JPH0158648B2 - - Google Patents

Info

Publication number
JPH0158648B2
JPH0158648B2 JP56126430A JP12643081A JPH0158648B2 JP H0158648 B2 JPH0158648 B2 JP H0158648B2 JP 56126430 A JP56126430 A JP 56126430A JP 12643081 A JP12643081 A JP 12643081A JP H0158648 B2 JPH0158648 B2 JP H0158648B2
Authority
JP
Japan
Prior art keywords
electrolytic
ethylene glycol
electrolytic solution
electrolyte
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56126430A
Other languages
Japanese (ja)
Other versions
JPS5827320A (en
Inventor
Michio Ishioka
Isao Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamura Oil Mill Ltd
Original Assignee
Okamura Oil Mill Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamura Oil Mill Ltd filed Critical Okamura Oil Mill Ltd
Priority to JP12643081A priority Critical patent/JPS5827320A/en
Publication of JPS5827320A publication Critical patent/JPS5827320A/en
Publication of JPH0158648B2 publication Critical patent/JPH0158648B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電解コンデンサ駆動用電解液に関し、
その目的とするところは比抵抗が小さく、耐電圧
が大きく、含水量が少なく、しかも高温下の長期
に亘る使用によつても電気特性が損なわれること
のない中高圧電解コンデンサ用電解液を提供する
ことにある。 一般に乾式電解コンデンサに用いられる電解コ
ンデンサ駆動用電解液(以下単に「電解液」とい
う)の特性が電解コンデンサの性能を決定する大
きな要因となることはよく知られた事実である。 従つて、一般家庭でも多種多様の電気製品が利
用されている現状にあつては、電解コンデンサ用
駆動用電解液としては、比抵抗が小さく、耐電圧
が大きく、含水量が少なく、かつ高温下での使用
によつても長期間安定した電気特性を維持し得る
ものが望まれている。 従来電解液としては例えばエチレングリコール
を主体とした溶媒に硼酸もしくはそのアンモニウ
ム塩を溶解した所謂エチレングリコール―硼酸系
電解液、エチレングリコールを主体とした溶媒に
アジピン酸もしくはそのアンモニウム塩を溶解し
た所謂エチレングリコール―アジピン酸系電解液
等が知られている。しかしながらこれら従来の電
解液には種々の欠点がある。即ちエチレングリコ
ール―硼酸系電解液はその比抵抗が大きく、それ
故損失もしくは等価直列抵抗の大きい電解コンデ
ンサしか得ることができない。また該電解液は各
薬品中に本来含まれている水分の他にエチレング
リコールと硼酸とのエステル化反応で生ずる多量
の水分をも含有しており、そのため陽極電極箔表
面に形成された誘電体酸化皮膜の劣化が激しく、
長期間安定した特性を維持することが極めて困難
である。さらに、多量の水が高温下で多量の蒸気
を発生し、電解コンデンサ内圧を上昇させるため
に、105℃を越える高温下での使用により防爆弁
部の膨みや外観変形を起こす。またエチレングリ
コール―アジピン酸系電解液は、耐電圧が低く、
それ故これを中高圧電解コンデンサ駆動用電解液
として用いることは不可能である。 また、近年エチレングリコール―ブチルオクタ
ン二酸系電解液が開発されている(特開昭56―
45014号公報参照)。しかしながら、この電解液
は、比抵抗の点で上記欠点をある程度解消し得る
ものの、耐電圧がせいぜい430V程度と低く、
500Vを超える高電圧領域での使用に耐え得るも
のではなく、また、含水量も1.8%とやや高いた
め、高温下における長期間の安定性に欠ける。 この様に比抵抗が小さく、耐電圧が500V以上
と大きく、含水量が少なく、しかも高温下の長期
に亘る使用によつても電気特性が損なわれること
のない中高圧電解コンデンサ駆動用電解液が未だ
開発されていないのが現状である。 本発明者は上記現状を考慮しつつ、種々の研究
を行つた結果、数多くの多塩基酸の中から特に下
記に示される多塩基酸を溶質として用いた場合に
限り、上記欠点を悉く解消し得る電解コンデンサ
駆動用電解液が得られることを見い出した。 即ち、本発明は、 もしくはその塩、 もしくはその塩、 もしくはその塩、 もしくはその塩、 もしくはその塩及び もしくはその塩からなる群から選ばれた少なくと
も1種を溶質とし、これをエチレングリコールを
主体とした溶媒に溶解してなることを特徴とする
電解コンデンサ駆動用電解液に係わる。 本発明の電解液は比抵抗が小さくまたその含水
量も極めて少ない。溶質である上記の多塩基酸
(化合物1〜6)はカルボキシル基を3〜6個有
するために、特にアンモニウム塩とした場合、エ
チレングリコール等の溶媒に対する相溶性に優
れ、かつイオン量が多く、動き易いため、比抵抗
が極めて少ない電解液を得ることができる。本発
明の電解液の比抵抗が小さいために、電解コンデ
ンサの損失もしくは等価直列抵抗(以下「ESR」
という)の低減に寄与することができる。電解コ
ンデンサのインピーダンス―周波数特性において
は、インピーダンスは前記ESRによりその大判
が律せられる。従つて前記ESRの低減により高
周波におけるインピーダンスを下げることがで
き、高周波低インピーダンスの電解コンデンサを
得ることができる。また本発明の電解液の含水量
は極めて少ないために、電解コンデンサの電極表
面に形成された誘電体酸化皮膜の劣化を抑制する
ことができると共に、高温下の使用においても電
解コンデンサ内部の蒸気圧の上昇が少なく外形の
変形を来たすことがないので、高温下で長期間特
性の安定した電解コンデンサを得ることができ
る。更に、本発明の電解液は、溶質として分子量
が大きく、側鎖を有する上記多塩基酸を含有する
ため、耐電圧が500V以上と高く、従来電解液で
は適用できなかつた450〜500Vの高電圧領域のコ
ンデンサ駆動用電解液として用いることができ
る。 本発明において溶質として用いる上記多塩基性
酸(化合物1〜6)は、いずれも、特開昭56―
38127号公報等に記載されるか、該公報に記載の
方法に準じて製造される。 上記多塩基性酸の塩としては例えばアンモニウ
ム塩を挙げることができる。 本発明においては溶媒としてエチレングリコー
ルが使用される。上記多塩基性酸又はその塩とエ
チレングリコールとの使用割合としては特に限定
がなく広い範囲内で適宜選択することができる
が、通常前者:後者を5〜30:95〜70(W/W)
なる割合で使用するのがよい。本発明では、溶媒
としてエチレングリコールに例えばメチルセロソ
ルブ等の他の溶媒を適宜添加してもよく、また溶
質として前記多塩基性酸もしくはその塩に硼酸、
アジピン酸等を適宜添加することもできる。 以下に実施例を挙げる。 実施例 1 化合物1 9(重量部) アンモニア 1 エチレングリコール 90 実施例 2 化合物2 9(重量部) アンモニア 1 エチレングリコール 90 実施例 3 化合物3 9(重量部) アンモニア 1 エチレングリコール 90 実施例 4 化合物4 8(重量部) 硼酸 1 アンモニア 1 エチレングリコール 90 実施例 5 化合物5 9(重量部) アンモニア 1 エチレングリコール 80 メチルセロソルブ 10 実施例 6 化合物6 9(重量部) アンモニア 1 エチレングリコール 80 メチルセロソルブ 10 比較例 1 硼酸 16.5(重量部) 硼酸アンモニウム 16.5 エチレングリコール 67 比較例 2 アジピン酸アンモニウム 10(重量部) エチレングリコール 90(重量部) 比較例 3 ブチルオクタン二酸 9(重量部) アンモニア 1 エチレングリコール 90 上記実施例1〜6及び比較例1〜3で得られた
電解液について、比抵抗、火花発生電圧(耐電
圧)及び含水量を測定し、結果を下記表に示す。
The present invention relates to an electrolytic solution for driving an electrolytic capacitor,
The aim is to provide an electrolytic solution for medium- and high-voltage electrolytic capacitors that has low resistivity, high withstand voltage, and low water content, and whose electrical characteristics do not deteriorate even after long-term use at high temperatures. It's about doing. It is a well-known fact that the characteristics of the electrolytic solution for driving an electrolytic capacitor (hereinafter simply referred to as "electrolytic solution") generally used in dry electrolytic capacitors are a major factor in determining the performance of the electrolytic capacitor. Therefore, in the current situation where a wide variety of electrical products are used in ordinary households, the driving electrolyte for electrolytic capacitors must have low resistivity, high withstand voltage, low water content, and can be used at high temperatures. There is a desire for a material that can maintain stable electrical characteristics for a long period of time even when used in Conventional electrolytes include, for example, the so-called ethylene glycol-boric acid electrolyte, in which boric acid or its ammonium salt is dissolved in a solvent mainly composed of ethylene glycol, and the so-called ethylene, in which adipic acid or its ammonium salt is dissolved in a solvent mainly composed of ethylene glycol. Glycol-adipic acid electrolytes and the like are known. However, these conventional electrolytes have various drawbacks. That is, the ethylene glycol-boric acid electrolyte has a large specific resistance, and therefore only electrolytic capacitors with a large loss or equivalent series resistance can be obtained. In addition to the water originally contained in each chemical, the electrolyte also contains a large amount of water generated from the esterification reaction between ethylene glycol and boric acid, and therefore the dielectric formed on the surface of the anode electrode foil Severe deterioration of the oxide film,
It is extremely difficult to maintain stable characteristics for a long period of time. Furthermore, a large amount of water generates a large amount of steam at high temperatures, increasing the internal pressure of the electrolytic capacitor, causing the explosion-proof valve to swell and deform its appearance when used at temperatures exceeding 105°C. In addition, ethylene glycol-adipic acid electrolyte has a low withstand voltage.
Therefore, it is impossible to use this as an electrolyte for driving medium-high voltage electrolytic capacitors. In addition, an ethylene glycol-butyl octanedioic acid electrolyte has been developed in recent years (Japanese Unexamined Patent Publication No. 1986-
(See Publication No. 45014). However, although this electrolyte can overcome the above-mentioned drawbacks to some extent in terms of resistivity, its withstand voltage is as low as 430V at most.
It cannot withstand use in high voltage ranges exceeding 500V, and has a rather high water content of 1.8%, so it lacks long-term stability at high temperatures. The electrolyte for driving medium- and high-voltage electrolytic capacitors has a low specific resistance, a high withstand voltage of 500V or more, a low water content, and does not lose its electrical characteristics even after long-term use at high temperatures. The current situation is that it has not been developed yet. The present inventor has conducted various studies while taking the above-mentioned current situation into consideration, and has found that all of the above-mentioned drawbacks can be overcome only when the following polybasic acids are used as solutes out of many polybasic acids. It has been found that an electrolytic solution for driving an electrolytic capacitor can be obtained. That is, the present invention Or the salt, Or the salt, Or the salt, Or the salt, or its salt and The present invention relates to an electrolytic solution for driving an electrolytic capacitor, characterized in that the solute is at least one selected from the group consisting of salts thereof, and the solute is dissolved in a solvent mainly composed of ethylene glycol. The electrolytic solution of the present invention has low resistivity and extremely low water content. Since the above-mentioned polybasic acids (compounds 1 to 6) which are solutes have 3 to 6 carboxyl groups, especially when made into ammonium salts, they have excellent compatibility with solvents such as ethylene glycol, and have a large amount of ions. Since it moves easily, an electrolytic solution with extremely low specific resistance can be obtained. Since the specific resistance of the electrolyte of the present invention is small, the electrolytic capacitor loss or equivalent series resistance (hereinafter referred to as "ESR") is
). In the impedance-frequency characteristics of an electrolytic capacitor, the impedance is largely determined by the ESR. Therefore, by reducing the ESR, the impedance at high frequencies can be lowered, and an electrolytic capacitor with low impedance at high frequencies can be obtained. Furthermore, since the electrolytic solution of the present invention has an extremely low water content, it is possible to suppress the deterioration of the dielectric oxide film formed on the electrode surface of the electrolytic capacitor, and it is also possible to suppress the vapor pressure inside the electrolytic capacitor even when used at high temperatures. Since the increase in temperature is small and the external shape is not deformed, it is possible to obtain an electrolytic capacitor with stable characteristics for a long period of time under high temperatures. Furthermore, since the electrolytic solution of the present invention contains the above-mentioned polybasic acid with a large molecular weight and a side chain as a solute, it has a high withstand voltage of 500 V or more, and can withstand high voltages of 450 to 500 V, which could not be applied with conventional electrolytic solutions. It can be used as an electrolyte for driving capacitors in the area. The above polybasic acids (compounds 1 to 6) used as solutes in the present invention are all
It is described in Publication No. 38127, etc., or it is produced according to the method described in the publication. Examples of the salts of the polybasic acids include ammonium salts. In the present invention, ethylene glycol is used as a solvent. The ratio of the polybasic acid or its salt and ethylene glycol is not particularly limited and can be appropriately selected within a wide range, but usually the former: the latter is 5-30:95-70 (W/W).
It is best to use the appropriate proportions. In the present invention, other solvents such as methyl cellosolve may be appropriately added to ethylene glycol as a solvent, and boric acid,
Adipic acid and the like can also be added as appropriate. Examples are given below. Example 1 Compound 1 9 (parts by weight) Ammonia 1 Ethylene glycol 90 Example 2 Compound 2 9 (parts by weight) Ammonia 1 Ethylene glycol 90 Example 3 Compound 3 9 (parts by weight) Ammonia 1 Ethylene glycol 90 Example 4 Compound 4 8 (parts by weight) Boric acid 1 Ammonia 1 Ethylene glycol 90 Example 5 Compound 5 9 (Parts by weight) Ammonia 1 Ethylene glycol 80 Methyl cellosolve 10 Example 6 Compound 6 9 (Parts by weight) Ammonia 1 Ethylene glycol 80 Methyl cellosolve 10 Comparative example 1 Boric acid 16.5 (parts by weight) Ammonium borate 16.5 Ethylene glycol 67 Comparative example 2 Ammonium adipate 10 (parts by weight) Ethylene glycol 90 (parts by weight) Comparative example 3 Butyloctanedioic acid 9 (parts by weight) Ammonia 1 Ethylene glycol 90 Above implementation Regarding the electrolytes obtained in Examples 1 to 6 and Comparative Examples 1 to 3, specific resistance, spark generation voltage (withstand voltage), and water content were measured, and the results are shown in the table below.

【表】 上記実施例1〜6で得られる本発明の電解液は
いずれも低い抵抗値(405Ω・cm以下、30℃にて
測定)を示し、また含水量も0.6%以下と極めて
少ない。更に該電解液の電解コンデンサとしての
耐電圧はいずれも500V以上であり、中高圧電解
コンデンサ駆動用の電解液として極めて好適であ
る。これに対して比較例1の電解液は、電解コン
デンサとしての耐電圧は400Vであるが、高い抵
抗値(1000Ω・cm)を示し、含水量も26%以下で
ある。比較例2の電解液は、低い抵抗値
(300Ω・cm)を示し、含水量も1%以下である
が、電解コンデンサとしての耐電圧は100Vであ
り、中高圧電解コンデンサ駆動用の電解液として
は不適当である。また、比較例3の電解液は、耐
電圧及び含水量の点で本発明電解液に劣り、450
〜500V以上の高電圧電解コンデンサ駆動用電解
液としては不適当である。 次に本発明の電解液、従来の電解液を用いて電
解コンデンサを製作し、その特性比較を行なう。 試供電解コンデンサは、陽極側電極として、エ
ツチングされたアルミニウム箔表面に690Vで誘
電体酸化膜を化成形成したものを用い、陰極側電
極は、化成処理を施さないエツチングされたアル
ミニウム箔を用い、前記陽極側電極と陰極側電極
とを対面させ、その間にセパレータ紙を介在させ
た上で巻回して成るコンデンサ素子に実施例1〜
5、比較例1の電解液を各々含浸せしめた上で外
装ケース内に前記コンデンサ素子を収納し、外装
ケース開口部を弾性体封口部材で密閉してなるも
のである。なお、この試供電解コンデンサの定格
は400V、10μFであり、ケースサイズは16φ×30
である。 本発明の電解液(実施例1〜6)を用いた電解
コンデンサは、初期特性において、比較例1の電
解液を用いた電解コンデンサに比し、120Hzでの
損失(tanδ)で約2/3、10KHzでの等価直列抵
抗値(ESR)で約1/3という低い値を示す。 また上記試供コンデンサを高温下(110℃)に
て定格電圧(400V)を印加して1000時間の負荷
寿命試験を行なつたところ、本発明の電解液を用
いたコンデンサは1000時間経過後においても電気
特性は初期値に比し殆んど変化が認められず、ま
た外観不良も皆無である。これに対し比較例1の
電解液を用いたコンデンサは電気特性の劣化が著
しく、しかも内圧上昇による封口部材の飛び出
し、防爆弁の作動等による外観不良が生ずる。
[Table] The electrolytic solutions of the present invention obtained in Examples 1 to 6 above all exhibited low resistance values (405 Ω·cm or less, measured at 30° C.), and also had extremely low water contents of 0.6% or less. Further, the withstand voltage of the electrolytic solution as an electrolytic capacitor is 500 V or more, making it extremely suitable as an electrolytic solution for driving medium-high voltage electrolytic capacitors. On the other hand, the electrolytic solution of Comparative Example 1 has a withstand voltage of 400 V as an electrolytic capacitor, but exhibits a high resistance value (1000 Ω·cm) and has a water content of 26% or less. The electrolytic solution of Comparative Example 2 has a low resistance value (300 Ω cm) and a water content of 1% or less, but the withstand voltage as an electrolytic capacitor is 100 V, and it can be used as an electrolytic solution for driving medium-high voltage electrolytic capacitors. is inappropriate. Furthermore, the electrolytic solution of Comparative Example 3 was inferior to the electrolytic solution of the present invention in terms of withstand voltage and water content;
It is unsuitable as an electrolyte for driving high voltage electrolytic capacitors of ~500V or higher. Next, electrolytic capacitors were manufactured using the electrolytic solution of the present invention and a conventional electrolytic solution, and their characteristics were compared. The sample electrolytic capacitor used an etched aluminum foil surface with a dielectric oxide film chemically formed at 690V as the anode electrode, and an etched aluminum foil without chemical conversion treatment as the cathode electrode. Examples 1~
5. After being impregnated with the electrolytic solution of Comparative Example 1, the capacitor element is housed in an outer case, and the opening of the outer case is sealed with an elastic sealing member. The rating of this sample electrolytic capacitor is 400V, 10μF, and the case size is 16φ x 30
It is. In terms of initial characteristics, the electrolytic capacitors using the electrolyte solution of the present invention (Examples 1 to 6) have a loss (tan δ) of about 2/3 at 120Hz compared to the electrolytic capacitor using the electrolyte solution of Comparative Example 1. , the equivalent series resistance (ESR) at 10KHz is approximately 1/3 lower. In addition, when the above sample capacitor was subjected to a load life test of 1000 hours by applying the rated voltage (400V) at high temperature (110°C), it was found that the capacitor using the electrolyte of the present invention remained stable even after 1000 hours. Almost no changes were observed in the electrical properties compared to the initial values, and there were no appearance defects. On the other hand, in the capacitor using the electrolyte of Comparative Example 1, the electrical characteristics deteriorate significantly, and furthermore, the sealing member pops out due to the increase in internal pressure, and the appearance defects occur due to the activation of the explosion-proof valve.

Claims (1)

【特許請求の範囲】 1 もしくはその塩、 もしくはその塩、 もしくはその塩、 もしくはその塩、 もしくはその塩及び もしくはその塩からなる群から選ばれた少なくと
も1種を溶質とし、これをエチレングリコールを
主体とした溶媒に溶解してなることを特徴とする
電解コンデンサ駆動用電解液。
[Claims] 1 Or the salt, Or the salt, Or the salt, Or the salt, or its salt and 1. An electrolytic solution for driving an electrolytic capacitor, characterized in that the solute is at least one selected from the group consisting of salts thereof, and the solute is dissolved in a solvent mainly composed of ethylene glycol.
JP12643081A 1981-08-11 1981-08-11 Electrolyte for driving electrolytic condenser Granted JPS5827320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12643081A JPS5827320A (en) 1981-08-11 1981-08-11 Electrolyte for driving electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12643081A JPS5827320A (en) 1981-08-11 1981-08-11 Electrolyte for driving electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS5827320A JPS5827320A (en) 1983-02-18
JPH0158648B2 true JPH0158648B2 (en) 1989-12-13

Family

ID=14934990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12643081A Granted JPS5827320A (en) 1981-08-11 1981-08-11 Electrolyte for driving electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS5827320A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638127A (en) * 1979-09-05 1981-04-13 Okamura Seiyu Kk Emulsifying agent
JPS5645014A (en) * 1979-09-21 1981-04-24 Hitachi Condenser Electrolytic paste for electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638127A (en) * 1979-09-05 1981-04-13 Okamura Seiyu Kk Emulsifying agent
JPS5645014A (en) * 1979-09-21 1981-04-24 Hitachi Condenser Electrolytic paste for electrolytic capacitor

Also Published As

Publication number Publication date
JPS5827320A (en) 1983-02-18

Similar Documents

Publication Publication Date Title
US5507966A (en) Electrolyte for an electrolytic capacitor
US2932153A (en) Electrolytic capacitor and method of making
US4915861A (en) Liquid electrolyte for use in electrolytic capacitor
JPH0158648B2 (en)
EP0299496B1 (en) Electrolytic capacitor
US4761713A (en) Glycol based mid-volt capacitor
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JP2567445B2 (en) Electrolytic solution for driving electrolytic capacitors
JPS602767B2 (en) Electrolyte for electrolytic capacitors
JP3729588B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JPH09115782A (en) Electrolyte for driving electrolytic capacitor
KR0152001B1 (en) Electrolyte for a low-pressure electrolytic condenser
JP3630206B2 (en) Electrolytic solution for electrolytic capacitors
JP3869526B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP3729587B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JPS60207330A (en) Electrolyte for electrolytic condenser
JP3869525B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JPS6354208B2 (en)
JPS6091618A (en) Electrolyte for electrolytic condenser
JP3497227B2 (en) Electrolyte for driving electrolytic capacitors
JPH0437014A (en) Preparation of an electrolytic capacitor
JPS6311770B2 (en)
JPH0449771B2 (en)
JPH09115781A (en) Electrolyte for driving electrolytic capacitor
JPH0419691B2 (en)