空間
Gへ送つて該空間Gを機器本体内部圧力より高い
圧力に保つことにより、前記テーパ面42aとテ
ーパ面55aとの摺接面間に微細固体粒子等の異
物が侵入する即ち、異物が噛み込むのを防止する
構成となつている。
This foreign matter intrusion prevention device is formed in the bearing member 55 so that a part of the pressurized fluid such as air, inert gas, and liquid common to the internal liquid is supplied to the pressure chamber H from the pressurized fluid supply device 60. By sending the bearing member 55 through the pressurized fluid passage 62 to the space G where the cross-sectional area is smaller than the pressure chamber H and maintaining the space G at a pressure higher than the internal pressure of the device body, the tapered surface 42a and the tapered surface 55a are The structure is such that foreign matter such as fine solid particles is prevented from entering between the sliding surfaces of the slider, that is, from being caught.

尚、機器本体内部液と共通の液を加圧流体とし
て用いた場合には、圧力室Hから液が機器本体内
に洩れることがあつても問題ない。
Note that when a liquid common to the internal liquid of the device main body is used as the pressurized fluid, there is no problem even if the liquid leaks from the pressure chamber H into the device main body.

上記第3図に示したものは、スリーブ12外周
側に軸受ブツシユ15を被せた構造であるため、
該軸受ブツシユのスリーブ側の端面が上方を向
き、このブツシユ上端面に内部液含まれる微細固
体粒子等が沈降し易く、スリーブと軸受ブツシユ
の境部から該微細固体粒子等が噛み込まれて侵入
し易い構成であるから、内部液に含まれる微細固
体粒子等の少ない機器に使用するのが好ましい。
The structure shown in FIG. 3 has a structure in which the bearing bush 15 is placed on the outer circumferential side of the sleeve 12.
The end surface of the bearing bushing on the sleeve side faces upward, and the fine solid particles contained in the internal liquid tend to settle on the upper end surface of the bushing, and the fine solid particles are bitten and enter from the boundary between the sleeve and the bearing bushing. Since it has a structure that is easy to use, it is preferable to use it in devices with a small amount of fine solid particles contained in the internal liquid.

又、第6図に示したものは、軸受部材55外周
側にスリーブ42を被せた構造であるため、該ス
リーブ42の軸受部材55側の端面が下方を向
き、このスリーブ42下端面に微細固体粒子等が
沈降し難く、該微細固体粒子等が噛み込まれて侵
入し難い構成であるから、内部液に含まれる微細
固体粒子等の多い機器に使用すれば効果的であ
る。
Moreover, since the structure shown in FIG. 6 is such that the sleeve 42 is placed over the outer circumferential side of the bearing member 55, the end surface of the sleeve 42 on the bearing member 55 side faces downward, and the lower end surface of the sleeve 42 is covered with fine solids. Since the structure makes it difficult for particles to settle and for the fine solid particles to get caught and enter, it is effective if used in equipment in which the internal liquid contains a large amount of fine solid particles.

上記第3図及び第6図に示した実施例では、加
圧装置として軸受ブツシユ15即ち、軸受部材側
を常時スリーブ側に押し付ける構造としたが、逆
にスリーブ側を軸受部材側に押し付ける構造にし
ても良い。
In the embodiments shown in FIGS. 3 and 6 above, the bearing bush 15, that is, the bearing member side, is always pressed against the sleeve side as a pressurizing device, but the sleeve side is conversely pressed against the bearing member side. It's okay.

例えば、スリーブを一部開口した内平面をもつ
円筒状に形成し、回転軸の先端の小径部外周に摺
動可能に嵌挿すると共に、回転軸の小径部外周面
とスリーブ内周面との摺接面にスベリキーを介在
させて該スリーブを回転軸に対して回転不能にす
る。
For example, the sleeve is formed into a cylindrical shape with a partially opened inner surface, and is slidably fitted onto the outer circumference of the small diameter portion at the tip of the rotating shaft, and the outer circumferential surface of the small diameter portion of the rotating shaft and the inner circumferential surface of the sleeve are connected. A sliding key is interposed on the sliding surface to make the sleeve unrotatable with respect to the rotating shaft.

そして、回転軸先端とスリーブ内平面との間に
空間部を設け、かつ軸受部材とスリーブとの間の
空間部が上記空間部より軸横断方向の面積が小さ
くなる様に該スリーブと軸受部材との摺接面をテ
ーパ状に形成すればよい。
A space is provided between the tip of the rotating shaft and the inner plane of the sleeve, and the sleeve and the bearing member are arranged in such a way that the space between the bearing member and the sleeve has a smaller area in the axial transverse direction than the space. The sliding contact surface may be formed into a tapered shape.

この様にすることによつて、加圧流体が軸受部
材とスリーブとの空間部を介して、回転軸先端と
スリーブ内平面との空間部に至り、常時スリーブ
のテーパ面が軸受部材のテーパ面に押し付けられ
て摺接する方向に付勢される。
By doing this, the pressurized fluid reaches the space between the tip of the rotating shaft and the inner plane of the sleeve through the space between the bearing member and the sleeve, and the tapered surface of the sleeve is always aligned with the tapered surface of the bearing member. is pressed in the direction of sliding contact.

以上説明したように、本発明は加圧流体供給−
装置を設け、その流体圧により前記スリーブ又は
軸受部材の少なくともいずれか一方の部材を軸方
向に常時押圧付勢して他方の部材に摺接させる加
圧装置と、加圧流体の一部をスリーブと軸常部材
との間に気密に保持される空間部に導いて前記摺
接面間に異物が侵入するのを防止する異物侵入防
止装置と、を設けたことにより、軸受部材が摩耗
を生じた時に、該軸受部材とスリーブ間に生じる
遊隙を解消することができ、回転軸の軸振れを極
力防止して、該軸の安定回転を図ることができる
と共に該軸振れが原因で生じる軸及び軸受部の破
損、駆動機構部及び軸封部の損傷並びにこれらが
原因で生ずる軸封部からの機器内部液又は内部気
体の漏洩を効果的に阻止でき、特に、内部液又は
内部気体に危険なものを使用したものでは安全性
を高めることができる。
As explained above, the present invention provides pressurized fluid supply.
a pressurizing device that constantly presses and urges at least one of the sleeve or the bearing member in the axial direction using the fluid pressure to slide into sliding contact with the other member; and a pressurizing device that applies a portion of the pressurized fluid to the sleeve. and a foreign matter intrusion prevention device that prevents foreign matter from entering between the sliding surfaces by guiding the foreign matter into a space airtightly maintained between the bearing member and the bearing member. It is possible to eliminate the play that occurs between the bearing member and the sleeve when the shaft is rotated, and to prevent the shaft runout of the rotating shaft as much as possible, and to ensure stable rotation of the shaft. It can effectively prevent damage to the bearing part, damage to the drive mechanism part and shaft seal part, and leakage of internal liquid or internal gas from the shaft seal part caused by these, and is especially dangerous to the internal liquid or internal gas. Safety can be increased by using

又、以上のような効果により、軸受部材が摩耗
してもその機能は持続することができるので、軸
受部材の寿命向上を図れ、軸受部材の摩耗具合の
チエツク等保守・点検を簡単化することができる
ので、保守・点検が面倒な内装型の軸受装置に使
用すると良く、この場合には、回転軸の軸封部を
不用とすることができるので、軸封部があること
による機器内部液漏洩の危険性を極力防止できる
という利点がある。
In addition, due to the above effects, even if the bearing member wears out, its function can be maintained, so the life of the bearing member can be extended, and maintenance and inspection such as checking the wear condition of the bearing member can be simplified. Therefore, it is suitable for use in internal type bearing devices where maintenance and inspection are troublesome.In this case, the shaft seal of the rotating shaft can be made unnecessary, so the fluid inside the equipment due to the shaft seal can be reduced. This has the advantage of minimizing the risk of leakage.

更に、耐食性等の問題で加圧装置としてのスプ
リングを使用できない場合に有利であると共に、
軸受部材とスリーブとを摺接させる加圧流体をそ
のまま異物侵入防止用の加圧流体として使用する
ようにしているので、軸受部材のテーパ面の摩耗
発生の根本的な催因を取り除くことができ、また
加圧流体供給装置という単一の装置で、加圧装置
と異物侵入防止装置とを構成でき、これら装置を
構成するのに、全く別々の装置を設ける必要がな
いので、装置の簡略化を図れ、製作上有利であ
る。
Furthermore, it is advantageous when a spring cannot be used as a pressurizing device due to problems such as corrosion resistance, and
Since the pressurized fluid that brings the bearing member and sleeve into sliding contact is directly used as pressurized fluid to prevent foreign matter from entering, the fundamental cause of wear on the tapered surface of the bearing member can be eliminated. In addition, a single device called a pressurized fluid supply device can constitute a pressurizing device and a foreign matter intrusion prevention device, and there is no need to provide completely separate devices to configure these devices, simplifying the device. This is advantageous in terms of production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜Cは夫々撹拌装置、沈澱装置、スク
リユーコンベアを示す概略図、第2図は第1図A
の撹拌装置における軸受装置の従来例を示す縦断
面図、第3図は本発明の軸受装置の一実施例の構
造を示す縦断面図、第4図及び第5図は夫々同上
実施例における加圧流体供給装置の構成を示す概
略図、第6図は他の実施例を示す縦断面図であ
る。 11……回転軸、12,42……スリーブ、1
5……軸受ブツシユ、12a,15a……テーパ
面、15c……加圧流体供給口、16……加圧装
置、17,47……軸受ハウジング、17a……
加圧流体供給口、55……軸受部材、56……加
圧流体供給管、57……加圧流体供給回路、60
……加圧流体供給装置、A,B,G……空間、H
……圧力室、K……気密空間。
Figures 1A to 1C are schematic diagrams showing the stirring device, sedimentation device, and screw conveyor, respectively, and Figure 2 is the same as Figure 1A.
FIG. 3 is a vertical cross-sectional view showing the structure of an embodiment of the bearing device of the present invention, and FIGS. 4 and 5 respectively show modifications in the above embodiment. A schematic view showing the configuration of the pressure fluid supply device, and FIG. 6 is a longitudinal sectional view showing another embodiment. 11... Rotating shaft, 12, 42... Sleeve, 1
5... Bearing bush, 12a, 15a... Tapered surface, 15c... Pressurized fluid supply port, 16... Pressurizing device, 17, 47... Bearing housing, 17a...
Pressurized fluid supply port, 55... Bearing member, 56... Pressurized fluid supply pipe, 57... Pressurized fluid supply circuit, 60
... Pressurized fluid supply device, A, B, G ... Space, H
...Pressure chamber, K...Airtight space.

Claims (1)

【特許請求の範囲】 1 回転軸に設けられたスリーブと該スリーブを
その内周面又は外周面に摺接して回転自由に軸受
する軸受部材との摺接面を、テーパ面に形成する
一方、前記スリーブ又は軸受部材の少なくともい
ずれか一方の部材を軸方向に移動可能に構成し、
該部材と該部材を移動可能に保持する保持部材と
の間に空間部を設け、該空間部に加圧流体を供給
する加圧流体供給装置を設け、その流体圧により
前記スリーブ又は軸受部材の少なくともいずれか
一方の部材を軸方向の常時押圧付勢して他方の部
材に摺接させる加圧装置と、前期空間部に供給さ
れた加圧流体の一部をスリーブと軸受部材との間
に形成され前記空間部より軸横断方向の面積が小
さい空間部に導いて前記摺接面間に異物が浸入す
るのを防止する異物侵入防止装置と、を設けたこ
と特徴とする軸受装置。 2 スリーブ外周面と軸受部材内周面とが摺接す
る構成で、該スリーブ外周形状が先細り形状に、
該軸受部材内周形状が先端に向かつて径が大とな
る形状に形成されてなる特許請求の範囲第1項記
載の軸受装置。 3 スリーブ内周面と軸受部材外周面と摺接する
構成で、該スリーブ内周形状が先端に向かつて径
が大となる形状に、該軸受部材外周形状が先細り
形状に形成されてなる特許請求の範囲第1項記載
の軸受装置。
[Scope of Claims] 1. A sliding surface between a sleeve provided on a rotating shaft and a bearing member that freely rotates and bears the sleeve by slidingly contacting the inner or outer peripheral surface of the sleeve is formed into a tapered surface, At least one of the sleeve and the bearing member is configured to be movable in the axial direction,
A space is provided between the member and a holding member that movably holds the member, and a pressurized fluid supply device is provided for supplying pressurized fluid to the space, and the fluid pressure causes the sleeve or bearing member to A pressurizing device that constantly presses and urges at least one member in the axial direction to slide into contact with the other member, and a part of the pressurized fluid supplied to the first space between the sleeve and the bearing member. A bearing device comprising: a foreign matter intrusion prevention device that guides foreign matter into a space that is formed and has a smaller area in the axial transverse direction than the space and prevents foreign matter from entering between the sliding surfaces. 2. The outer peripheral surface of the sleeve is in sliding contact with the inner peripheral surface of the bearing member, and the outer peripheral shape of the sleeve is tapered,
2. The bearing device according to claim 1, wherein the inner peripheral shape of the bearing member is formed such that the diameter increases toward the tip. 3 The inner circumferential surface of the sleeve is in sliding contact with the outer circumferential surface of the bearing member, and the inner circumferential shape of the sleeve has a diameter that increases toward the tip, and the outer circumferential shape of the bearing member has a tapered shape. The bearing device according to scope 1.
JP5429981A 1981-04-13 1981-04-13 Bearing Granted JPS57171114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5429981A JPS57171114A (en) 1981-04-13 1981-04-13 Bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5429981A JPS57171114A (en) 1981-04-13 1981-04-13 Bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61239316A Division JPS6293521A (en) 1986-10-09 1986-10-09 Bearing device

Publications (2)

Publication Number Publication Date
JPS57171114A JPS57171114A (en) 1982-10-21
JPS6311532B2 true JPS6311532B2 (en) 1988-03-15

Family

ID=12966683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5429981A Granted JPS57171114A (en) 1981-04-13 1981-04-13 Bearing

Country Status (1)

Country Link
JP (1) JPS57171114A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1861635B1 (en) * 2005-03-21 2010-11-24 Litens Automotive Partnership Belt tensioner with wear compensation

Also Published As

Publication number Publication date
JPS57171114A (en) 1982-10-21

Similar Documents

Publication Publication Date Title
US2675204A (en) Noncorrodible fluid-pressure operated valve
JP2000506957A (en) Rod seal cartridge for a progressive cavity type artificial oil pump
US4034922A (en) Gyratory crusher with bushing assembly between inner eccentric antifriction bearing
US4939871A (en) Centrifugal processing machine
JPS58194690A (en) Hydraulic device for variable pitch propeller
US3337142A (en) Roller grinding mill and control therefor
EP0334945B1 (en) Centrifugal finishing apparatus embodying emproved seal and method
US3080126A (en) Bearing seals for gyratory crushers
JPS6147150B2 (en)
US4588301A (en) Conical screw mixer
JPS6311532B2 (en)
JPS62241533A (en) Mixer driver
JPS6314204B2 (en)
US4944535A (en) Rotary liquid connection mechanism
JPS6150165B2 (en)
US3433540A (en) Fluid-tight shaft seal assembly
CA1062062A (en) Paper stock rotor axial position controlling and locking device
JPS6293514A (en) Bearing device
JPH10331859A (en) Liquid-operated nut
CA1238901A (en) Conical screw mixer
JPS6293521A (en) Bearing device
JPS60129131A (en) Fluidized bed apparatus
US3580547A (en) Package, liquid flushed, steady bearing assembly
CN209576563U (en) A kind of drive mechanism of vertical stirring device
JP2594238B2 (en) Screw fastening device