JPH0158892B2 - - Google Patents

Info

Publication number
JPH0158892B2
JPH0158892B2 JP18479381A JP18479381A JPH0158892B2 JP H0158892 B2 JPH0158892 B2 JP H0158892B2 JP 18479381 A JP18479381 A JP 18479381A JP 18479381 A JP18479381 A JP 18479381A JP H0158892 B2 JPH0158892 B2 JP H0158892B2
Authority
JP
Japan
Prior art keywords
electrodes
filter
monolithic
piezoelectric ceramic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18479381A
Other languages
Japanese (ja)
Other versions
JPS5885614A (en
Inventor
Takeshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP18479381A priority Critical patent/JPS5885614A/en
Publication of JPS5885614A publication Critical patent/JPS5885614A/en
Publication of JPH0158892B2 publication Critical patent/JPH0158892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/562Monolithic crystal filters comprising a ceramic piezoelectric layer

Description

【発明の詳細な説明】 本発明は、高次厚みたて振動を利用したモノリ
シツクセラミツクフイルタに係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a monolithic ceramic filter that utilizes high-order thickness vibration.

一般に数MHz以上の高い周波数で使用されるセ
ラミツクフイルタは、振動モードとして板面が厚
みに対して十分広い薄板の厚み振動が用いられ
る。
Ceramic filters that are generally used at high frequencies of several MHz or higher use thickness vibration of a thin plate whose surface is sufficiently wide relative to its thickness as the vibration mode.

厚み振動の共振周波数は厚みに反比例するた
め、高い周波数で使用するためには厚みを薄くす
る必要がある。しかし、厚みが100μm以下にな
ると、機械的強度が小さくなるため平行平面研磨
が難かしくなり、また振動子の保持も困難にな
る。
Since the resonant frequency of thickness vibration is inversely proportional to the thickness, it is necessary to reduce the thickness in order to use it at a high frequency. However, when the thickness is less than 100 μm, the mechanical strength decreases, making parallel plane polishing difficult and also making it difficult to hold the vibrator.

従つて、最も音速の大きな厚みたて振動モード
を用いたモノリシツクセラミツクフイルタでも使
用周波数が20MHz以上となると板厚が100μm程
度かあるいはそれ以下の厚みが必要であり、製造
が難かしくなる。基本厚みたて振動を用いたモノ
リシツクセラミツクフイルタは、材料上ポアソン
比σ′の値が1/3より大きな材料に限られるという
制約がある。
Therefore, even in a monolithic ceramic filter using the thick vertical vibration mode with the highest sound speed, if the operating frequency exceeds 20 MHz, the plate thickness must be approximately 100 μm or less, making manufacturing difficult. Monolithic ceramic filters using basic thickness vertical vibration are limited to materials whose Poisson's ratio σ' is larger than 1/3.

この条件をみたす材料は、一部のジルコン・チ
タン酸鉛系圧電磁器材料に限られ、温度安定度、
エージング特性においてジルコン・チタン酸鉛系
圧電磁器材料に比べ数段優れたものとされている
PbTiO3系圧電磁器材料を用いた基本厚みたて振
動モードモノリシツクセラミツクフイルタはσ′の
値が1/3以下であるため実現不可能である。
Materials that meet this condition are limited to some zircon/lead titanate-based piezoelectric ceramic materials, which have excellent temperature stability,
In terms of aging properties, it is said to be significantly superior to zircon/lead titanate-based piezoelectric ceramic materials.
A basic thickness vertical vibration mode monolithic ceramic filter using PbTiO 3 -based piezoelectric ceramic material is impossible to realize because the value of σ′ is less than 1/3.

これに対し、同じ板厚で奇数次の高調波を用い
ることにより基本波に比べて奇数倍の高い共振周
波数を得る高次モードモノリシツクセラミツクフ
イルタが実用に供されている。従来の高次モード
モノリシツクセラミツクフイルタの例を第1図に
示す。第1図イはモノリシツクセラミツクフイル
タの平面図、ロは正面図であり、圧電磁器板10
の表裏面にエネルギー閉じ込め電極11,11′
及び12,12′が設けられている。このフイル
タの動作原理は周知の如く、圧電反作用と電極の
質量効果により振動エネルギーが電極11,1
1′間及び12,12′間に閉じ込められるため、
電極部分は共振子として動作し、電極11,1
1′と12,12′の中間の部分は弾性的な結合部
分となり、フイルタが構成できるわけである。
On the other hand, high-order mode monolithic ceramic filters have been put into practical use that use odd-numbered harmonics with the same plate thickness to obtain a resonant frequency that is an odd-numbered multiple of the fundamental wave. An example of a conventional high-order mode monolithic ceramic filter is shown in FIG. FIG. 1A is a plan view of the monolithic ceramic filter, and FIG. 1B is a front view of the piezoelectric ceramic plate 10.
Energy trapping electrodes 11, 11' on the front and back surfaces of
and 12, 12' are provided. As is well known, the operating principle of this filter is that vibration energy is transferred to the electrodes 11 and 1 due to the piezoelectric reaction and the mass effect of the electrodes.
Because it is confined between 1' and 12, 12',
The electrode portion operates as a resonator, and the electrodes 11,1
The intermediate portion between 1' and 12, 12' becomes an elastic connecting portion, and a filter can be constructed.

しかし、n次の高次モードに関して容量比はn2
に比例して増大する。振動子の容量比をγとした
とき、共振周波数と反共振周波数との間隔と共振
周波数との比は約1/2γとなる。したがつて、
従来の第1図に示したような高次モードモノリシ
ツクセラミツクフイルタではまず第1に容量比の
増大のためフイルタの通過帯域幅が狭すぎて実用
に供しないことがあつた。第2に、高次モードを
利用したモノリシツクセラミツクフイルタでは低
周波側の基本共振周波数がスプリアスとなり、こ
のスプリアスは使用する高次モードに比べてはる
かに小容量比であるため一層強勢に励振され、こ
の基本共振によるスプリアスを抑圧することは不
可能であつた。また第3に、従来の第1図に示し
た圧電磁器板10の表面に露出した電極11,1
1′,12,12′を設けたフイルタでは、電極形
成後の平行平面研磨による周波数調整は不可能で
ある。このため、周波数調整はもつぱら蒸着装置
を利用した電極の膜厚制御による方法がとられて
おり、周波数調整に係る製造コストは非常に大き
かつた。
However, for the n-th higher mode, the capacitance ratio is n 2
increases in proportion to When the capacitance ratio of the vibrator is γ, the ratio between the interval between the resonant frequency and the anti-resonant frequency and the resonant frequency is approximately 1/2γ. Therefore,
In the conventional high-order mode monolithic ceramic filter as shown in FIG. 1, first of all, due to an increase in the capacitance ratio, the passband width of the filter is too narrow to be of practical use. Second, in monolithic ceramic filters that utilize higher-order modes, the fundamental resonance frequency on the low-frequency side becomes spurious, and since this spurious has a much smaller capacitance ratio than the higher-order modes used, it is excited even more strongly. , it has been impossible to suppress the spurious caused by this fundamental resonance. Thirdly, the electrodes 11 and 1 exposed on the surface of the piezoelectric ceramic plate 10 shown in FIG.
In the filter provided with electrodes 1', 12, and 12', it is impossible to adjust the frequency by parallel plane polishing after electrode formation. For this reason, frequency adjustment has been carried out by controlling the film thickness of electrodes using a vapor deposition apparatus, and the manufacturing cost associated with frequency adjustment has been extremely high.

一方、特開昭55−18189号公報において、相対
向する2つのエネルギー閉じ込め電極が圧電磁器
内部にある構造を有するモノリシツクセラミツク
フイルタが提案されている。この内部電極を有す
るモノリシツクセラミツクフイルタは電極が圧電
磁器内部にあつても圧電磁器の極めて大きな圧電
反作用のために良好なエネルギー閉じ込め特性を
有する。
On the other hand, JP-A-55-18189 proposes a monolithic ceramic filter having a structure in which two opposing energy trapping electrodes are located inside a piezoelectric ceramic. A monolithic ceramic filter having this internal electrode has good energy trapping characteristics even if the electrode is inside the piezoelectric ceramic due to the extremely large piezoelectric reaction of the piezoelectric ceramic.

しかしながら、この構造のフイルタでは平行平
面研磨による周波数調整は可能であるが、第1図
に示した従来の高次モードフイルタの場合と同様
に、高次モードを利用する場合、スプリアスとな
り基本共振を抑圧することは不可能であり、また
使用する高次モードにおいて小容量比を実現する
ことも不可能であるという欠点を有する。さらに
基本厚みたて振動モードを用いる場合において
も、結局、振動部分を薄くしなければ高周波化が
実現できず、最初に述べた種々の欠点は全く解決
されない。これに対し本発明は前述の従来形高次
モードモノリシツク圧電磁器フイルタの欠点をす
べて解決し、周波数調整が可能でしかも従来より
高い周波数で使用可能なモノリシツクセラミツク
フイルタを提供することを目的としている。
However, although it is possible to adjust the frequency by parallel plane polishing in a filter with this structure, when using a higher-order mode, as in the case of the conventional higher-order mode filter shown in Fig. 1, spurious waves occur and fundamental resonance occurs. It has the disadvantage that it is impossible to suppress it, and it is also impossible to achieve small capacitance ratios in the higher-order modes used. Furthermore, even when using the basic thickness vertical vibration mode, higher frequencies cannot be achieved unless the vibrating portion is made thinner, and the various drawbacks mentioned at the beginning cannot be solved at all. In contrast, the present invention aims to solve all the drawbacks of the conventional high-order mode monolithic piezoelectric ceramic filters mentioned above, and to provide a monolithic ceramic filter that can be frequency adjusted and can be used at a higher frequency than the conventional one. There is.

本発明のモノリシツクセラミツクフイルタは圧
電磁器板の内部あるいは内部及び表面に、圧電磁
器板の厚み方向に互いに重なりあい、しかも互い
に平行な複数の電極からなる電極群が複数組形成
された構造になつている。またこれらの電極群に
おいて電極にはさまれ、しかも該電極を介して隣
り合う圧電磁器層が互いに逆向きに分極処理され
ている。さらに複数の電極群のうち少なくとも入
力及び出力端子と接続している2組の電極群の電
極数はそれぞれ3以上でしかも互いに等しく、さ
らに当接入力及び出力端子と接続している2組の
電極群のそれぞれ電極のうち圧電磁器表面に近い
両外側に位置する2枚の電極にそれぞれ入力及び
出力端子が接続されている構造になつている。
The monolithic ceramic filter of the present invention has a structure in which a plurality of electrode groups each consisting of a plurality of electrodes that overlap each other in the thickness direction of the piezoelectric ceramic plate and are parallel to each other are formed inside or on the inside and surface of the piezoelectric ceramic plate. ing. Furthermore, in these electrode groups, the piezoelectric ceramic layers sandwiched between the electrodes and adjacent to each other via the electrodes are polarized in opposite directions. Further, among the plurality of electrode groups, the number of electrodes in at least two electrode groups connected to the input and output terminals is three or more and equal to each other, and furthermore, the number of electrodes in the two electrode groups connected to the abutting input and output terminals is three or more, and the number of electrodes is equal to each other. It has a structure in which input and output terminals are respectively connected to two electrodes located on both outer sides near the surface of the piezoelectric ceramic among the electrodes of each group.

以上に述べた構造について図面に従つて詳細に
説明する。
The structure described above will be explained in detail with reference to the drawings.

電極群を2組有するモノリシツクセラミツクフ
イルタの例を第2図、第3図に示す。第2図は、
フイルタの積層構造を示す分解図である。圧電磁
器粉末と有機物からなるシート20上にエネルギ
ー閉じ込め電極21,21′,22,22′が厚み
方向に互いに重なり合うように設けられ、エネル
ギー閉じ込め電極と接続して分極用リード電極2
3,23′,24,24′が設けられている。さら
に電極が施されている最上部と最下部のセラミツ
クシートにはエネルギー閉じ込め電極から電気端
子用リード電極25,25′,26,26′が設け
られている。第3図は、第2図の積層構造を厚み
方向に一体化し焼成した構造のモノリシツクセラ
ミツクフイルタである。第3図においてイは平面
図、ロは断面図である。前記シート20を一体
化、焼成した圧電磁器板20′の外側に分極用外
部電極27,27′が設けられ、分極用リード電
極23,23′,24,24′と接続し、エネルギ
ー閉じ込め用内部電極と一層おきに接続してい
る。またエネルギー閉じ込め用電極のうちで両外
側の圧電磁器板の表面に近い位置にある電極から
電気端子用リード電極25,25′,26,2
6′が設けられ電気端子用外部電極28,28′,
29,29′に接続している。
An example of a monolithic ceramic filter having two sets of electrode groups is shown in FIGS. 2 and 3. Figure 2 shows
FIG. 3 is an exploded view showing the laminated structure of the filter. Energy trapping electrodes 21, 21', 22, 22' are provided on a sheet 20 made of piezoelectric ceramic powder and an organic material so as to overlap each other in the thickness direction, and are connected to the energy trapping electrodes to form polarization lead electrodes 2.
3, 23', 24, 24' are provided. Further, the uppermost and lowermost ceramic sheets provided with electrodes are provided with lead electrodes 25, 25', 26, 26' for electrical terminals from energy trapping electrodes. FIG. 3 shows a monolithic ceramic filter having a structure in which the laminated structure of FIG. 2 is integrated in the thickness direction and fired. In FIG. 3, A is a plan view and B is a sectional view. External electrodes 27, 27' for polarization are provided on the outside of the piezoelectric ceramic plate 20', which is formed by integrating and firing the sheet 20, and are connected to the lead electrodes 23, 23', 24, 24' for polarization. It is connected to the electrode every other layer. Also, among the energy trapping electrodes, the electrodes located close to the surface of the piezoelectric ceramic plate on both sides are connected to the electrical terminal lead electrodes 25, 25', 26, 2.
6' are provided with external electrodes 28, 28',
29, 29'.

本発明は入力及び出力端子と接続する2組の電
極群において圧電磁器板表面に近い両外側に位置
するそれぞれ2枚の電極のみが入力及び出力端子
に接続する構造を特徴としている。すなわち分極
後、分極用外部電極27,27′のうち前記入力
及び出力端子に接続すべきリード電極は接触して
いる部分のみを残し、電気端子と接続させ27,
27′の他の部分を削除すればよいが、これは全
体の形状を考え合せるとかなり困難である。した
がつて第3図に示す例では電子端子用リード電極
25,25′,26,26′を別に設け、分極後は
分極用外部電極27,27′をすべて削除し、外
部電極28,28′,29,29′を通じて、電気
端子30,30′,31,31′と電気端子用リー
ド電極25,25′,26,26′とを接続させて
いる。なお分極は第3図において外部電極27と
27′に直流高電界を印加して行なわれ、圧電磁
器板内部で電極にはさまれ、しかも該電極を介し
て隣り合う圧電磁器層は互いに逆向きに分極され
る。
The present invention is characterized by a structure in which only two electrodes located on both outer sides near the surface of the piezoelectric ceramic plate in two sets of electrode groups connected to the input and output terminals are connected to the input and output terminals. That is, after polarization, the lead electrodes to be connected to the input and output terminals among the external polarization electrodes 27, 27' are connected to the electrical terminals, leaving only the portions that are in contact with them 27,
It would be possible to delete other parts of 27', but this would be quite difficult considering the overall shape. Therefore, in the example shown in FIG. 3, lead electrodes 25, 25', 26, 26' for electronic terminals are provided separately, and after polarization, all external electrodes 27, 27' for polarization are removed, and external electrodes 28, 28' are provided. , 29, 29', the electrical terminals 30, 30', 31, 31' are connected to the electrical terminal lead electrodes 25, 25', 26, 26'. In addition, polarization is performed by applying a DC high electric field to the external electrodes 27 and 27' in FIG. polarized.

本発明のこのような構造のモノリシツクフイル
タでは、厚み方向に互いに重なり合うように積層
された隣接したエネルギー閉じ込め電極間どうし
で、一定の電界方向に対して分極方向が互いに逆
向きとなるわけであるから、従つて厚み方向に隣
り合う電極間どうしで互いに逆向きの振動変位が
あらわれ、特定の高次モード(第3図の場合は3
次モード)だけ強勢に励振可能となる。即ち、特
定の高次モードだけ強勢に励振できるということ
は、使用する特定の高次モードにおいて小容量比
が実現できるわけであり、スプリアスとなる基本
モードに対しては電荷が打ち消されることで抑圧
可能であるという優れた特徴を有する。
In the monolithic filter of the present invention having such a structure, the polarization directions are opposite to each other with respect to a certain electric field direction between adjacent energy trapping electrodes that are stacked so as to overlap each other in the thickness direction. Therefore, vibration displacements in opposite directions appear between electrodes adjacent to each other in the thickness direction, and a specific higher-order mode (3 in the case of Fig. 3) appears.
Only the following mode) can be strongly excited. In other words, being able to strongly excite only a specific higher-order mode means that a small capacitance ratio can be achieved in the specific higher-order mode used, and the fundamental mode that causes spurious is suppressed by canceling the charge. It has the excellent feature of being possible.

圧電磁器は、本質的に高結合材料であるから圧
電反作用が極めて大きく、従つて電極部の遮断周
波数が無電極部に比べてかなり低くなり、本発明
の第3図に示したモノリシツクフイルタのように
電極の表面が少々の磁器層で被われていたとして
もエネルギー閉じ込めに何ら障害を与えることは
ない。このような内部電極を有する構造を用いる
ことにより、所望の周波数に調整するためには単
に表面の磁器層を研磨するだけで良く、あらかじ
め設けられた電気端子30,30′,31,3
1′から正確な周波数特性を知ることができる。
Since piezoelectric ceramics are essentially high-coupling materials, the piezoelectric reaction is extremely large. Therefore, the cutoff frequency of the electrode portion is considerably lower than that of the non-electrode portion, and the monolithic filter of the present invention shown in FIG. Even if the surface of the electrode is covered with a small amount of porcelain layer, this will not impair energy confinement. By using a structure with such internal electrodes, in order to adjust to the desired frequency, it is sufficient to simply polish the surface porcelain layer, and the electrical terminals 30, 30', 31, 3 provided in advance can be adjusted to the desired frequency.
1', it is possible to know the accurate frequency characteristics.

また、平行平面研磨は、最も磁器表面に近いエ
ネルギー閉じ込め電極が磁器表面に露出するまで
行うことができる。また入出力端子に接続される
電極の数はそれぞれ等しくなければならない。電
極数が異なると入力側電極部で励振された振動モ
ードが出力側電極部において十分共振しない。さ
らに2次以上の高次モードを励振させるためには
上記電極の数はそれぞれ3以上が必要である。
Further, parallel plane polishing can be performed until the energy trapping electrode closest to the porcelain surface is exposed to the porcelain surface. Also, the number of electrodes connected to the input and output terminals must be equal. If the number of electrodes is different, the vibration mode excited at the input side electrode section will not resonate sufficiently at the output side electrode section. Furthermore, in order to excite higher-order modes of second order or higher, three or more of the above-mentioned electrodes are required.

一方、第4図に示すように厚み方向に一様に矢
印で示す向きに分極されたモノリシツクフイルタ
も考えられる。
On the other hand, as shown in FIG. 4, a monolithic filter can also be considered, which is uniformly polarized in the direction of the arrow in the thickness direction.

しかし、構造上入、出力の電極がすべて電気的
に並列に接続されているため、本発明のモノリシ
ツクフイルタと比べてインピーダンスがn次モー
ドを用いたとき1/n2となる。つまり、より高周
波領域をねらおうとして、高次モードの次数を上
げれば上げるほどインピーダンスが低下してしま
い、外部回路とのインピーダンス整合が困難にな
る場合がある。
However, because the input and output electrodes are all electrically connected in parallel due to the structure, the impedance becomes 1/n 2 when the n-th mode is used compared to the monolithic filter of the present invention. In other words, in an attempt to reach a higher frequency range, the higher the order of the higher mode is raised, the lower the impedance becomes, which may make it difficult to match the impedance with an external circuit.

本発明のモノリシツクフイルタでは、第2図、
第3図から明らかなように、圧電磁器板表面に最
も近いエネルギー閉じ込め電極からのみ電気端子
用リード電極25,25′,26,26′をとる構
造となつているため、このようなインピーダンス
の減少は起り得ない。
In the monolithic filter of the present invention, FIG.
As is clear from Fig. 3, the structure is such that the electrical terminal lead electrodes 25, 25', 26, 26' are taken only from the energy trapping electrode closest to the surface of the piezoelectric ceramic plate, resulting in this reduction in impedance. can't happen.

以上述べたように、本発明のモノリシツクフイ
ルタは、従来の高次モードを用いたモノリシツク
フイルタの諸欠点を一掃するものである。
As described above, the monolithic filter of the present invention eliminates the various drawbacks of conventional monolithic filters using higher-order modes.

第3図に示した構造のものより、さらに急峻な
周波数選択特性を実現させるためには、第5図に
示すように圧電磁器板の長手方向の入力側と出力
側電極群の中間にエネルギー閉じ込め電極群を1
以上形成し、これらの電極群内の最上面と最下面
を短絡することにより容易に可能となる。(第5
図において矢印は分極方向を示す)第5図に示し
た構造を用いると、入出力の電極部分はもちろ
ん、短絡した中間部分の電極にも振動エネルギー
が閉じ込められ、これらの部分は共振子として動
く。これらの共振子は弾性的な結合部分(電極の
ない部分)を介して縦続に位置されているわけで
あるから、信号が入力されて出力される間に多く
の共振子を通過しなければならないために周波数
選択度が向上するわけである。
In order to achieve even steeper frequency selection characteristics than the structure shown in Figure 3, it is necessary to confine energy between the input side and output side electrode groups in the longitudinal direction of the piezoelectric ceramic plate, as shown in Figure 5. 1 electrode group
This can be easily achieved by forming the above and short-circuiting the top and bottom surfaces of these electrode groups. (5th
(In the figure, the arrow indicates the polarization direction.) When using the structure shown in Figure 5, vibrational energy is trapped not only in the input and output electrodes but also in the short-circuited intermediate electrode, and these parts move as resonators. . These resonators are placed in cascade via elastic coupling parts (parts without electrodes), so the signal must pass through many resonators between input and output. Therefore, frequency selectivity is improved.

なお、第3図の構造では、3次の厚みたて振動
モードだけが強勢に励振されるが、第2図におい
て電極が施されているセラミツクシートの積層枚
数について、2次の場合は3枚、4次の場合は5
枚、一般のn次の場合はn+1枚と積層枚数を変
えてやることにより、他の高次モードも強勢に励
振することができ、しかも基本共振によるスプリ
アスを抑圧することは言うまでもない。
In the structure shown in Fig. 3, only the third-order thick vertical vibration mode is strongly excited, but in the case of the second-order case, the number of laminated ceramic sheets on which electrodes are applied in Fig. 2 is three. , 5 for the fourth order
By changing the number of laminated layers to n+1 in the case of a general n-th order, it is possible to strongly excite other higher-order modes, and it goes without saying that spurious due to fundamental resonance can be suppressed.

次に、本発明の一実施例として、第2図、第3
図に示した構造の第3次厚みたて振動を用いた中
心周波数27MHzの移動無線用モノリシツクフイル
タについてのべる。
Next, as an embodiment of the present invention, FIGS.
This article describes a monolithic filter for mobile radio with a center frequency of 27MHz that uses third-order thickness vertical vibration and has the structure shown in the figure.

試作したモノリシツクフイルタの製造方法につ
いて第2図に従つて説明する。まず、磁器積層技
術により圧電磁器粉末と有機バインダー及び有機
浴媒を含む泥漿をつくり、キヤステイング法によ
り製膜し生シート20とした。この生シートにエ
ネルギーが閉じ込め電極21,21′,22,2
2′、分極用リード電極23,23′,24,2
4′及び電気端子用リード電極25,25′,2
6,26′を印刷した。ついで、これらの生シー
トを所定の大きさに切断して積層、圧着して積層
体を作製した。この積層体を焼成したモノリシツ
クフイルタを第3図に示すとおりである。さらに
外部電極27,27′,28,28′として所定の
位置に銀ペーストを塗布し、焼付けた。この後こ
の外部電極に直流高電界を印刷し、分極処理を行
なつた。圧電材料は、厚みたて結合係数kt=0.45
のPbTiO3系圧電セラミツクスを用い、焼成後の
板厚は330μm、厚み方向で隣接するエネルギー
閉じ込め電極の間隔はほぼ等間隔で73μmモノリ
シツクフイルタの外形寸法は6.4×8.4mmである。
ついで、表面の磁器層を研磨することによつて周
波数調整を行い、板厚が261μmのときフイルタ
の中心周波数が27MHzとなつた。このときのフイ
ルタの27MHz付近の動作減衰量特性を第6図に示
す。3dB比帯域幅3.0%が得られており、また基
本厚みたて振動によるスプリアス付近の動作減衰
量は20dB程度に抑えられている。一方、第1図
に示した従来の3次厚みたて振動を用いたモノリ
シツク圧電磁器フイルタでは、本発明と同じ
PbTiO3系圧電セラミツクを用いているにもかか
わらず、3dB比帯域幅1%程度しか得ることがで
きなかつたばかりでなく、基本厚みたて振動によ
るスプリアス付近の動作減衰量は5dB程度であつ
た。即ち、両者の厚みたて3次振動を用いたフイ
ルタ特性を比較すると、本発明のモノリシツクフ
イルタの方が、従来のものに比べてはるかに広帯
域化が実現でき、かつスプリアスとなる基本厚み
たて振動を抑圧することができる。
A method for manufacturing the prototype monolithic filter will be explained with reference to FIG. First, a slurry containing piezoelectric ceramic powder, an organic binder, and an organic bath medium was prepared using a porcelain lamination technique, and a film was formed using a casting method to obtain a green sheet 20. Energy is trapped in this raw sheet and the electrodes 21, 21', 22, 2
2', polarization lead electrodes 23, 23', 24, 2
4' and electrical terminal lead electrodes 25, 25', 2
6,26' was printed. Next, these green sheets were cut into predetermined sizes, laminated, and pressed together to produce a laminate. A monolithic filter obtained by firing this laminate is shown in FIG. Further, silver paste was applied to predetermined positions as external electrodes 27, 27', 28, and 28' and baked. Thereafter, a DC high electric field was printed on this external electrode to perform polarization treatment. The piezoelectric material has a thick vertical coupling coefficient kt=0.45
The thickness of the plate after firing is 330 μm, the distance between adjacent energy trapping electrodes in the thickness direction is approximately equal, and the outer dimensions of the monolithic filter are 6.4 × 8.4 mm.
Next, the frequency was adjusted by polishing the surface porcelain layer, and when the plate thickness was 261 μm, the center frequency of the filter was 27 MHz. The operating attenuation characteristics of the filter at this time around 27MHz are shown in FIG. A 3dB specific bandwidth of 3.0% has been obtained, and the amount of operational attenuation near the spurious due to basic thickness vibration has been suppressed to about 20dB. On the other hand, in the conventional monolithic piezoelectric ceramic filter using third-order thickness vertical vibration shown in FIG.
Despite using PbTiO 3 -based piezoelectric ceramics, not only was it possible to obtain a 3 dB specific bandwidth of only about 1%, but also the amount of operational attenuation in the vicinity of spurious waves due to basic thickness vibration was about 5 dB. In other words, when comparing the characteristics of both filters using thickness vertical vibration, the monolithic filter of the present invention can achieve a much wider band than the conventional one, and has a lower basic thickness that causes spurious waves. vibration can be suppressed.

以上詳述した如く、本発明の高次モードモノリ
シツクフイルタは、特定の高次モードのみ強勢に
励振可能であり、またスプリアスとなる基本モー
ド振動を抑圧し、さらに周波数調整も容易である
という優れた特徴を有するものである。
As detailed above, the high-order mode monolithic filter of the present invention has the advantages of being able to strongly excite only a specific high-order mode, suppressing fundamental mode vibrations that become spurious, and being easy to adjust the frequency. It has the following characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のモノリシツクセラミツクフイル
タを示し、イは平面図、ロは正面図である。第2
図は、本発明のモノリシツクセラミツクフイルタ
の積層構造を示す。第3図は、本発明のモノリシ
ツクセラミツクフイルタの断面図を示す。矢印は
分極方向である。第4図は、本発明とは異なる構
成のモノリシツクセラミツクフイルタの断面図を
示す。第5図は、本発明のモノリシツクセラミツ
クフイルタの実施例のうち電極群が4組形成され
ている例を示す図である。第6図は、本発明のモ
ノリシツクセラミツクフイルタの特性を示す図で
ある。 以上の図において10,20′は圧電磁器板、
11,11′,12,12′は電極、20は圧電磁
器粉末と有機物からなるシート。21,21′,
22,22′はエネルギー閉じ込め用内部電極、
23,23′,24,24′は分極用リード電極、
25,25′,26,26′は電気端子用リード電
極、27,27′は分極用外部電極、28,2
8′,29,29′は電気端子用外部電極、30,
30′,31,31′は電気端子。
FIG. 1 shows a conventional monolithic ceramic filter, in which A is a plan view and B is a front view. Second
The figure shows the laminated structure of the monolithic ceramic filter of the present invention. FIG. 3 shows a cross-sectional view of the monolithic ceramic filter of the present invention. Arrows indicate polarization directions. FIG. 4 shows a sectional view of a monolithic ceramic filter having a structure different from that of the present invention. FIG. 5 is a diagram showing an example in which four electrode groups are formed among the embodiments of the monolithic ceramic filter of the present invention. FIG. 6 is a diagram showing the characteristics of the monolithic ceramic filter of the present invention. In the above figures, 10 and 20' are piezoelectric ceramic plates,
11, 11', 12, 12' are electrodes, and 20 is a sheet made of piezoelectric ceramic powder and organic material. 21, 21',
22, 22' are internal electrodes for energy confinement;
23, 23', 24, 24' are lead electrodes for polarization,
25, 25', 26, 26' are lead electrodes for electric terminals, 27, 27' are external electrodes for polarization, 28, 2
8', 29, 29' are external electrodes for electrical terminals, 30,
30', 31, 31' are electrical terminals.

Claims (1)

【特許請求の範囲】[Claims] 1 圧電磁器板の内部あるいは内部及び表面に、
互いに平行でしかも圧電磁器板の厚み方向に互い
に重なりあう複数の電極からなる電極群が複数組
形成されており、かつ電極にはさまれ、しかも該
電極を介して隣り合う圧電磁器層が互いに逆向き
に分極処理されており、複数の電極群のうち少な
くとも入力及び出力端子と接続している2組の電
極群の電極数はそれぞれ3以上でしかも互いに等
しく、さらに当該入力及び出力端子に接続してい
る2組の電極群を構成する電極のうち圧電磁器板
表面に近い両外側に位置するそれぞれ2枚の電極
に入力及び出力端子が接続されている構造を有す
ることを特徴とするモノリシツクセラミツクフイ
ルタ。
1 Inside or on the inside and surface of the piezoelectric ceramic plate,
A plurality of electrode groups are formed, each consisting of a plurality of electrodes that are parallel to each other and overlap each other in the thickness direction of the piezoelectric ceramic plate, and the piezoelectric ceramic layers that are sandwiched between the electrodes and that are adjacent to each other through the electrodes are opposite to each other. The number of electrodes in the two electrode groups connected to at least the input and output terminals among the plurality of electrode groups is 3 or more and equal to each other, and the number of electrodes is equal to each other, and the number of electrodes is equal to each other, and A monolithic ceramic characterized by having a structure in which input and output terminals are connected to two electrodes located on both outer sides near the surface of a piezoelectric ceramic plate among the electrodes constituting two sets of electrode groups. filter.
JP18479381A 1981-11-18 1981-11-18 Monolithic ceramic filter Granted JPS5885614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18479381A JPS5885614A (en) 1981-11-18 1981-11-18 Monolithic ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18479381A JPS5885614A (en) 1981-11-18 1981-11-18 Monolithic ceramic filter

Publications (2)

Publication Number Publication Date
JPS5885614A JPS5885614A (en) 1983-05-23
JPH0158892B2 true JPH0158892B2 (en) 1989-12-14

Family

ID=16159383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18479381A Granted JPS5885614A (en) 1981-11-18 1981-11-18 Monolithic ceramic filter

Country Status (1)

Country Link
JP (1) JPS5885614A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564782A (en) * 1983-09-02 1986-01-14 Murata Manufacturing Co., Ltd. Ceramic filter using multiple thin piezoelectric layers
JPH07109971B2 (en) * 1989-02-20 1995-11-22 株式会社村田製作所 Filter device
TW432731B (en) 1998-12-01 2001-05-01 Murata Manufacturing Co Multilayer piezoelectric part

Also Published As

Publication number Publication date
JPS5885614A (en) 1983-05-23

Similar Documents

Publication Publication Date Title
US5118982A (en) Thickness mode vibration piezoelectric transformer
JP3390537B2 (en) Surface acoustic wave filter
JPH01176110A (en) Electrostriction resonator
US4652784A (en) Trapped-energy mode resonator and method of manufacturing the same
US5057801A (en) Filter device of piezo-electric type including divided co-planar electrodes
US5084647A (en) Piezoelectric filter
JPS6340491B2 (en)
JPH0158891B2 (en)
JPS6074709A (en) Piezoelectric device
JPH0158892B2 (en)
JPH0230594B2 (en)
US5274293A (en) Piezoelectric filter
JP2001068961A (en) Thickness longitudinal piezoelectric resonator, ladder type filter and piezoelectric resonance component
JPH01191508A (en) Electrostrictive resonator
JPS6165511A (en) Energy confinement type piezoelectric filter and its manufacture
JPH10215140A (en) Piezoelectric resonator and electronic component using the resonator
JPS6342744Y2 (en)
JP3729054B2 (en) Piezoelectric resonator
JP2881251B2 (en) Piezoelectric resonator
JP3397120B2 (en) Piezo filter
JPH11136075A (en) Piezo-electric resonator and ladder filter using it
JPH0418713B2 (en)
JP2001068965A (en) Ladder type filter
JPS6252980A (en) Manufacture of substrate for piezoelectric resonator
JPS6365168B2 (en)