JPH0158737B2 - - Google Patents

Info

Publication number
JPH0158737B2
JPH0158737B2 JP59168394A JP16839484A JPH0158737B2 JP H0158737 B2 JPH0158737 B2 JP H0158737B2 JP 59168394 A JP59168394 A JP 59168394A JP 16839484 A JP16839484 A JP 16839484A JP H0158737 B2 JPH0158737 B2 JP H0158737B2
Authority
JP
Japan
Prior art keywords
voltage
control
constant
converter
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59168394A
Other languages
Japanese (ja)
Other versions
JPS6146117A (en
Inventor
Atsumi Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59168394A priority Critical patent/JPS6146117A/en
Publication of JPS6146117A publication Critical patent/JPS6146117A/en
Publication of JPH0158737B2 publication Critical patent/JPH0158737B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は直流送電系統の制御方式に係り、特に
短絡容量の小さないわゆる弱小流系統に接続され
た直流送電系統の制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a control system for a DC power transmission system, and particularly to a control system for a DC power transmission system connected to a so-called weak current system with a small short circuit capacity.

〔発明の背景〕[Background of the invention]

直流送電系統は全体として、定電力制御される
のが普通であるが、これは一般に順変換装置にお
いて直流電流の値を調節して目的の電力へもつて
行くことで実現される。一方、直流送電系統の電
圧は、逆変換装置側で定められる場合が多いが、
特公昭58−14138号で知られるように逆変換装置
位相制御による制御は一般に定余裕角制御が定電
圧制御である。交流系統の電圧変動範囲は通常±
5〜7%であるから、今、その範囲を7%とし
て、両制御方式を定電力制御の前提で比較してみ
ると、第2図の様になる。第2図は横軸に交流電
圧Ea(p,u)、縦軸に無効電力Q(p,u)、直
流電圧Vd(p,u)及び余裕角(度)をとつて、
定電圧制御(AVRという)、定余裕角制御
(AγRという)、力率一定制御(APfRという)と
するときのVd,Ea,γの変化の様子を示してい
る。尚、Q,Vd,Eaに付した(p,u)は単位
表示したことを表わす。これを電圧安定度の見地
から検討してみる。まず定電圧制御(第2図に
AVRとして示す。)によると交流電圧Eaが低下す
るに従つて、変換装置の消費無効電力Qが減少す
るから電圧安定度の上からは最も望ましい。しか
しながら−7%の電圧になつても必要な余裕角γ
(ここでは17度としている)を確保するために定
絡交流電圧Ea=1.0(p,u)のときの余裕角γは
約27度と大きくなつており、消費無効電力Qも定
絡送電電力の75%となり、定余裕角制御AγRを
行う場合に較べて約1.3倍と大きくなる。これは、
変換所に設置する無効電力補償設備の容量が大き
くなることを意味しており、経済的に好ましくな
い。一方、定余裕角制御(AγR)の場合は消費
無効電力Qは最小に出来るが、第2図から分るよ
うに、交流電圧Eaが低下するに従つて、消費無
効電力Qも大きくなるから、交流電圧の低下に伴
なつてますます交流電圧を低下させる方向の力が
働くことにより、電圧安定度的に好ましくない。
A DC power transmission system as a whole is generally controlled at a constant power level, and this is generally achieved by adjusting the value of DC current in a forward converter to reach a target power level. On the other hand, the voltage of a DC transmission system is often determined by the inverter,
As known from Japanese Patent Publication No. 58-14138, the control based on the inverse converter phase control is generally constant margin angle control and constant voltage control. The voltage fluctuation range of AC systems is usually ±
Since it is 5 to 7%, if we set the range to 7% and compare both control systems on the premise of constant power control, we will get the result as shown in Fig. 2. In Figure 2, the horizontal axis is the AC voltage E a (p, u), and the vertical axis is the reactive power Q (p, u), the DC voltage V d (p, u), and the margin angle (degrees).
It shows how V d , E a , and γ change when constant voltage control (referred to as AVR), constant margin angle control (referred to as AγR), and constant power factor control (referred to as APfR) are performed. Note that (p, u) appended to Q, V d , and E a indicate that they are expressed in units. Let's consider this from the standpoint of voltage stability. First, constant voltage control (see Figure 2)
Shown as AVR. ), as the AC voltage E a decreases, the reactive power Q consumed by the converter decreases, which is most desirable from the viewpoint of voltage stability. However, even if the voltage is -7%, the necessary margin angle γ
(Here it is 17 degrees), the margin angle γ is as large as approximately 27 degrees when the fixed AC voltage E a = 1.0 (p, u), and the reactive power consumption Q is also This is 75% of the electric power, which is about 1.3 times larger than when constant margin angle control AγR is performed. this is,
This means that the capacity of the reactive power compensation equipment installed at the converter station will increase, which is economically unfavorable. On the other hand, in the case of constant margin angle control (AγR), the reactive power consumption Q can be minimized, but as can be seen from Figure 2, as the AC voltage E a decreases, the reactive power consumption Q also increases. As the AC voltage decreases, a force acts to further decrease the AC voltage, which is unfavorable in terms of voltage stability.

〔発明の目的〕[Purpose of the invention]

本発明は、この様な従来技術の欠点を補うもの
で、消費無効電力の増加を最小限にとどめつつ、
電圧安定度の面からも優れた制御方式を提供する
ものである。
The present invention compensates for the shortcomings of the conventional technology, and minimizes the increase in reactive power consumption.
This provides a control method that is also excellent in terms of voltage stability.

〔発明の概要〕[Summary of the invention]

本発明では要するに変換器の位相制御が効く時
間領域においても力率一定に制御するものであ
る。
In short, the present invention is to control the power factor to be constant even in the time domain where the phase control of the converter is effective.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例について説明する前にまず、本
発明の基本原理及び技術的背景について説明す
る。
Before describing embodiments of the present invention, the basic principle and technical background of the present invention will be explained first.

直流送電用変換装置では、よく知られる様に変
圧器にタツプが設けられている。第2図の特性は
変圧器のタツプが追随できない短時間領域の特性
を示しているが、タツプが追随して来ると様子が
異なる。例えば、交流電圧Eaの変動にかかわら
ず変圧器直流側巻線の誘起電圧が一定になる様に
タツプが制御されるものとすると、定電圧制御
(AVR)を行つていても、定余裕角制御(AγR)
を行つていても、交流電圧Eaが変化した当初は
第2図の様に無効電力Qが変化するものの、タツ
プが追随して来ると、制御進み角も余裕角γも元
の値に戻り、消費無効電力Qも、元の値に戻る。
即ち、タツプが追随する時間領域を考えると、交
流電圧Eaが変動しても力率は一定となる。つぎ
に、変換器の位相制御は定余裕角制御(AγR)
を行つており、変圧器タツプは直流電圧Vdを一
定にする様に制御する場合を考えて見る。位相制
御の時間領域では、直流電圧Vdは、交流電圧Ea
が低下するに従つて直流電圧Vdが低下するが、
変圧器タツプは直流巻線電圧を上昇させて直流電
圧Vdを元の値に戻そうとする。直流電圧Vdが元
の値となつた時は、直線巻線電圧が交流電圧変化
前と同じ値になつた時であり、制御進み角、余裕
角は元の値となつており、当然のことながら無効
電力Qも元の値となつている。
As is well known, in a DC power transmission converter, a tap is provided on the transformer. The characteristics shown in FIG. 2 show characteristics in a short time period where the tap of the transformer cannot follow, but the situation is different when the tap starts to follow. For example, if the tap is controlled so that the induced voltage in the DC side winding of the transformer remains constant regardless of fluctuations in the AC voltage E a , then even if constant voltage control (AVR) is performed, the constant margin Angle control (AγR)
Even if the AC voltage E a changes, the reactive power Q changes as shown in Figure 2, but when the tap follows, the control advance angle and margin angle γ return to their original values. The reactive power consumption Q also returns to its original value.
That is, considering the time domain followed by the tap, the power factor remains constant even if the AC voltage E a fluctuates. Next, the phase control of the converter is constant margin angle control (AγR).
Let's consider the case where the transformer tap is controlled to keep the DC voltage V d constant. In the time domain of phase control, the DC voltage V d is the AC voltage E a
As the voltage decreases, the DC voltage V d decreases, but
The transformer tap attempts to increase the DC winding voltage to return the DC voltage V d to its original value. When the DC voltage V d returns to its original value, it is the time when the linear winding voltage becomes the same value as before the AC voltage change, and the control lead angle and margin angle remain at their original values. Notably, the reactive power Q also remains at its original value.

以上の様に変圧器タツプが追随する時間領域で
は、交流電圧が変化しても力率は一定であり、送
電電力が一定である限り、消費無効電力も一定で
ある。
As described above, in the time domain followed by the transformer tap, the power factor is constant even if the AC voltage changes, and as long as the transmitted power is constant, the reactive power consumption is also constant.

従つて、定余裕角制御の様に交流電圧が低下す
るにつれて無効電力が増加する制御は電圧安定度
的に厳しいので改善を要するが、定電圧制御の様
に定格電圧時の消費無効電力を大幅に増加させて
まで、交流電圧の低下につれて消費無効電力が減
小する様に制御し、電圧安定度を向上させようと
しても、いずれ、タツプが追随して来ると、無効
電力は元の値に戻り、その状態でも電圧安定度は
保たれないとならないから、大きな無効電力供給
設備を必要とするだけで損である。
Therefore, control in which reactive power increases as AC voltage decreases, such as constant margin angle control, is difficult in terms of voltage stability and requires improvement; Even if you try to improve voltage stability by controlling the reactive power consumption so that it decreases as the AC voltage decreases, the reactive power will return to its original value when the taps follow suit. Even in that state, voltage stability must be maintained, which is a loss if a large reactive power supply facility is required.

本発明は以上のことを考慮に入れてなされたも
ので、変換器の位相制御が効く時間領域において
も、力率を一定に制御しようとするものである。
The present invention has been made in consideration of the above, and aims to control the power factor to be constant even in the time domain where the phase control of the converter is effective.

この場合の特性を第2図中にAPfRとして示
す。これにより、定余裕角制御の電圧安定度に関
する欠点を改善し、タツプが追随する時間領域と
ほぼ同じ程度の電圧安定度が得られる。これは、
第2図の様に、消費無効電力が定格電圧時に較べ
て約6.5%増加するにもかかわらず、交流電圧の
変動にかかわらず一定に保たれることから理解で
きよう。
The characteristics in this case are shown as APfR in FIG. This improves the drawback of constant margin angle control regarding voltage stability, and provides voltage stability that is approximately the same as the time domain followed by the tap. this is,
This can be understood from the fact that, as shown in Figure 2, although the reactive power consumption increases by approximately 6.5% compared to the rated voltage, it remains constant regardless of alternating current voltage fluctuations.

この制御では、交流電圧変動範囲を±7%とす
る場合、交流電圧が、定格値の93%の場合に、余
裕角γが規定値(第1図では18度として計算して
ある。)となる様に制御進み角βを定め、交流電
圧が93%より大きい範囲では、力率が93%の場合
と同じ値となる様にβ,γを定める。この場合、
第2図に示す様に余裕角は交流電圧93%の場合の
値よりも大きくなる。
In this control, when the AC voltage fluctuation range is ±7%, the margin angle γ is the specified value (calculated as 18 degrees in Figure 1) when the AC voltage is 93% of the rated value. The control advance angle β is determined so that the AC voltage is greater than 93%, and β and γ are determined so that they have the same value as when the power factor is 93%. in this case,
As shown in Figure 2, the margin angle is larger than the value when the AC voltage is 93%.

つぎに本発明を具体的に実施する方法について
説明する。
Next, a method for specifically implementing the present invention will be explained.

変換装置の力率cosは、 で表わされる。ここで、γは余裕角、βは制御進
み角、αは制御遅れ角、uは重なり角である。
The power factor cos of the converter is It is expressed as Here, γ is a margin angle, β is a control lead angle, α is a control delay angle, and u is an overlap angle.

一方、 が成り立つ。ここでIdは直流電流、Eaは変換装置
交流側の電圧、Xは転流リアクタンスである。
(1)、(2)式より、逆変換装置の場合について求める
と、下式が成立する。
on the other hand, holds true. Here, I d is a direct current, E a is a voltage on the AC side of the converter, and X is a commutation reactance.
From equations (1) and (2), the following equation holds true for the case of an inverse transformation device.

この式は2つの変換Id,Eaを含んでおり、非線
形であるから、デイジタル制御を行う様な場合に
は、Id,Eaの組合せでβの関係を示す表を作つて
おき、Id,Eaの値によつて表を索引してβを求め
ることができる。これにより、本発明を実施でき
るが、この方法では、表に対応する記憶容量が必
要であること、完成にリニアな表は作れないか
ら、補間法等によつて、正確なβの値を求めるた
めの演算を行う必要があること、等の欠点があ
る。第1図はこの様な欠点を除くことの出来る本
発明の実施例である。
This equation includes two transformations I d and E a and is non-linear, so when performing digital control, create a table showing the relationship between β by the combination of I d and E a , β can be found by indexing the table using the values of I d and E a . With this method, the present invention can be carried out, but since this method requires storage capacity corresponding to the table and cannot create a completely linear table, an accurate value of β is determined by interpolation method etc. There are disadvantages such as the need to perform calculations for FIG. 1 shows an embodiment of the present invention which can eliminate such drawbacks.

図において、1は、交流系統と、変換装置3の
間の接続及びしや断を行うためのしや断器、2は
変換用変圧器、3は変換器、4は直流リアクトル
である。また、5は交直連系点の電圧Eaを検出
するための電圧変成器、6は直流電流Idを検出す
るための直流電流変成器である。本実施例におい
ては、整流回路7によつて、交流電圧Eaの絶対
値を示す直流電流を作る。つぎに割算回路8によ
り、6の出力のIdと7の出力のEaの値で割算を行
い、Id/Eaを求める。これにより、Id,Eaの二つ
の変数を(Id/Ea)なる一つの変数に集約できた
訳である。この(Id/Ea)と制御進み角βの関係
を描くと、第3図の様になる。これは、転流リア
クタンスXを18%とし、第1図に示す様に、定格
送電電力で運転しており、交流電圧が、定格値を
ベースとして0.93p.u.でβ=17度とした場合と力
率が同じになるという条件で(3)式より制御進み角
βを求めたものである。結果はなめらかな曲線で
あるが、第3図中に一点鎖線で示す直線で近似し
ても、0.2度以下の誤差で近似できる。この場合
βは β=31.8+8.5(Id/Ea)(度) ………(4) で表わされる。
In the figure, 1 is a disconnector for connecting and disconnecting between the AC system and the converter 3, 2 is a conversion transformer, 3 is a converter, and 4 is a DC reactor. Further, 5 is a voltage transformer for detecting the voltage E a at the AC/DC interconnection point, and 6 is a DC current transformer for detecting the DC current I d . In this embodiment, the rectifier circuit 7 generates a direct current that represents the absolute value of the alternating current voltage E a . Next, the division circuit 8 divides the value of I d of the output of 6 and the value of E a of the output of 7 to obtain I d /E a . This allows the two variables I d and E a to be aggregated into one variable (I d /E a ). The relationship between this (I d /E a ) and the control advance angle β is depicted in FIG. 3. This compares to the case where the commutation reactance The control advance angle β was calculated from equation (3) under the condition that the ratios are the same. The result is a smooth curve, but it can be approximated with an error of 0.2 degrees or less even if it is approximated by a straight line shown by a dashed line in Fig. 3. In this case, β is expressed as β=31.8+8.5 (I d /E a ) (degrees) (4).

第1図に示す様に、制御電圧Eaと制御角αが
比例する関係にある位相制御装置10を用いる場
合には、(4)式より α=180−β=148.2−8.5(Id/Ea)………(5) に相当する制御電圧を与えてやれば良いから、係
数加算器9により、バイアス電圧VBを割算回路
8の出力である(Id/Ea)より、 Ec=Eco/180{148.2−8.5(Id/Ea)} ………(6) なる電圧を作り出して、位相制御装置10に加え
ればよい。ここで、Ecoは位相制御装置10の出
力パルスの位相を180゜とするための制御電圧Ec
値を示している。即ち、 Ec=k1VB−k2(Id/Ea) ………(7) が(6)式と等しい式になる様に係数加算器の係数加
算器の係数k1、k2を定めてやれば、第1図の様な
簡単な回路で本発明を実現できる。もちろん、デ
イジタル制御をやる場合にも、第1図と同じ手順
で計算を行えば、簡単に本発明を実施できる。
As shown in FIG. 1, when using the phase control device 10 in which the control voltage E a and the control angle α are in a proportional relationship, α=180−β=148.2−8.5 (I d / Since it is sufficient to give a control voltage corresponding to E a )......(5), the bias voltage V B is divided by the coefficient adder 9 from (I d /E a ), which is the output of the divider circuit 8. E c =E c o/180 {148.2−8.5 (I d /E a )} (6) A voltage as follows may be generated and applied to the phase control device 10. Here, E co indicates the value of the control voltage E c for setting the phase of the output pulse of the phase control device 10 to 180°. That is, E c = k 1 V B −k 2 (I d /E a ) ......The coefficients k 1 and k of the coefficient adder are adjusted so that (7) becomes the same equation as (6). 2 , the present invention can be realized with a simple circuit as shown in FIG. Of course, even when performing digital control, the present invention can be easily implemented by performing calculations using the same procedure as shown in FIG.

以上の様に第1図の実施例によれば、実際に運
用する範囲で力率で一定にする制御が実現でき、
先に述べた電圧安定度の点で優れた変換装置の制
御方式が実現できる。
As described above, according to the embodiment shown in FIG. 1, it is possible to realize control to keep the power factor constant within the range of actual operation.
A control system for a converter that is excellent in terms of voltage stability as described above can be realized.

以上、順変換装置側について説明したが、直流
送電系統では、逆変換装置側で定電流制御あるい
は定電力制御が行われることがある。この場合、
制御角αの値を一定にすると、第2図の定余裕角
制御の場合と同様に電圧安定度的に厳しい条件と
なる。そこで、先に説明したと同様に、力率が一
定になる様に制御角αの値を変えると電圧安定度
を向上できる。この場合は、(1)、(2)式より により、αを定めれば良い。
The forward converter side has been described above, but in a DC power transmission system, constant current control or constant power control may be performed on the inverse converter side. in this case,
If the value of the control angle α is kept constant, there will be severe conditions in terms of voltage stability, similar to the constant margin angle control shown in FIG. Therefore, as described above, voltage stability can be improved by changing the value of the control angle α so that the power factor becomes constant. In this case, from equations (1) and (2), Therefore, it is sufficient to determine α.

この制御角αの計算値を第4図に示す。この場
合は、第3図の場合の様に直線近似とは行かない
が、図に示す様に3本程度の折線で十分近似でき
る。図で第1の直線Aは α=37.2−23.3(Id/Ea) ………(9) 第2の直線Bは α=31.7−17.8(Id/Ea) ………(10) 第3の直線Cは α=28.3−12.2(Id/Ea) ………(11) となるから、第2図を若干変更して第5図の様に
91,92,93で示す係数加算器を3個設け、
その出力の内の最も小さい出力を最小値選択回路
11で選びそれを位相制御装置10に加えれば良
い。なお、91,92,93は夫々(9)、(10)、(11)式
に対応する計算を行う。尚第4図の符号は第2図
と共通とし、同じ符号のものは同じ回路要素を示
している。
The calculated value of this control angle α is shown in FIG. In this case, linear approximation is not achieved as in the case of FIG. 3, but sufficient approximation can be achieved with about three broken lines as shown in the figure. In the figure, the first straight line A is α=37.2−23.3 (I d /E a )……(9) The second straight line B is α=31.7−17.8 (I d /E a )……(10) The third straight line C is α=28.3−12.2 (I d /E a ) (11), so by slightly modifying Figure 2, the coefficients shown as 91, 92, and 93 are calculated as in Figure 5. Provide three adders,
The smallest output among the outputs may be selected by the minimum value selection circuit 11 and applied to the phase control device 10. Note that 91, 92, and 93 perform calculations corresponding to equations (9), (10), and (11), respectively. Note that the symbols in FIG. 4 are the same as those in FIG. 2, and the same symbols indicate the same circuit elements.

ここで、加算係数器を3個用い例を示したが、
当然のことながら、(Id/Ea)の値に範囲に応じ
て(9)、(10)、(11)式を使い分けるようにしても良い。
デイジタル制御を行う場合には、むしろこの方法
の方が好適である。
Here, an example using three addition coefficient units was shown, but
Naturally, equations (9), (10), and (11) may be used depending on the range of the value of (I d /E a ).
In the case of digital control, this method is rather preferable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を逆変換装置に適用するときの
一実施例図、第2図は本発明の特徴、効果を説明
するための図面、第3図は第1図において、制御
進み角βを定めるための計算結果を示す。第4
図、第5図は本発明を順変換装置に適用する場合
の制御角の計算値及び実施例である。 1……しや断器、2……変換用変圧器、3……
変換装置、4……直流リアク、5……電圧変成
器、6……直流電流変成器、7……整流回路、8
……割算器、9……係数加算器、10……位相制
御装置、11……最小値選択回路、91,92,
93……係数加算器。
FIG. 1 is a diagram showing an example of applying the present invention to an inverse conversion device, FIG. 2 is a drawing for explaining the features and effects of the present invention, and FIG. 3 is a diagram showing the control advance angle β in FIG. 1. The calculation results for determining . Fourth
FIG. 5 shows calculated values and examples of control angles when the present invention is applied to a forward conversion device. 1...Shiya disconnector, 2...Conversion transformer, 3...
Conversion device, 4... DC reactor, 5... Voltage transformer, 6... DC current transformer, 7... Rectifier circuit, 8
... Divider, 9 ... Coefficient adder, 10 ... Phase control device, 11 ... Minimum value selection circuit, 91, 92,
93...Coefficient adder.

Claims (1)

【特許請求の範囲】 1 順、逆変換装置の夫々が、変圧器タツプ制御
装置と変換器位相制御装置の両者を持つ様に構成
された直流送電系統において、交流電圧の通常の
変動範囲にある場合、変換装置の力率が常に一定
になる様に位相制御が行われることを特徴とする
直流送電系統の制御方式。 2 直流電流の全変動範囲で変換装置の力率が常
に一定になる様に位相制御することを特徴とする
第1項記載の直流送電系統の制御方式。 3 交直連系点の交流電圧Ea、直流送電系統の
交流電流Idを検出する手段を設け、Id/Eaを演算
してその結果により変換装置を位相制御すること
を特徴とする第1項、第2項記載の直流送電系統
の制御方式。
[Claims] 1. In a DC power transmission system configured to have both a transformer tap control device and a converter phase control device, each of the forward and inverse conversion devices is within the normal fluctuation range of the AC voltage. A control method for a DC power transmission system, characterized in that phase control is performed so that the power factor of the converter is always constant. 2. The control method for a DC power transmission system according to item 1, characterized in that phase control is performed so that the power factor of the converter is always constant over the entire fluctuation range of the DC current. 3. A device for detecting the AC voltage E a at the AC/DC interconnection point and the AC current I d in the DC transmission system, calculating I d /E a , and controlling the phase of the converter based on the result. A control method for a DC power transmission system according to items 1 and 2.
JP59168394A 1984-08-11 1984-08-11 Control system of dc transmission system Granted JPS6146117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59168394A JPS6146117A (en) 1984-08-11 1984-08-11 Control system of dc transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168394A JPS6146117A (en) 1984-08-11 1984-08-11 Control system of dc transmission system

Publications (2)

Publication Number Publication Date
JPS6146117A JPS6146117A (en) 1986-03-06
JPH0158737B2 true JPH0158737B2 (en) 1989-12-13

Family

ID=15867299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168394A Granted JPS6146117A (en) 1984-08-11 1984-08-11 Control system of dc transmission system

Country Status (1)

Country Link
JP (1) JPS6146117A (en)

Also Published As

Publication number Publication date
JPS6146117A (en) 1986-03-06

Similar Documents

Publication Publication Date Title
US4459534A (en) Method for controlling induction motor and apparatus therefor
US4729082A (en) Control device for power converter
US4800327A (en) Three-phase induction motor control method
EP0241920A2 (en) Control system for PWM inverter
EP1035645B1 (en) Control device of induction motor
US5140514A (en) Regulation of d.c. voltage of a pulse-width modulated rectifier using spatial vectors in a stationary coodinate system
WO1994001922A1 (en) Electrical power generation system
JPH08256479A (en) Method and apparatus for controlling converter station compensated in series
US4204151A (en) Static VAR generator with non-linear frequency dependent dynamic gain adjuster
US5065304A (en) Controller for AC power converter
JPS6318418B2 (en)
EP0615334B1 (en) A power conversion system, and a method of power conversion using such a power conversion system
JPH0158737B2 (en)
US4764859A (en) Method and apparatus for controlling circulating-current type cycloconverter
EP0186513B1 (en) Control method for cycloconverter and control apparatus therefor
JP3343711B2 (en) Static var compensator
JPH0432621B2 (en)
JPS6362985B2 (en)
US4674026A (en) Delta-connected circulating current cycloconverter apparatus
US5717583A (en) Power converter control apparatus for controlling commutation of switching devices under transient conditions
EP0237012A2 (en) A control apparatus for PWM power converters
JP3396775B2 (en) Inverter control circuit
US4395674A (en) Regulating system employing an RMS composite controller
JP3299718B2 (en) Self-excited semiconductor power converter
JP2607337Y2 (en) Output limiter circuit of power conversion circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term