JPH0158803B2 - - Google Patents

Info

Publication number
JPH0158803B2
JPH0158803B2 JP58071905A JP7190583A JPH0158803B2 JP H0158803 B2 JPH0158803 B2 JP H0158803B2 JP 58071905 A JP58071905 A JP 58071905A JP 7190583 A JP7190583 A JP 7190583A JP H0158803 B2 JPH0158803 B2 JP H0158803B2
Authority
JP
Japan
Prior art keywords
insulating
paint
layer
baking
polyvinyl formal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58071905A
Other languages
Japanese (ja)
Other versions
JPS59196508A (en
Inventor
Shin Kobayashi
Hideki Chidai
Masuo Suzuki
Hideo Doshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7190583A priority Critical patent/JPS59196508A/en
Publication of JPS59196508A publication Critical patent/JPS59196508A/en
Publication of JPH0158803B2 publication Critical patent/JPH0158803B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は油入り変圧器用として好適な特性を
備えて且つ製造コストが低廉な絶縁電線に関す
る。 一般に油入り変圧器用絶縁電線としては、絶縁
油に接触することから耐絶縁油性に優れることが
必要であると共に、絶縁油中に微量の水分が混入
した場合に加水分解による絶縁特性の劣化が少な
いことが要求される。しかして、従来では上記特
性を付与するために銅線表面にポリビニルホルマ
ール系絶縁塗料を塗布焼付けした所謂ポリビニル
ホルマール銅線が使用されている。 ところが、ポリビニルホルマール系絶縁塗料は
塗料中の不揮発成分(主として樹脂成分)の濃度
が高いと非常に高粘度となることから、その塗布
に当たつて該濃度を低く設定せざるを得ず、一
方、油入り変圧器用絶縁電線としては1mm以上の
太い銅線を使用するのが普通であり、従つて絶縁
層も35〜60μm程度の厚みを必要とする。このた
め、ポリビニルホルマール系絶縁塗料によつて所
要厚みの絶縁層を形成するのに、通常10数回の塗
布焼付けを繰り返すという時間および手間を要す
る手段が採られており、これによつて絶縁電線の
製造コストが高く付くという欠点があつた。しか
も、ポリビニルホルマール系絶縁塗料自体も高価
であつた。またポリビニルホルマール電線は比較
的に耐絶縁油特性に優れるものであるが、絶縁油
中に水分が微量混入した場合の加水分解による絶
縁層の劣化に対する耐性、特に高温度下での耐性
において、充分に満足し得るものではなく、また
改良の余地を残している。 この発明は、上記従来の欠点を解消するために
なされたもので、従来のポリビニルホルマール銅
線に対して製造工程が簡略化され低コストである
と共に性能的にも優れた油入り変圧器用絶縁電線
を提供することを目的としている。即ち、この発
明に係る絶縁電線は、図面に示す如く、丸線また
は平角線などの導体1表面の絶縁被覆層2を、特
定の樹脂成分を含む液状のアクリル系絶縁塗料の
塗布焼付けによる下層3と液状のポリビニルホル
マール系絶縁塗料の塗布焼付けによる上層4とか
ら二重に構成したものである。 上記アクリル系絶縁塗料は、一般にはポリビニ
ルホルマール系絶縁塗料に比較して非常に安価で
あると共に、不揮発分の濃度を高くしても粘度上
昇が小さいという特徴がある。従つて、該濃度を
高く設定することにより、絶縁被覆層2の一部な
いし主要部を占める下層3を、一回の塗布焼付け
により形成でき、これと共に上層4の形成のため
のポリビニルホルマール系絶縁塗料の塗布焼付け
は一回ないし数回程度で済むことから、絶縁被覆
層2の材料コストおよび製造コストが大きく低減
される。 このような絶縁被覆層2の層厚は35〜60μm程
度がよく、またこのうち上層4の層厚は2〜
10μm程度がよく、特に特性および製造面で5μm
前後が最適である。 下層3の形成に使用するアクリル系絶縁塗料
は、樹脂成分がアクリロニトリルまたは/および
メタクリロニトリル50〜80mol%と、グリシジル
メタクリレート、アリルグリシジルエーテル等の
グリシジル化合物2〜5mol%と、スチレン、α
−メチルスチレン、メチルメタクリレート、エチ
ルアクリレート、N−ブチルメタクリレート、メ
タクリル酸、アクリル酸等の二重結合を有する他
の化合物を加えた単量体との共重合体からなるも
のであり、特に水分散型アクリル系塗料が好適で
ある。しかして、上記単量体成分中のニトリル化
合物とグリシジル化合物とがそれぞれ上記範囲よ
り過少であると、得られた電線の一般的特性、特
に熱的特性が低下し、またニトリル化合物が過多
であつても同様に一般的特性が不充分であり、更
にグリシジル化合物が過多になると得られた電線
の機械的特性が低下する。一方、上層4の形成に
は、市販の液状のポリビニルホルマール系絶縁塗
料を種々使用できる。 ところで、アクリル系絶縁塗料を電着塗装によ
り導体表面に塗布焼付する際、一般的に溶剤揮散
による成膜のための低温での一次焼付けと、キユ
アーつまり硬化反応を完了させて塗膜を完全硬化
させるための高温での二次焼付けが必要となる。
そして、このアクリル系塗料層を下層としてその
上にポリビニルホルマール系絶縁塗料層を形成す
る場合には、この上層の焼付けで下層の上記キユ
アーを行うことになるが、下層に従来汎用のアク
リル系絶縁塗料を用いると、上層の焼付けにポリ
ビニルホルマール系絶縁塗料に好適な焼付温度を
選定したとき下層のアクリル系絶縁塗料がセミキ
ユアーつまり硬化不足となり、逆に下層のキユア
ーに充分な焼付温度を選定したとき上層のポリビ
ニルホルマール系絶縁塗料層がオーバーキユアー
となつて塗膜劣化をきたし、いずれにしても油入
り変圧器用絶縁電線として充分な特性が得られな
かつた。 しかるに、本発明のように下層のアクリル系絶
縁塗料として樹脂成分が(メタ)アクリロニトリ
ル50〜80mol%とグリシジル化合物2〜5mol%
と他の二重結合を有する化合物との共重合体から
なる特定組成を有するものを使用した場合、上層
のポリビニルホルマール系絶縁塗料に好適な比較
的低温の焼付温度において下層の上記アクリル系
絶縁塗料が充分にキユアーされ、従つて油入り変
圧器用絶縁電線として充分な特性を付与すること
が可能となる。 以下、この発明を実施例によつて具体的に説明
する。 下記の表1は、この発明に係る第1の実施例の
絶縁電線Aと第2の実施例の絶縁電線Bにおける
絶縁被覆層3の下層4の形成に使用したアクリル
系絶縁塗料の単量体成分を示す。
The present invention relates to an insulated wire that has characteristics suitable for use in oil-filled transformers and is inexpensive to manufacture. Generally speaking, insulated wires for oil-filled transformers need to have excellent resistance to insulating oil since they come into contact with insulating oil, and they also need to have minimal deterioration of insulation properties due to hydrolysis when a small amount of water gets mixed into the insulating oil. This is required. Conventionally, so-called polyvinyl formal copper wire has been used in which a polyvinyl formal insulating paint is coated and baked on the surface of the copper wire in order to impart the above characteristics. However, polyvinyl formal insulating paint becomes extremely viscous when the concentration of non-volatile components (mainly resin components) in the paint is high, so it is necessary to set the concentration low when applying it. Generally, a thick copper wire of 1 mm or more is used as an insulated wire for an oil-filled transformer, and therefore the insulating layer also needs to have a thickness of about 35 to 60 μm. For this reason, in order to form an insulating layer of the required thickness using polyvinyl formal insulating paint, a time-consuming and labor-intensive method of repeating coating and baking more than 10 times is usually adopted. The disadvantage was that the manufacturing cost was high. Furthermore, the polyvinyl formal insulating paint itself was expensive. In addition, polyvinyl formal electric wire has relatively excellent insulating oil resistance properties, but it does not have enough resistance to deterioration of the insulation layer due to hydrolysis when a small amount of water is mixed in the insulating oil, especially at high temperatures. The results are not satisfactory, and there is still room for improvement. This invention was made to eliminate the above-mentioned conventional drawbacks, and is an insulated wire for oil-filled transformers that has a simpler manufacturing process, is lower in cost, and has superior performance compared to conventional polyvinyl formal copper wires. is intended to provide. That is, in the insulated wire according to the present invention, as shown in the drawings, an insulating coating layer 2 on the surface of a conductor 1 such as a round wire or a rectangular wire is coated with a lower layer 3 by coating and baking a liquid acrylic insulating paint containing a specific resin component. and an upper layer 4 formed by coating and baking a liquid polyvinyl formal insulating paint. The above-mentioned acrylic insulating paint is generally much cheaper than polyvinyl formal insulating paint, and is characterized by a small increase in viscosity even when the concentration of nonvolatile matter is increased. Therefore, by setting the concentration high, the lower layer 3 that occupies part or the main part of the insulating coating layer 2 can be formed by one coating and baking process, and at the same time, the polyvinyl formal insulation for forming the upper layer 4 can be formed. Since coating and baking of the paint only needs to be done once or several times, the material cost and manufacturing cost of the insulating coating layer 2 are greatly reduced. The thickness of such an insulating coating layer 2 is preferably about 35 to 60 μm, and the thickness of the upper layer 4 is about 2 to 60 μm.
Approximately 10μm is good, especially 5μm in terms of characteristics and manufacturing.
Before and after is best. The acrylic insulating paint used to form the lower layer 3 has resin components of 50 to 80 mol% of acrylonitrile or/and methacrylonitrile, 2 to 5 mol% of a glycidyl compound such as glycidyl methacrylate or allyl glycidyl ether, and styrene and α.
- Consisting of a copolymer with a monomer containing other compounds having double bonds such as methylstyrene, methyl methacrylate, ethyl acrylate, N-butyl methacrylate, methacrylic acid, acrylic acid, etc., especially in water dispersion. Type acrylic paints are preferred. However, if the nitrile compound and glycidyl compound in the monomer components are each less than the above range, the general properties, especially the thermal properties, of the obtained electric wire will deteriorate, and if the nitrile compound is too large, Similarly, the general properties are insufficient, and when the amount of glycidyl compound is too large, the mechanical properties of the obtained wire are deteriorated. On the other hand, for forming the upper layer 4, various commercially available liquid polyvinyl formal insulation paints can be used. By the way, when applying and baking acrylic insulating paint to the conductor surface by electrodeposition, it is common to first bake at a low temperature to form a film by volatilizing the solvent, and then to complete the curing reaction to completely harden the paint film. Secondary baking at high temperature is required to achieve this.
When this acrylic paint layer is used as a lower layer and a polyvinyl formal insulation paint layer is formed on top of it, the lower layer is cured by baking this upper layer. When using paint, when baking the upper layer at a baking temperature suitable for polyvinyl formal insulation paint, the lower layer acrylic insulation paint becomes semi-cured, or insufficiently cured, and conversely, when selecting a baking temperature that is sufficient for the lower layer curing. The upper polyvinyl formal insulating paint layer became overcured, resulting in paint film deterioration, and in any case, sufficient characteristics could not be obtained as an insulated wire for an oil-filled transformer. However, as in the present invention, the resin component of the lower layer acrylic insulating paint is 50 to 80 mol% of (meth)acrylonitrile and 2 to 5 mol% of a glycidyl compound.
When using a product having a specific composition consisting of a copolymer of and another double bond-containing compound, the above-mentioned acrylic insulation paint of the lower layer can be baked at a relatively low baking temperature suitable for the polyvinyl formal insulation paint of the upper layer. is sufficiently cured, and therefore it is possible to provide sufficient characteristics as an insulated wire for an oil-filled transformer. Hereinafter, the present invention will be specifically explained with reference to Examples. Table 1 below shows the monomers of the acrylic insulating paint used to form the lower layer 4 of the insulation coating layer 3 in the insulated wire A of the first embodiment and the insulated wire B of the second embodiment according to the present invention. Indicates the ingredients.

【表】【table】

【表】 前記表の単量体混合物を用いて界面活性剤とし
てラウリル酸エステルソーダ、重合開始剤として
過硫酸カリウムを使用し、窒素気流中で60〜70℃
で四時間乳化重合させ、不揮発分20重量%の水分
散型アクリル系絶縁塗料を調整した。この絶縁塗
料を経1.6mmの銅線表面に線速6m/分で常法にて
電着塗装し、この塗装後の電線をN,N′−ジメ
チルホルムアミドの蒸気中に導いた後、250℃で
乾燥し、次にこの表面にポリビニルホルマール系
絶縁塗料(商標名 日立化成社製 WM−447)
を一回塗布し、350℃の温度で焼付けを行うこと
により、絶縁被覆層2の下層3が35μm厚で上層
4が5μm厚である絶縁電線A〜Cを得た。 一方、比較のために、第1の実施例で用いた水
分散型アクリル系絶縁塗料のみを使用して同様に
して40μm厚の絶縁層を形成した絶縁電線Dと、
実施例で用いたポリビニルホルマール系絶縁塗料
のみを常法により塗布焼付けして40μm厚の絶縁
層とした絶縁電線Eとをそれぞれ製造した。 上記絶縁電線A〜Eについて、絶縁破壊電圧、
耐軟化性、耐絶縁油性を試験したところ、下記の
表2に示す結果を得た。尚、耐絶縁油性は、絶縁
油400mlに対して約2600ppmの水分を含む絶縁紙
30gを長さ30cmの電線試験片と共に封入して、表
記の温度・日数で保存後の絶縁破壊電圧を上記封
入前の該電圧に対する残存率(%)で示した。
[Table] Using the monomer mixture shown in the above table, using sodium laurate as a surfactant and potassium persulfate as a polymerization initiator, the mixture was heated at 60 to 70°C in a nitrogen stream.
Emulsion polymerization was carried out for 4 hours to prepare a water-dispersible acrylic insulation paint with a non-volatile content of 20% by weight. This insulating paint was electrodeposited on the surface of a copper wire with a diameter of 1.6 mm using a conventional method at a line speed of 6 m/min, and the coated wire was introduced into N,N'-dimethylformamide vapor and heated to 250°C. and then apply polyvinyl formal insulation paint (trade name: WM-447 manufactured by Hitachi Chemical Co., Ltd.) to this surface.
was coated once and baked at a temperature of 350°C to obtain insulated wires A to C in which the lower layer 3 of the insulating coating layer 2 had a thickness of 35 μm and the upper layer 4 had a thickness of 5 μm. On the other hand, for comparison, an insulated wire D was prepared in which an insulating layer with a thickness of 40 μm was formed in the same manner using only the water-dispersed acrylic insulating paint used in the first example.
Insulated wires E and E were each coated with the polyvinyl formal insulating paint used in the example and baked in a conventional manner to form an insulating layer of 40 μm thick. Regarding the above insulated wires A to E, dielectric breakdown voltage,
When the softening resistance and insulating oil resistance were tested, the results shown in Table 2 below were obtained. In addition, the insulating oil resistance is based on insulating paper containing about 2600 ppm of moisture per 400 ml of insulating oil.
30 g was sealed together with a wire test piece having a length of 30 cm, and the dielectric breakdown voltage after storage at the indicated temperature and number of days was expressed as a residual rate (%) with respect to the voltage before the packaging.

【表】 上表から明らかなように、この発明に係る絶縁
電線A,Bは、従来のポリビニルホルマール電線
Eに対して、絶縁油中に微量の水分が混入した場
合の絶縁被覆層2の劣化に対する耐性が大きく改
善され、特に高温下での耐性が非常に良好であ
り、且つ耐軟化性にも優れ、しかもアクリル系絶
縁塗料単独による絶縁被覆層を形成した電線Dに
対しても各特性が良好である。しかるに、下層が
本発明で特定した単量体組成から外れた共重合体
からなる樹脂成分を含有するアクリル系絶縁塗料
にて形成された電線Cでは、耐軟化性に著しく劣
ると共に水分混入時の耐絶縁油性も不充分となる
ことが判る。 以上詳述したように、本発明の絶縁電線は、特
定の樹脂成分を含有する液状のアクリル系絶縁塗
料の塗布焼付けによる下層と液状のポリビニルホ
ルマー系絶縁塗料の塗布焼付けによる上層との二
重被覆層を有するものであるため、油入り変圧器
用として上記両絶縁塗料を各々単独で塗布焼付け
した絶縁層を有する絶縁電線に比較して高性能で
あると共に、絶縁被覆層の一部ないし主要部分を
安価なアクリル系絶縁塗料の電着塗装等による一
回の塗布焼付けで形成でき、この分だけ高価なポ
リビニルホルマール系絶縁塗料の使用量を少なく
できることから、絶縁被覆層の材料コストが低減
されると共に、全体として塗布焼付け回数が2回
で済むために製造工程が著しく簡略下され製造コ
ストも大きく低減される。
[Table] As is clear from the above table, the insulated wires A and B according to the present invention are more susceptible to deterioration of the insulation coating layer 2 when a small amount of water is mixed in the insulating oil, compared to the conventional polyvinyl formal wire E. In particular, the resistance under high temperatures is very good, and the resistance to softening is also excellent, and each characteristic is also improved even for electric wire D, which has an insulation coating layer made of acrylic insulation paint alone. In good condition. However, the electric wire C whose lower layer is formed of an acrylic insulating paint containing a resin component made of a copolymer that deviates from the monomer composition specified in the present invention has significantly poor softening resistance and is resistant to softening when water is mixed in. It can be seen that the insulating oil resistance is also insufficient. As described in detail above, the insulated wire of the present invention has a double layer: a lower layer formed by applying and baking a liquid acrylic insulating paint containing a specific resin component, and an upper layer formed by applying and baking a liquid polyvinylformer insulating paint. Because it has a coating layer, it has higher performance than an insulated wire for oil-filled transformers that has an insulation layer made by applying and baking each of the above insulating paints separately, and it also has a coating layer that can be used on a part or main part of the insulation coating layer. can be formed by applying and baking an inexpensive acrylic insulating paint once using electrodeposition coating, etc., and the amount of expensive polyvinyl formal insulating paint used can be reduced accordingly, reducing the material cost of the insulating coating layer. In addition, since the total number of times of coating and baking is only two, the manufacturing process is significantly simplified and the manufacturing cost is greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の油入り変圧器用絶縁電線の概
略断面図である。 1…導体、2…絶縁被覆層、3…下層、4…上
層。
The drawing is a schematic cross-sectional view of an insulated wire for an oil-filled transformer according to the present invention. 1... Conductor, 2... Insulating coating layer, 3... Lower layer, 4... Upper layer.

Claims (1)

【特許請求の範囲】[Claims] 1 導体表面に、(メタ)アクリロニトリル50〜
80mol%とグリシジル化合物2〜5mol%と他の
二重結合を有する化合物との共重合体からなる樹
脂成分を含む液状のアクリル系絶縁塗料を塗布焼
付けてなる下層と、液状のポリビニルホルマール
系絶縁塗料を塗布焼付けてなる上層とから構成さ
れる二重絶縁被覆層が形成された油入り変圧器用
絶縁電線。
1. On the conductor surface, (meth)acrylonitrile 50~
A lower layer made by coating and baking a liquid acrylic insulating paint containing a resin component consisting of a copolymer of 80 mol% glycidyl compound, 2 to 5 mol% glycidyl compound, and other compounds having double bonds, and a liquid polyvinyl formal insulating paint. An insulated wire for oil-filled transformers with a double insulation coating layer consisting of an upper layer that is coated and baked.
JP7190583A 1983-04-22 1983-04-22 Insulated wire for oil-filled transformer Granted JPS59196508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7190583A JPS59196508A (en) 1983-04-22 1983-04-22 Insulated wire for oil-filled transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7190583A JPS59196508A (en) 1983-04-22 1983-04-22 Insulated wire for oil-filled transformer

Publications (2)

Publication Number Publication Date
JPS59196508A JPS59196508A (en) 1984-11-07
JPH0158803B2 true JPH0158803B2 (en) 1989-12-13

Family

ID=13474017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7190583A Granted JPS59196508A (en) 1983-04-22 1983-04-22 Insulated wire for oil-filled transformer

Country Status (1)

Country Link
JP (1) JPS59196508A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576507A (en) * 1978-12-05 1980-06-09 Mitsubishi Electric Corp Method of fabricating selffadhesive wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576507A (en) * 1978-12-05 1980-06-09 Mitsubishi Electric Corp Method of fabricating selffadhesive wire

Also Published As

Publication number Publication date
JPS59196508A (en) 1984-11-07

Similar Documents

Publication Publication Date Title
EP0773557B1 (en) Heat-resistant electrical wire comprising a benzimidazole-based polymer coating
JPH0158803B2 (en)
JPS6214589B2 (en)
JPS63291962A (en) Heat-resistant member
JPS58160308A (en) Thermosetting resin composition
JPS59133232A (en) Etching of polyimide
JPS5913125B2 (en) Manufacturing method of enameled electric wire
JP2518334B2 (en) Twist-resistant deformation self-bonding enameled wire
JPS60150504A (en) Heat resistant insulated wire
SU1282222A1 (en) Cementing thermoplastic composition for enameled-insulated wires
JPS60241606A (en) Insulated wire
JPWO2016117398A1 (en) Resin composition, paint, electronic parts, mold transformer, motor coil, cable
JP2000260233A (en) Flat polyester imide enameled wire
JPS5978406A (en) Lead wire for electric device
NO761573L (en)
JPS58186108A (en) Lead wire for electric device
JPS60150503A (en) Self-adhesive insulated wire
JPS6237069B2 (en)
JPS5810807A (en) Resin mold coil
JPS58186927A (en) Preparation of lead wire for electric apparatus
JPH02253511A (en) Heat-proof self-welding enameled wire
JPS58212114A (en) Impregnation treatment of coil
JPH03241608A (en) Self-fusing insulated wire
JPH01138272A (en) Self-bonding paint
JPS60189119A (en) Method of producing preferable solderable electrodeposited insulated wire