JPH0158500B2 - - Google Patents

Info

Publication number
JPH0158500B2
JPH0158500B2 JP58074557A JP7455783A JPH0158500B2 JP H0158500 B2 JPH0158500 B2 JP H0158500B2 JP 58074557 A JP58074557 A JP 58074557A JP 7455783 A JP7455783 A JP 7455783A JP H0158500 B2 JPH0158500 B2 JP H0158500B2
Authority
JP
Japan
Prior art keywords
toner
carrier
developing
electrostatic image
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58074557A
Other languages
Japanese (ja)
Other versions
JPS59200266A (en
Inventor
Masanori Takenochi
Eiichi Imai
Hiroyuki Suematsu
Masaki Uchama
Yasuo Mihashi
Kazunori Murakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58074557A priority Critical patent/JPS59200266A/en
Priority to US06/603,429 priority patent/US4568625A/en
Publication of JPS59200266A publication Critical patent/JPS59200266A/en
Publication of JPH0158500B2 publication Critical patent/JPH0158500B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08773Polymers having silicon in the main chain, with or without sulfur, oxygen, nitrogen or carbon only

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、静電像保持䜓面䞊に圢成された静電
像を珟像する方法、特にトナヌ保持䜓䞊に薄くお
均䞀な絶瞁性非磁性トナヌ局を圢成しお珟像する
方法に関するものである。 埓来、䞀成分系非磁性トナヌを甚いお珟像する
方法ずしおは以䞋のものが知られおいる。 珟像剀を担持しお搬送し朜像担持䜓に䟛絊する
可動珟像剀担持手段ず、珟像剀補絊手段ず、この
珟像剀補絊手段から珟像剀の補絊を受け䞊蚘可動
珟像剀担持手段に珟像剀を塗垃する可動塗垃手段
であ぀お、衚面に珟像剀を担持する繊維ブラシを
有し、䞊蚘可動珟像剀担持手段に圓接しおこの圓
接郚に斌いお可動珟像剀担持手段ず同方向に可動
珟像剀担持手段よりも高速で移動する可動塗垃手
段で䞊蚘可動珟像剀担持手段衚面にトナヌを均䞀
に塗垃し、この塗垃局を静電朜像郚に近接させる
こずにより珟像を行う方法や䞀成分系非磁性トナ
ヌ粒子を垯電するための磁性キダリアを吞着しお
磁気ブラシを圢成する回転可胜な磁気ロヌラヌ
ず、該ロヌラヌのトナヌ粒子を移し取り、静電像
保持䜓䞊の静電像を珟像するための珟像ロヌラヌ
を有し、珟像郚に斌いお静電像保持䜓ず珟像ロヌ
ラヌずの間隙を保ち、該間隙長は珟像ロヌラヌ䞊
のトナヌ塗垃局厚よりも倧きく蚭定し、静電像を
珟像する方法および静電像保持䜓に、衚面に珟
像剀を保持した静電像保持䜓を察向させお、その
担持䜓衚面䞊の静電像を珟像する静電像珟像方法
においお、静電像貯蔵手段に蓄えられた珟像剀保
持䜓䞋の珟像剀を珟像剀保持䞊に汲み䞊げるに圓
り、その汲み䞊げ郚分の珟像剀のみに振動を䞎え
お掻性化させ、珟像剀保持䜓衚面に所定の厚さの
珟像剀局を圢成しお珟像に䟛する珟像方法等があ
る。 しかしながらこれらの絶瞁性非磁性トナヌを珟
像郚においお非磁気力により担持䜓䞊に担持し珟
像する方法では珟像郚呚蟺においおトナヌ担持䜓
䞊に非磁性トナヌを担持させる力ずしお䞻に静電
気的匕力及び物理的付着力が支配的であり、その
点磁性力及び静電気力等によ぀お担持䜓䞊にトナ
ヌを担持させる埓来の絶瞁性磁性トナヌを甚いた
珟像方法に比べお皮々の欠点が生じる。䟋えば、
倚くのトナヌが担持䜓䞊に比范的薄く均䞀に塗垃
されない珟像が生じる。さらに䟋えば比范的均䞀
に塗垃されおいるにもかかわらず非画像郚にトナ
ヌが付着するいわゆる地カブリが生じる。さらに
薄く均䞀に塗垃されおいるにもかかわらず画像郚
におけるトナヌ付着量が䞍足し、濃床の䜎い画像
が生じる。さらに倚くのトナヌは薄く均䞀に塗垃
されおいるにもかかわらず忠実性が䜎く、䜎解像
力の極めお貧匱な画像を生じる。さらに倚くのト
ナヌは繰返し䜿甚しおいくず画像濃床の䜎䞋や䜎
品質の画像を生じる。さらに倚くのトナヌは、高
枩高湿や䜎枩䜎湿などの環境倉化に察しおある時
は画像濃床の䜎䞋をたねいたり又ある時は地カブ
リを生じたりするずいうような欠点を有しおい
た。たた、䞀成分磁性トナヌを䜿甚した珟像方法
においおは、磁性トナヌ粒子内に磁性粉䜓を倚量
に含んでいる為に、非磁性トナヌに比しお高䟡ず
なるばかりでなく、矎しい色のカラヌ化は困難で
あ぀た。 本発明の目的は以䞊のような欠点を改良した絶
瞁性非磁性トナヌを䜿甚する新芏な珟像方法を提
䟛するこずにある。 すなわち、本発明の目的は忠実性が高く画質の
安定した珟像方法を提䟛するこずである。さらに
は、地カブリ珟象を陀去し、画像郚には均䞀で濃
床が十分な高解像力画像を䞎える珟像方法を提䟛
するこずである。 本発明の他の目的は連続䜿甚特性等の耐久性に
優れた珟像方法を提䟛するこずである。 本発明の他の目的は、高枩高湿や䜎枩䜎湿など
の環境倉化に察しおも安定である珟像方法を提䟛
するこずである。 本発明の他の目的は鮮明な色盞を有する画像を
䞎える珟像方法を提䟛するこずにある。 具䜓的には、本発明は、静電像を衚面に保持す
る静電像保持䜓ず、偎鎖にアミンを有するシリコ
ヌンオむルで凊理された無機埮粉䜓䜆し、ケむ
酞埮粉䜓を陀くをトナヌ粒子䞭たたはトナヌ粒
子衚面に有する正荷電性絶瞁性非磁性トナヌを衚
面に担持するトナヌ担持䜓ずを珟像郚においお䞀
定の間隙を蚭けお配眮し、正荷電性絶瞁性非磁性
トナヌをトナヌ担持䜓䞊に前蚘間隙よりも薄い厚
さに担持させ、該トナヌを珟像郚においお前蚘静
電像保持䜓に転移させ珟像するこずを特城ずする
珟像方法に関する。 本発明者らは埓来知られおいる非磁性トナヌを
䜿甚した珟像方法を皮々怜蚎した結果、前述した
欠点を解決する為には、磁性トナヌを䜿甚する珟
像方法に比べお珟像郚においおトナヌ担持䜓䞊の
トナヌが有する静電荷量のより粟密な制埡が必芁
であるこずを芋出した。䟋えば電荷量が䜎いず担
持䜓䞊にトナヌが均䞀に塗垃されない珟象が生じ
おしたい、もちろん珟像できない。次に電荷量を
䞊げお、たずえ均䞀に塗垃される状態を぀く぀お
もその倀が適切でない堎合は地かぶりが生じやす
くなり、逆にその倀が十分高すぎるずトナヌ担持
䜓ずの静電的匕力が匷すぎおトナヌが静電像保持
䜓ぞ転移しにくくなり、その結果画像濃床の䜎
䞋、䜎品䜍画像の出珟を匕起こすこずにな぀おし
たうの劂くである。さらに同様な理由によりこれ
らの珟像法はくり返し䜿甚時あるいは環境倉動時
にトナヌ電荷量の倉化に察する画像ぞの圱響が極
めお倧きく、その電荷量の安定性の確保が埓来に
なく重芁であるこず、たたこれらの珟像法におい
おはトナヌずトナヌ担持䜓ずの物理的付着力がト
ナヌ担持䜓からトナヌを転移させるのに明らかに
圱響をおよがし、䟋えばトナヌ個々の自由床が小
さく、担持䜓䞊のトナヌ局䞭のトナヌ粒子充填密
床が倧きい堎合には画像濃床が䜎く、䜎解像力の
䜎品䜍画像にな぀おしたう劂く、その物理的付着
力の増倧の防止も極めお重芁であるこず等の知芋
を埗た。 本発明は絶瞁性非磁性トナヌを珟像郚においお
非磁気力により担持䜓䞊に担持し、珟像する方法
に起因するこれら特城的な必芁条件を特定の無機
埮粉䜓䜆し、シリカ埮粉䜓を陀くをトナヌ粒
子䞭たたはトナヌ粒子衚面に有する正荷電性絶瞁
性非磁性トナヌを䜿甚するこずより達成するもの
である。 本発明の珟像方法においお珟像剀の䞀構成成分
をなす無機埮粉䜓ずは、難氎溶性で、300℃以䞋
の枩床で熱安定性を有する粒埄が10Ό以䞋より
奜たしくは1Ό以䞋の無機化合物の埮粉末のこ
ずである。このような無機埮粉䜓ずしおは、䟋え
ば、アルミナ、二酞化チタン、チタン酞バリり
ム、チタン酞マグネシりム、チタン酞カルシり
ム、チタン酞ストロンチりム、酞化亜鉛、クレ
ヌ、雲母、ケむ灰石、ケむ゜り土、各皮無機酞化
物顔料、酞化クロム、酞化セリりム、ベンガラ、
酞化鉄、砂鉄、γ−プラむト、バリりムプラ
むト、ストロンチりムプラむト垌土類プラむ
トなどの各皮プラむト、䞉酞化アンチモン、酞
化マグネシりム、酞化ゞルコニりム、硫酞バリり
ム、炭酞カルシりムなどの粉末乃至粒子が挙げら
れる。 偎鎖にアミンを有するシリコヌンオむルずしお
は、䞀般に匏で衚わせる構成単䜍を含むシ
リコヌンオむルが䜿甚できる。 ここで、R1は氎玠、アルキル基、アリヌル基、
アルコキシ基を衚わし、R2はアルキレン基、フ
゚ニレン基を衚わし、R3、R4は氎玠、アルキル
基、或いはアリヌル基を衚わす。ただし䞊蚘アル
キル基、アリヌル基、アルキレン基、プニレン
基はアミンを含有しおいおも良いし、たた垯電性
を損ねない範囲でハロゲン等の眮換基を有しおい
おも良い。 垂販の偎鎖にアミンを有するシリコヌンオむル
ずしおは、䟋えば次の構造匏で衚わされるアミノ
倉性シリコヌンオむルがあり、奜たしい。それは ここで、R1、R2はアルキル基、アリヌル基を
衚わし、R2はアルキレン基又はプニレン基或
いはアミンを含むアルキル基を衚わし、R3は氎
玠、アルキル基、アリヌル基を衚わす。、は
以䞊の数である。 で衚わされるシリコヌンオむルであり、具䜓的に
は次のものが奜たしく、これらは皮又は皮以
䞊の混合系で甚いおもよい。
The present invention relates to a method of developing an electrostatic image formed on the surface of an electrostatic image carrier, and particularly to a method of forming and developing a thin and uniform insulating nonmagnetic toner layer on a toner carrier. Conventionally, the following methods are known as developing methods using a one-component non-magnetic toner. a movable developer carrying means that carries and conveys the developer and supplies it to the latent image carrier; a developer replenishing means; and a movable developer carrying means that receives the developer from the developer replenishing means and supplies the developer to the movable developer carrying means. A movable applicator for coating, which has a fiber brush that carries a developer on its surface, contacts the movable developer carrier, and moves a movable developer in the same direction as the movable developer carrier at this abutting portion. A method in which toner is uniformly applied to the surface of the movable developer carrying means using a movable coating means that moves at a higher speed than the developer carrying means, and development is carried out by bringing this coated layer close to the electrostatic latent image area, or a one-component system. A rotatable magnetic roller that attracts a magnetic carrier to form a magnetic brush for charging non-magnetic toner particles, and a rotatable magnetic roller that transfers the toner particles from the roller to develop an electrostatic image on an electrostatic image carrier. The electrostatic image is developed by maintaining a gap between the electrostatic image holder and the developing roller in the developing section, and setting the gap length to be larger than the thickness of the toner coating layer on the developing roller. Method/An electrostatic image developing method in which an electrostatic image carrier holding a developer on its surface is opposed to an electrostatic image carrier and an electrostatic image on the surface of the carrier is developed. When pumping up the developer under the developer holder stored in the means onto the developer holder, vibration is applied to only the pumped up portion of the developer to activate it, and a predetermined thickness is applied to the surface of the developer holder. There is a developing method in which a developer layer is formed and then subjected to development. However, in the method of developing these insulating non-magnetic toners by supporting them on a carrier using non-magnetic force in the developing section, the forces that cause the non-magnetic toner to be supported on the toner carrier around the developing section are mainly electrostatic attraction and physical force. The magnetic adhesion force is predominant, and various disadvantages arise compared to the conventional developing method using insulating magnetic toner, in which the toner is supported on the carrier by the point magnetic force, electrostatic force, etc. for example,
This results in development in which much of the toner is spread relatively thinly and unevenly on the carrier. Furthermore, for example, so-called background fog occurs in which toner adheres to non-image areas even though the toner is applied relatively uniformly. Furthermore, even though the toner is applied thinly and uniformly, the amount of toner adhering to the image area is insufficient, resulting in an image with low density. Additionally, many toners have low fidelity even though they are thinly and evenly applied, resulting in very poor images with low resolution. Furthermore, repeated use of more toner results in decreased image density and lower quality images. Furthermore, many toners have the disadvantage that they sometimes cause a decrease in image density when subjected to environmental changes such as high temperature and high humidity, low temperature and low humidity, and sometimes cause background fog. In addition, in the development method using one-component magnetic toner, since the magnetic toner particles contain a large amount of magnetic powder, it is not only more expensive than non-magnetic toner, but also produces beautiful colors. was difficult. An object of the present invention is to provide a new developing method using an insulating non-magnetic toner, which improves the above-mentioned drawbacks. That is, an object of the present invention is to provide a developing method with high fidelity and stable image quality. Another object of the present invention is to provide a developing method that eliminates the background fog phenomenon and provides a high-resolution image that is uniform and has sufficient density in the image area. Another object of the present invention is to provide a developing method with excellent durability such as continuous use characteristics. Another object of the present invention is to provide a developing method that is stable against environmental changes such as high temperature and high humidity, and low temperature and low humidity. Another object of the present invention is to provide a developing method that provides images with sharp hues. Specifically, the present invention uses an electrostatic image carrier that holds an electrostatic image on its surface, and an inorganic fine powder treated with silicone oil having an amine in its side chain (excluding silicic acid fine powder). A toner carrier carrying a positively charged insulating nonmagnetic toner in the toner particles or on the surface of the toner particle is arranged with a certain gap in the developing section, and the toner supports the positively charged insulating nonmagnetic toner. The present invention relates to a developing method characterized in that the toner is supported on a body to a thickness thinner than the gap, and the toner is transferred to the electrostatic image holder in a developing section for development. The present inventors have studied various developing methods using conventionally known non-magnetic toners, and found that in order to solve the above-mentioned drawbacks, compared to developing methods using magnetic toners, it is necessary to use a toner carrier in the developing section. We have found that more precise control of the amount of electrostatic charge that the above toner has is necessary. For example, if the amount of charge is low, a phenomenon occurs in which the toner is not evenly applied onto the carrier, and development is of course impossible. Next, even if the amount of charge is increased to create a state in which the toner is evenly applied, if the value is not appropriate, background fogging will likely occur, and conversely, if the value is too high, electrostatic interaction with the toner carrier will occur. If the attractive force is too strong, it becomes difficult for the toner to transfer to the electrostatic image carrier, resulting in a decrease in image density and the appearance of a low-quality image. Furthermore, for the same reason, these developing methods have an extremely large effect on the image due to changes in the toner charge amount during repeated use or environmental changes, and ensuring the stability of the charge amount is more important than ever before. In this development method, the physical adhesion between the toner and the toner carrier clearly affects the transfer of the toner from the toner carrier. It has been found that when the toner particle packing density is high, the image density is low, resulting in a low-quality image with low resolution, and that it is extremely important to prevent the physical adhesion from increasing. In the present invention, insulating non-magnetic toner is supported on a carrier by non-magnetic force in a developing section, and these characteristic requirements resulting from the developing method are applied to specific inorganic fine powder (excluding silica fine powder). This is achieved by using a positively charged insulating non-magnetic toner having this in the toner particles or on the surface of the toner particles. In the developing method of the present invention, the inorganic fine powder constituting a component of the developer is an inorganic powder having a particle size of 10Ό or less (more preferably 1Ό or less) that is poorly water-soluble and thermally stable at a temperature of 300°C or lower. It is a fine powder of a compound. Examples of such inorganic fine powders include alumina, titanium dioxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, clay, mica, wollastonite, diatomaceous earth, and various inorganic oxides. Pigment, chromium oxide, cerium oxide, red iron,
Examples include powders and particles of various ferrites such as iron oxide, iron sand, γ-ferrite, barium ferrite, strontium ferrite and rare earth ferrite, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, and calcium carbonate. As the silicone oil having an amine in its side chain, silicone oil containing a structural unit represented by the formula () can generally be used. (Here, R 1 is hydrogen, alkyl group, aryl group,
It represents an alkoxy group, R 2 represents an alkylene group or a phenylene group, and R 3 and R 4 represent hydrogen, an alkyl group, or an aryl group. However, the above alkyl group, aryl group, alkylene group, and phenylene group may contain an amine, or may have a substituent such as a halogen within a range that does not impair chargeability. ) Preferred commercially available silicone oils having an amine in their side chains include, for example, amino-modified silicone oils represented by the following structural formula. it is (Here, R 1 and R 2 represent an alkyl group or an aryl group, R 2 represents an alkylene group, a phenylene group, or an alkyl group containing an amine, and R 3 represents hydrogen, an alkyl group, or an aryl group. m, n is a number of 1 or more.) Specifically, the following are preferred, and these may be used alone or in a mixed system of two or more.

【衚】【table】

【衚】 瀟補
なお、䞊蚘衚䞭のアミン圓量ずは、アミン個
あたりの圓量eqivで、分子量を分子あ
たりのアミンの数で割぀た倀であり、本発明で
は、䞊蚘の劂くアミン圓量が320〜8800を有する
偎鎖にアミンを有するシリコヌンオむルが正荷電
性の制埡、環境安定性及び珟像特性の点で奜たし
い。さらに、25℃における粘床20〜3500cpsを有
する偎鎖にアミンを有するシリコヌンオむルが奜
たしい。これらは皮又は皮以䞊の混合系で甚
いおもよい。 䞊蚘アミノ基を含有する倉性シリコヌンオむル
による無機埮粉䜓の凊理は、䟋えば次のようにし
お行ない埗る。必芁に応じお加熱しながら無機埮
粉䜓を激しく撹乱しおおき、これに䞊蚘アミノ基
を含有する倉性シリコヌンオむル或いはその溶液
をスプレヌもしくは気化しお吹き぀けるか、又
は、無機埮粉䜓をスラリヌ状にしおおき、これを
撹拌し぀぀アミノ基を含有する倉性シリコヌンオ
むル或いはその溶液を滎䞋するこずによ぀お容易
に凊理できる。 さらに、その埌、およそ50〜400℃の枩床で加
熱凊理するこずも奜たしい。 䞊述のようなアミノ基を含有する倉性シリコヌ
ンオむルで凊理した無機埮粉䜓をトナヌを成す他
の構成成分たるバむンダヌずしおの暹脂や着色剀
ず溶融混緎埌、粉砕、分玚するこずにより所望の
トナヌが埗られる。又は、䞊述のアミノ基を含有
する倉性シリコヌンオむル凊理無機埮粉䜓を、暹
脂や着色剀などから圢成したトナヌずずもに、混
合により添加しおも良い。アミノ基を含有する倉
性シリコヌンオむルの無機埮粉䜓ぞの奜たしい凊
理量比は、0.1〜50重量である。さらに、アミ
ノ基を含有する倉性シリコヌンオむルにトナヌぞ
の添加量ずしおは、0.01〜50重量が奜たしい。 䞊蚘のアミノ基を含有する倉性シリコヌンオむ
ルで凊理した無機埮粉䜓を珟像剀の䞀構成成分ず
する本発明に埓うず、電気的朜像をカブリのない
鮮明な画像に珟像、転写できる。即ち、本発明に
係る珟像剀を䜿甚するず、トナヌが匷い均䞀な正
垯電性を瀺すためである。 たた、本発明のアミノ基を含有する倉性シリコ
ヌンオむルは、安定で、300℃皋床の耐熱枩床を
有しおいるので、熱的或いは機械的衝撃などによ
る分解又は倉質が非垞に起りにくく、荷電制埡性
が䜎䞋する等の問題はなく、耐久䞭のトナヌ劣化
が著しく軜枛される。 さらに、本発明のアミノ基を含有する倉性シリ
コヌンオむルは匷い正垯電性を有し、さらに湿床
安定性が高いので、高湿䞋でも良奜な正垯電性を
有し、鮮明な画像が埗られる。 たた、アミノ基を含有する倉性シリコヌンオむ
ルは無色或いは薄い癜色を有しおいるので、本発
明に埓぀お、癜色の無機埮粉䜓を凊理するず、正
垯電性カラヌ甚珟像剀が埗られる。 なお、本発明で䜿甚する無機埮粉䜓には、必芁
に応じお、アミノ基を含有する倉性シリコヌンオ
むル以倖の化合物での凊理を付加しおも良い。無
機埮粉䜓を凊理できる他の化合物ずしおは、シラ
ンカツプリング剀、チタンカツプリング剀及びア
ルミニりムカツプリング剀等のカツプリング剀や
脂肪酞金属塩などがある。 本発明の珟像方法においお䜿甚できるトナヌの
結着暹脂ずしおは、ポリスチレン、ポリ−クロ
ルスチレン、ポリビニルトル゚ンなどのスチレン
及びその眮換䜓の単重合䜓スチレン−−クロ
ルスチレン共重合䜓、スチレン−プロピレン共重
合䜓、スチレン−ビニルトル゚ン共重合䜓、スチ
レン−ビニルナフタリン共重合䜓、スチレン−ア
クリル酞メチル共重合䜓、スチレン−アクリル酞
゚チル共重合䜓、スチレン−アクリル酞ブチル共
重合䜓、スチレン−アクリル酞オクチル共重合
䜓、スチレン−メタクリル酞メチル共重合䜓、ス
チレン−メタクリル酞゚チル共重合䜓、スチレン
−メタクリル酞ブチル共重合䜓、スチレン−αク
ロルメタクリル酞メチル共重合䜓、スチレン−ア
クリロニトリル共重合䜓、スチレン−ビニルメチ
ル゚ヌテル共重合䜓、スチレン−ビニル゚チル゚
ヌテル共重合䜓、スチレン−ビニルメチルケトン
共重合䜓、スチレン−ブタゞ゚ン共重合䜓、スチ
レン−む゜プレン共重合䜓、スチレン−アクリロ
ニトリル−むンデン共重合䜓、スチレン−マレむ
ン酞共重合䜓、スチレン−マレむン酞゚ステル共
重合䜓などのスチレン系共重合䜓ポリメチルメ
タクリレヌト、ポリブチルメタクリレヌト、ポリ
塩化ビニル、ポリ酢酞ビニル、ポリ゚チレン、ポ
リプロピレン、ポリ゚ステル、ポリりレタン、ポ
リアミド、ポリビニルブチラヌル、ポリアクリル
酞暹脂、ロゞン、倉性ロゞン、テルペン暹脂、フ
゚ノヌル暹脂、脂肪族又は脂環族炭化氎玠暹脂、
芳銙族系石油暹脂、塩玠化パラフむン、パラフむ
ンワツクスなどが単独或いは混合しお䜿甚でき
る。 トナヌに䜿甚される着色材ずしおは公知の染顔
料䟋えばカヌボンブラツク、フタロシアニンブル
ヌ、むンダンスレンブルヌ、ピヌコツクブルヌ、
パヌマネントレツド、レヌキレツド、ロヌダミン
レヌキ、ハンザむ゚ロヌ、パヌマネントむ゚ロ
ヌ、ベンゞゞンむ゚ロヌ等広く䜿甚するこずがで
きる。 以䞋本発明を図及び実斜䟋を甚いお詳现に説明
する。 第図は絶瞁性非磁性トナヌを甚いた静電朜像
珟像方法の実斜態様の䞀䟋を瀺す説明図である。
同図においおは円筒状の静電像保持䜓であり、
䟋えば公知の電子写真法であるカヌル゜ン法又は
NP法によ぀おこれに静電朜像を圢成せしめお、
トナヌ䟛絊手段であるホツパヌ内の絶瞁性非磁
性トナヌをトナヌ担持䜓䞊に塗垃手段によ
りトナヌ局の局厚を芏制しお塗垃されたトナヌ
で珟像する。トナヌ担持䜓は、円筒状のステン
レスからなる珟像ロヌラである。この珟像ロヌラ
の材質ずしおアルミニりムを甚いおも良いし、他
の金属でも良い。たた金属ロヌラの䞊にトナヌを
より所望の極性に摩擊垯電させるため暹脂等を被
芆したものを甚いおもよい。又、トナヌ塗垃手段
は第図のようなブレヌドでもよいし、匟性䜓
のロヌラヌでも良い。塗垃手段が匟性䜓のロヌ
ラヌの時に匟性䜓ロヌラヌのトナヌ担持䜓ぞの抌
し぀け圧を倉化させお、担持䜓䞊のトナヌ電荷量
を倉化させるこずができる。又、静電像保持䜓
ずトナヌ担持䜓ずの間隔はトナヌ担持䜓䞊に
塗垃されたトナヌ局の厚み以䞊に蚭定した方が奜
たしい。さらに、に瀺すようなバむアス電源が
あり静電像保持䜓ずトナヌ担持䜓ずの間に珟
像バむアスが印加される方が奜たしい。 第図は、別の䟋の説明図である。同図におい
お、は静電像保持䜓、はトナヌ担持䜓、は
トナヌ、はホツパヌ、は振動郚材、は
振動発生手段、は氞久磁石、はクリヌ
ニングブレヌド、はトナヌ䟛絊郚材を瀺す。 即ち、振動郚材を適圓な振幅、振動数を甚
いお振動させ、等速回転䞭のトナヌ担持䜓の䞊
に均䞀なトナヌ塗垃局を圢成させ、トナヌ担持䜓
ず静電像保持䜓ずをトナヌ塗垃局の厚みより
倧きな間隙を保぀お察向させ、非磁性トナヌを静
電像ぞ飛翔せしめお珟像するのである。振動郚材
の振動はトナヌ担持䜓に盎接接しない皋床
であればどの皋床でも良い。トナヌ担持䜓ず静
電像保持䜓ずの間に、亀流又は及び盎流の珟
像バむアス電圧を印加するこずも可胜である。 第図は、又、別の䟋の説明図である。同図に
おいお、は静電像保持䜓、はトナヌ担持䜓、
は塗垃ロヌラ、はその衚面に固着せしめ
た繊維ブラシ、は珟像バむアス電源、は珟
像噚、はトナヌクリヌニング郚材、は塗垃
甚バむアス源を瀺す。 即ち、のトナヌを塗垃ロヌラヌを回転さ
せのブラシで搬送しおトナヌ担持䜓の䞊に
均䞀に塗垃し、の静電像ぞ飛翔させお珟像す
る。トナヌ担持䜓ず塗垃ロヌラヌずの間隙
は、䞊に均䞀なトナヌ局を圢成するように調敎
し、均䞀なトナヌ塗垃のためにで瀺すバむア
ス電圧を印加しおもよい。静電像保持䜓ずトナ
ヌ担持䜓ずの間隙は䞊蚘トナヌ局厚より倧きく
なるようにし、珟像に際しおはの珟像バむアス
を印加しおもよい。 第図は、又、別の䟋の説明図である。同図に
おいおは静電像保持䜓、はトナヌ担持䜓、
は珟像装眮、は䞀成分非磁性トナヌ、はバ
むアス電源、は磁気ロヌラヌ、は非磁性
スリヌブ、は磁石、は磁気ブラシ、
は䞀成分非磁性トナヌたたは非磁性トナヌず磁性
キダリダヌずが混合された二成分珟像剀を瀺す。 即ち、非磁性スリヌブ䞊に磁性キダリアを
磁力で保持しおブラシ化し、を回転させるこ
ずにより、のトナヌあるいは珟像剀を䞊蚘キ
ダリアブラシで汲み䞊げお、のトナヌ担持䜓䞊
に接觊塗垃するこずにより均䞀なトナヌ局を圢成
する。その際、キダリアは磁力により䞊に保
持されおいるため、トナヌ担持䜓䞊に移るこず
はない。次いで、非磁性トナヌはトナヌ担持䜓
䞊から静電像保持䜓䞊ぞ転移し、珟像する。ト
ナヌ担持䜓ず静電像保持䜓ずの間隙は、トナ
ヌ局厚より倧きくなるようにし、トナヌ担持䜓
ず静電像保持䜓ずの間に珟像バむアス電圧を印
加しおもよい。 第図は、又、別の䟋の説明図である。同図に
おいおは静電像保持䜓、はトナヌ担持䜓、
はホツパヌ、はキダリアヌトナヌ混合物によ
る磁気ブラシ、はトナヌ厚芏制甚ブレヌド、
は固定磁石、は珟像甚バむアス、は䞀成
分非磁性トナヌを瀺す。 即ち、トナヌ担持䜓䞊に圢成された磁気ブラ
シをトナヌ担持䜓を回転させるこずで埪環
させ、のホツパヌ䞭のトナヌをずり蟌んで䞊
に均䞀に薄局コヌトさせる。次いでトナヌ担持䜓
ず静電像保持䜓ずをトナヌ局厚より倧きな間
隙で察向させ、䞊の䞀成分非磁性トナヌを
䞊の静電荷像䞊ぞず飛翔珟像させる。 トナヌ局の総電荷量は、の磁気ブラシの倧
きさ、即ちキダリア量及びの芏制ブレヌドで
制埡するこずができる。ずずの間隙はトナヌ
局厚より倧きめにずり、の珟像バむアスを印加
しおも良い。 実斜䟋  スチレン−ブチルメタクリレヌト重量比
共重合䜓100重量郚、フタロシアニン系青色
顔料10重量郚、ポリ゚チレンワツクス重量郚、
アミノ倉性シリコヌンオむル25℃における粘床
70cps、アミン圓量830で凊理された炭酞カルシ
りムオむル量は20重量、比衚面積18m2
15重量郚を混合し、ロヌルミルにお溶融混緎す
る。冷华埌ハンマヌミルにお粗粉砕した埌、ゞ゚
ツト粉砕機にお埮粉砕する。次いで颚力分玚機を
甚いお分玚し、およそ粒埄が〜20Όの埮粉䜓を
正荷電性トナヌずしお埗た。この埮粉䜓100重量
郚にコロむダルシリカ0.4重量郚を添加しトナヌ
ずした。 䞀方、酞化亜鉛100重量郚、スチレン−ブタゞ
゚ン共重合䜓20重量郚、−ブチルメタクリレヌ
ト40重量郚、トル゚ン120重量郚、ロヌズベンガ
ルメタノヌル溶液重量郚からなる混合物を
ボヌルミルにお時間分散混合した。これを0.05
mm厚のアルミニりム板に也燥塗垃厚が40Όになる
ようにワむダヌバヌにお塗垃し、枩颚にお溶剀を
蒞散させ酞化亜鉛バむンダヌ系感光䜓を䜜成しお
ドラム状ずした。この感光䜓に−6KVのコロナ
攟電を行ない党面䞀様に垯電した埌、原画像照射
を行ない静電朜像を圢成した。 䞊蚘トナヌを第図に瀺したような珟像装眮に
入れ、前述した静電朜像を珟像した。ここでトナ
ヌ担持䜓は倖埄50mmのステンレス補円筒スリヌブ
ずし、前蚘感光ドラム衚面−スリヌブ衚面間距離
0.25mmに蚭定し、スリヌブに400Hz、1000Vの亀
流及び−150Vの盎流バむアスを印加した。次い
で転写玙の背面より−7KVの盎流コロナを照射
し぀぀粉像を転写し、耇写画像を埗た。定着は垂
販の普通玙耇写機商品名、NP−5000キダノ
ン補を甚いお行な぀た。 埗られた転写画像は濃床が、1.5ず充分高く、
かぶりも党くない画像呚蟺のトナヌ飛び散りがな
く、解像力の高い良奜な青色画像が埗られた。䞊
蚘珟像剀を甚いお連続しお耐久性を調べたが
50000枚埌の転写画像も初期の画像ず比范しお党
くそん色のない画像であ぀た。 たた、環境条件を35℃、85にしたずころ画像
濃床は1.40ず垞枩垞湿ずほずんど倉化のない倀で
あり、かぶりや飛び散りもなく鮮明な青色画像が
埗られ、耐久性も50000枚たでほずんど倉化なか
぀た。次に10℃10の䜎枩䜎湿床においお転写画
像を埗たずころ、画像濃床は1.40ず高く、ベタ黒
も極めお滑らかに珟像、転写され飛び散りや䞭抜
けのない優秀な画像であ぀た。この環境条件で耐
久を行な぀たずころ、連続、及び間け぀でコピヌ
したがやはり50000枚たで濃床倉動は±0.2ず実甚
䞊充分であ぀た。 実斜䟋  スチレン−ブチルメタクリレヌト重量比
共重合䜓100重量郚、フタロシアニン系青色
顔料重量郚、ポリ゚チレンワツクス重量郚、
アミノ倉性シリコヌンオむル25℃における粘床
3500cps、アミン圓量3800で凊理された酞化チ
タン比衚面積10m2、オむル量は10wt
20重量郚を甚いるこずを陀いおは、実斜䟋ず同
様に行な぀たずころ、カブリのない鮮明な青色画
像が埗られた。たた高枩高湿䞋及び䜎枩䜎湿䞋で
も良奜な画像が埗られた。 実斜䟋  スチレン−ブチルメタクリレヌト重量比
共重合䜓80重量郚、スチレン−ブタゞ゚ン
重量比8515共重合䜓20重量郚、フタロシア
ニンブルヌ重量郚、䜎分子量ポリプロピレン
重量郚、アミノ倉性シリコヌンオむル25℃にお
ける粘床3500cps、アミン圓量3800で凊理され
た酞化セリりム比衚面積27m2、オむル量12
重量13重量郚を混合し、実斜䟋ずほが同様
にしお粒埄がおよそ〜20Όのトナヌを埗た。実
斜䟋ず同様に画像を埗たずころカブリのない鮮
明な青色画像が埗られた。 実斜䟋 〜 アミン圓量及び25℃の粘床がそれぞれ2000、
3500cpsず8800、90cpsず22500、60cpsのアミノ倉
性シリコヌンオむルを甚いるこずを陀いおは、実
斜䟋ず同様に行な぀たずころ、良奜な結果が埗
られた。 実斜䟋  実斜䟋のトナヌを、第図に瀺す装眮に投入
し、振動郚材を振動数玄50Hz、振幅0.2mmで
振動させ、トナヌ担持䜓を呚速120mmsecで回
転させるず、トナヌ担持䜓䞊には玄50Ό厚の均䞀
なトナヌ塗垃局が圢成した。トナヌ担持䜓ず静
電像保持䜓ずを玄300Όの間隙を保぀お察向さ
せお、トナヌ担持䜓に呚波数数100〜数キロHz、
マむナスピヌク倀−600〜−1200V及びプラスピ
ヌク倀400〜800Vのバむアス亀流電界を䞎え
お珟像を行な぀たずころ、同様の良奜な結果が埗
られた。 実斜䟋  実斜䟋で瀺すトナヌを、トナヌ担持䜓ず塗
垃ロヌラヌの間隙を玄mm、繊維ブラシ
の長さを玄mmず蚭定した第図に瀺す珟像装眮
に投入し、珟像ロヌラヌず静電像保持䜓ずの間隙
を300Όに保ち、玄80Όのトナヌ局を珟像ロヌラヌ
䞊に圢成させ、亀流波圢ずしお呚波数200Hz、電
圧のピヌク倀±450Vに盎流成分250Vを加えお、
電圧のピヌク倀700V及び−200Vを䞎えお珟像
したずころ、同様の良奜な結果が埗られた。 実斜䟋  実斜䟋のトナヌを、トナヌ担持䜓ず磁気ロ
ヌラヌずの間隙が玄mm、磁気ブラシの
最倧厚玄mmずなるように蚭定した第図に瀺す
珟像装眮に投入し、珟像ロヌラヌず静電像保持䜓
ずの間隙を300Όに保ち、玄80Όのトナヌ局を珟像
ロヌラヌ䞊に圢成させ、亀流波圢ずしお呚波数
200Hz、電圧のピヌク倀±450Vに盎流成分250V
を加えお、電圧のピヌク倀700V及び−200Vを
䞎えお珟像したずころ、同様の良奜な結果が埗ら
れた。 実斜䟋 10 実斜䟋のトナヌ20を、予め、鉄粉キダリア
20ず混合し、その混合物を、芏制ブレヌド
ずトナヌ担持䜓ずの間隙が玄250Όずなるよう
に蚭定した第図の珟像装眮に投入し、珟像ロヌ
ラヌず静電像保持䜓ずの間隙を300Όに保ち、玄
80Όのトナヌ局を珟像ロヌラヌ䞊に圢成させ、亀
流波圢ずしお呚波数200Hz、電圧のピヌク倀±
450Vに盎流成分250Vを加えお、電圧のピヌク倀
700V及び−200Vを䞎えお珟像したずころ、同
様の良奜な結果が埗られた。 比范䟋 〜 アミノ倉性シリコヌンオむルで凊理された無機
埮粉末を含有しないこずを陀いおは実斜䟋〜
ず同様に行な぀たずころ、埗られた画像は貧匱だ
぀た。 比范䟋  アミノ倉性シリコヌンオむルで凊理する代わり
に、アミノシランH2NCH24SiOC2H53で
凊理された炭酞カルシりムを甚いるこずを陀いお
は実斜䟋ず同様に行な぀たずころ、良奜な画像
が埗られたが、高枩高湿䞋では貧匱な画像ずな぀
た。 比范䟋  偎鎖にアミンを有するシリコヌンオむルのかわ
りに、ゞメチルシリコヌンオむル25℃における
粘床50cpsで凊理した炭酞カルシりムを䜿甚す
るこずを陀いお実斜䟋ず同様にしお絶瞁性非磁
性トナヌを調補し、実斜䟋ず同様にしお画出し
をおこな぀た。垞枩垞湿においお、画像濃床0.17
の貧匱な画像しか埗られなか぀た。 実斜䟋 11 スチレン−ブチルメタクリレヌト重量比
共重合䜓100重量郚、フタロシアニン系青色
顔料10重量郚及びポリ゚チレンワツクス重量郚
を混合し、ロヌルミルにお溶融混緎した。冷华埌
ハンマヌミルにお粗粉砕した埌、ゞ゚ツト粉砕機
にお埮粉砕した。次いで、颚力分玚機を甚いお分
玚し、およそ粒埄が〜20Όの埮粉䜓トナヌを埗
た。この埮粉䜓100重量郚ず、偎鎖にアミンを有
するシリコヌンオむルずしおアミノ倉性シリコヌ
ンオむル25℃における粘床70cps、アミン圓量
830で凊理されたアルミナオむル凊理量20重
量、比衚面積100m2重量郚ずを混合し
お正荷電性絶瞁性非磁性トナヌを調補した。埗ら
れた正荷電性絶瞁性非磁性トナヌを䜿甚しお、実
斜䟋ず同様にしお画出ししたずころ画像濃床
1.35の良奜な画像が埗られた。 比范䟋  アミノ倉性シリコヌンオむルのかわりに、ゞメ
チルシリコヌンオむル25℃における粘床50cps
で凊理したアルミナを䜿甚するこずを陀いお、実
斜䟋11ず同様にしお凊理アルミナをトナヌ粒子衚
面に有するトナヌを調補し、実斜䟋11ず同様にし
お画出しをおこな぀た。実斜䟋11ず比范しお、画
像濃床0.41の貧匱な画像しか埗られなか぀た。
[Table] Manufactured by the company)
The amine equivalent in the above table is the equivalent per amine (g/eqiv), which is the value obtained by dividing the molecular weight by the number of amines per molecule. A silicone oil having an amine in the side chain having a molecular weight of 320 to 8800 is preferred from the viewpoint of positive charge control, environmental stability, and development characteristics. Furthermore, a silicone oil having an amine in its side chain and having a viscosity of 20 to 3500 cps at 25°C is preferred. These may be used alone or in a mixed system of two or more. The treatment of the inorganic fine powder with the modified silicone oil containing amino groups can be carried out, for example, as follows. If necessary, the inorganic fine powder is violently agitated while being heated, and the above-mentioned modified silicone oil containing an amino group or its solution is sprayed or vaporized, or the inorganic fine powder is made into a slurry. This can be easily treated by dropping a modified silicone oil containing an amino group or a solution thereof while stirring the mixture. Furthermore, it is also preferable to perform a heat treatment thereafter at a temperature of about 50 to 400°C. The desired toner is obtained by melt-kneading the inorganic fine powder treated with modified silicone oil containing amino groups as described above with other constituent components of the toner, such as a resin as a binder and a coloring agent, followed by crushing and classification. It will be done. Alternatively, the above-mentioned modified silicone oil-treated inorganic fine powder containing an amino group may be added by mixing together with a toner formed from a resin, a colorant, or the like. The preferred processing amount ratio of the modified silicone oil containing amino groups to the inorganic fine powder is 0.1 to 50% by weight. Furthermore, the amount of the modified silicone oil containing amino groups added to the toner is preferably 0.01 to 50% by weight. According to the present invention, in which the inorganic fine powder treated with the above-mentioned modified silicone oil containing an amino group is used as a component of the developer, an electrical latent image can be developed and transferred into a clear image without fog. That is, when the developer according to the present invention is used, the toner exhibits strong and uniform positive chargeability. In addition, the modified silicone oil containing amino groups of the present invention is stable and has a heat resistance temperature of about 300°C, so it is extremely unlikely to decompose or change in quality due to thermal or mechanical shock, and it can be used for charge control. There are no problems such as a decrease in properties, and toner deterioration during durability is significantly reduced. Furthermore, the modified silicone oil containing amino groups of the present invention has strong positive chargeability and also has high humidity stability, so it has good positive chargeability even under high humidity, and clear images can be obtained. Furthermore, since the modified silicone oil containing amino groups is colorless or pale white, when white inorganic fine powder is treated according to the present invention, a positively chargeable color developer can be obtained. Note that the inorganic fine powder used in the present invention may be treated with a compound other than the modified silicone oil containing an amino group, if necessary. Other compounds that can treat the inorganic fine powder include coupling agents such as silane coupling agents, titanium coupling agents, and aluminum coupling agents, and fatty acid metal salts. Examples of the toner binder resin that can be used in the developing method of the present invention include monopolymers of styrene and substituted products thereof such as polystyrene, polyP-chlorostyrene, and polyvinyltoluene; styrene-P-chlorostyrene copolymers, and styrene-P-chlorostyrene copolymers; Propylene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer, styrene-butyl acrylate copolymer, styrene- Octyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-butyl methacrylate copolymer, styrene-alpha chloromethyl methacrylate copolymer, styrene-acrylonitrile copolymer Copolymer, styrene-vinyl methyl ether copolymer, styrene-vinyl ethyl ether copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer Styrenic copolymers such as styrene-maleic acid copolymers, styrene-maleic acid ester copolymers; polymethyl methacrylate, polybutyl methacrylate, polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, polyester, polyurethane, Polyamide, polyvinyl butyral, polyacrylic acid resin, rosin, modified rosin, terpene resin, phenolic resin, aliphatic or alicyclic hydrocarbon resin,
Aromatic petroleum resins, chlorinated paraffin, paraffin wax, etc. can be used alone or in combination. Coloring materials used in toner include known dyes and pigments such as carbon black, phthalocyanine blue, indanthrene blue, peacock blue,
Permanent red, lake red, rhodamine lake, Hansa yellow, permanent yellow, benzidine yellow, etc. can be widely used. The present invention will be explained in detail below using figures and examples. FIG. 1 is an explanatory diagram showing an example of an embodiment of an electrostatic latent image developing method using an insulating nonmagnetic toner.
In the figure, 1 is a cylindrical electrostatic image holder;
For example, the Carlson method, which is a known electrophotographic method, or
An electrostatic latent image is formed on this using the NP method,
The insulating non-magnetic toner 5 in the hopper 3, which is a toner supply means, is applied onto the toner carrier 2 by the application means 4 with the thickness of the toner layer regulated.
Develop it with The toner carrier 2 is a cylindrical developing roller made of stainless steel. Aluminum may be used as the material for this developing roller, or other metals may be used. Alternatively, a metal roller coated with resin or the like may be used in order to triboelectrically charge the toner to a desired polarity. Further, the toner applying means 4 may be a blade as shown in FIG. 1, or may be an elastic roller. When the application means 4 is an elastic roller, the amount of toner charge on the carrier can be changed by changing the pressing pressure of the elastic roller against the toner carrier. Moreover, the electrostatic image carrier 1
It is preferable that the distance between the toner carrier 2 and the toner carrier 2 is set to be greater than or equal to the thickness of the toner layer coated on the toner carrier 2. Further, it is preferable that a bias power source as shown in 6 is provided and a developing bias is applied between the electrostatic image carrier 1 and the toner carrier 2. FIG. 2 is an explanatory diagram of another example. In the figure, 1 is an electrostatic image carrier, 2 is a toner carrier, 5 is a toner, 3 is a hopper, 16 is a vibration member, 17 is a vibration generating means, 16a is a permanent magnet, 19 is a cleaning blade, and 10 is a toner. A supply member is shown. That is, the vibrating member 16 is vibrated with an appropriate amplitude and frequency to form a uniform toner coating layer on the toner carrier 2 rotating at a constant speed, and the toner carrier 2 and the electrostatic image carrier 1 are The electrostatic image is developed by facing the electrostatic image with a gap larger than the thickness of the toner coating layer, and causing the non-magnetic toner to fly onto the electrostatic image. The vibration of the vibrating member 16 may be at any level as long as it does not come into direct contact with the toner carrier 2. It is also possible to apply an AC and/or DC developing bias voltage between the toner carrier 2 and the electrostatic image holder 1. FIG. 3 is an explanatory diagram of another example. In the figure, 1 is an electrostatic image carrier, 2 is a toner carrier,
35 is a coating roller, 36 is a fiber brush fixed to its surface, 6 is a developing bias power source, 38 is a developing device, 9 is a toner cleaning member, and 40 is a coating bias source. That is, the toner No. 5 is uniformly applied onto the toner carrier 2 by rotating the application roller 35 and conveyed by the brush No. 36, and is caused to fly onto the electrostatic image No. 1 to be developed. The gap between the toner carrier 2 and the application roller 35 may be adjusted so as to form a uniform toner layer on the toner carrier 2, and a bias voltage indicated by 40 may be applied to uniformly apply the toner. The gap between the electrostatic image carrier 1 and the toner carrier 2 may be made larger than the above-mentioned toner layer thickness, and a developing bias of 6 may be applied during development. FIG. 4 is an explanatory diagram of another example. In the figure, 1 is an electrostatic image carrier, 2 is a toner carrier, and 4 is a toner carrier.
3 is a developing device, 5 is a one-component non-magnetic toner, 6 is a bias power supply, 48 is a magnetic roller, 49 is a non-magnetic sleeve, 50 is a magnet, 52 is a magnetic brush, 53
represents a one-component non-magnetic toner or a two-component developer in which a non-magnetic toner and a magnetic carrier are mixed. That is, a magnetic carrier is magnetically held on a non-magnetic sleeve 49 to form a brush, and by rotating 49, the carrier brush 53 draws up the toner or developer 53 and contact-coats it onto the toner carrier 2. This forms a uniform toner layer. At this time, since the carrier is held on the toner carrier 48 by magnetic force, it does not move onto the toner carrier 2. Next, the non-magnetic toner is transferred to the toner carrier 2.
The image is transferred from above onto the electrostatic image holder 1 and developed. The gap between the toner carrier 2 and the electrostatic image carrier 1 is made larger than the toner layer thickness, and the gap between the toner carrier 2 and the electrostatic image carrier 1 is made larger than the toner layer thickness.
A developing bias voltage may be applied between the image carrier 1 and the electrostatic image holder 1 . FIG. 5 is an explanatory diagram of another example. In the figure, 1 is an electrostatic image carrier, 2 is a toner carrier, and 3 is a toner carrier.
is a hopper, 52 is a magnetic brush using a carrier toner mixture, 58 is a blade for regulating toner thickness,
50 is a fixed magnet, 6 is a developing bias, and 5 is a one-component non-magnetic toner. That is, the magnetic brush 52 formed on the toner carrier 2 is circulated by rotating the toner carrier 2, and the toner in the hopper 3 is taken in and uniformly coated on the hopper 2 in a thin layer. Next, the toner carrier 2 and the electrostatic image carrier 1 are made to face each other with a gap larger than the toner layer thickness, and the one-component non-magnetic toner 5 on the toner carrier 2 is
The image is developed by flying onto the electrostatic charge image above. The total amount of charge in the toner layer can be controlled by the size or carrier amount of the magnetic brush 52 and the regulating blade 58. The gap between 1 and 2 may be made larger than the toner layer thickness, and a developing bias of 6 may be applied. Example 1 Styrene-butyl methacrylate (weight ratio 7:
3) 100 parts by weight of copolymer, 10 parts by weight of phthalocyanine blue pigment, 3 parts by weight of polyethylene wax,
Amino-modified silicone oil (viscosity at 25℃
Calcium carbonate treated with 70cps (amine equivalent: 830) (oil content 20% by weight, specific surface area 18m 2 /g)
Mix 15 parts by weight and melt-knead with a roll mill. After cooling, it is roughly pulverized in a hammer mill, and then finely pulverized in a jet pulverizer. The mixture was then classified using an air classifier to obtain a fine powder having a particle size of approximately 5 to 20 ÎŒm as a positively charged toner. A toner was prepared by adding 0.4 parts by weight of colloidal silica to 100 parts by weight of this fine powder. Meanwhile, a mixture consisting of 100 parts by weight of zinc oxide, 20 parts by weight of styrene-butadiene copolymer, 40 parts by weight of n-butyl methacrylate, 120 parts by weight of toluene, and 4 parts by weight of 1% rose bengal methanol solution was dispersed in a ball mill for 6 hours. Mixed. This is 0.05
The coating was applied to a mm-thick aluminum plate with a wire bar to a dry coating thickness of 40 ÎŒm, and the solvent was evaporated with hot air to create a zinc oxide binder-based photoreceptor in the form of a drum. This photoreceptor was subjected to -6 KV corona discharge to uniformly charge the entire surface, and then an original image was irradiated to form an electrostatic latent image. The above toner was put into a developing device as shown in FIG. 1, and the electrostatic latent image described above was developed. Here, the toner carrier is a stainless steel cylindrical sleeve with an outer diameter of 50 mm, and the distance between the photosensitive drum surface and the sleeve surface is
0.25 mm, and 400 Hz, 1000 V AC and -150 V DC bias were applied to the sleeve. Next, the powder image was transferred while irradiating -7 KV direct current corona from the back side of the transfer paper to obtain a copied image. Fixing was carried out using a commercially available plain paper copying machine (trade name, NP-5000; manufactured by Canon). The resulting transferred image has a sufficiently high density of 1.5.
A good blue image with high resolution was obtained with no fog or toner scattering around the image. Durability was continuously investigated using the above developer.
The transferred image after 50,000 copies was also completely dull compared to the initial image. In addition, when the environmental conditions were set to 35℃ and 85%, the image density was 1.40, a value that was almost unchanged from normal temperature and humidity, and a clear blue image was obtained without fogging or scattering, and the durability was almost 1.40 up to 50,000 sheets. There was no change. Next, when a transferred image was obtained at a low temperature and low humidity of 10°C and 10%, the image density was as high as 1.40, solid black was developed and transferred extremely smoothly, and the image was excellent with no scattering or hollow spots. When durability tests were carried out under these environmental conditions, the density fluctuation was ±0.2 up to 50,000 sheets, which was sufficient for practical use even though continuous and intermittent copying was performed. Example 2 Styrene-butyl methacrylate (weight ratio 7:
3) 100 parts by weight of copolymer, 5 parts by weight of phthalocyanine blue pigment, 4 parts by weight of polyethylene wax,
Amino-modified silicone oil (viscosity at 25℃
Titanium oxide treated with 3500cps, amine equivalent 3800) (specific surface area 10m 2 /g, oil amount 10wt%)
The same procedure as in Example 1 was carried out except that 20 parts by weight was used, and a clear blue image without fogging was obtained. Good images were also obtained under high temperature and high humidity conditions as well as under low temperature and low humidity conditions. Example 3 Styrene-butyl methacrylate (weight ratio 7:
3) 80 parts by weight of copolymer, 20 parts by weight of styrene-butadiene (weight ratio 85:15) copolymer, 5 parts by weight of phthalocyanine blue, 4 parts by weight of low molecular weight polypropylene
Part by weight, cerium oxide treated with amino-modified silicone oil (viscosity 3500 cps at 25°C, amine equivalent 3800) (specific surface area 27 m 2 /g, oil amount 12
13 parts by weight (% by weight) were mixed in substantially the same manner as in Example 1 to obtain a toner having a particle size of approximately 5 to 20 Όm. When an image was obtained in the same manner as in Example 1, a clear blue image without fog was obtained. Examples 4 to 6 Amine equivalent and viscosity at 25°C are 2000, respectively.
Good results were obtained in the same manner as in Example 1, except that amino-modified silicone oils of 3500 cps, 8800, 90 cps, 22500, and 60 cps were used. Example 7 When the toner of Example 1 is put into the apparatus shown in FIG. 2, the vibrating member 16 is vibrated at a frequency of about 50 Hz and an amplitude of 0.2 mm, and the toner carrier 2 is rotated at a circumferential speed of 120 mm/sec. A uniform toner coating layer with a thickness of about 50 Όm was formed on the toner carrier. The toner carrier 2 and the electrostatic image holder 1 are placed facing each other with a gap of about 300Ό maintained, and the toner carrier 2 has a frequency of 100 to several kilohertz.
Similar good results were obtained when development was carried out by applying a bias AC electric field with a negative peak value of -600 to -1200V and a positive peak value of +400 to +800V. Example 8 The toner shown in Example 1 was applied using a fiber brush 36 with a gap of about 2 mm between the toner carrier 2 and the application roller 35.
The toner was placed in the developing device shown in Figure 3 whose length was set to approximately 3 mm, the gap between the developing roller and the electrostatic image holder was maintained at 300 Ό, and a toner layer of approximately 80 Ό was formed on the developing roller. The waveform has a frequency of 200Hz and a DC component of 250V is added to the voltage peak value ±450V.
Similar good results were obtained when developing at peak voltages of +700V and -200V. Example 9 The toner of Example 1 was put into the developing device shown in FIG. 4, which was set so that the gap between the toner carrier 2 and the magnetic roller 48 was about 2 mm, and the maximum thickness of the magnetic brush 52 was about 3 mm. The gap between the developing roller and the electrostatic image holder is maintained at 300Ό, a toner layer of approximately 80Ό is formed on the developing roller, and the frequency is expressed as an AC waveform.
200Hz, voltage peak value ±450V and DC component 250V
Similar good results were obtained by applying peak voltages of +700V and -200V. Example 10 20g of the toner of Example 1 was placed in an iron powder carrier in advance.
20g, and the mixture is passed through the regulation blade 58.
The toner is placed in the developing device shown in Fig. 5, which is set so that the gap between the toner and the electrostatic image holder 2 is approximately 250Ό, and the gap between the developing roller and the electrostatic image holder 2 is maintained at 300Ό.
A toner layer of 80Ό is formed on the developing roller, and the frequency is 200Hz as an AC waveform, and the voltage peak value ±
Similar good results were obtained when developing by adding a direct current component of 250 V to 450 V to give voltage peak values of +700 V and -200 V. Comparative Examples 1-3 Examples 1-3 except that they do not contain inorganic fine powder treated with amino-modified silicone oil
When I did the same thing, the image I got was poor. Comparative Example 4 Same as Example 1 except that calcium carbonate treated with aminosilane (H 2 N (CH 2 ) 4 Si (OC 2 H 5 ) 3 ) was used instead of treated with amino-modified silicone oil. Although good images were obtained, the images became poor under high temperature and high humidity conditions. Comparative Example 5 An insulating non-magnetic toner was produced in the same manner as in Example 1, except that calcium carbonate treated with dimethyl silicone oil (viscosity 50 cps at 25°C) was used instead of silicone oil having an amine in the side chain. It was prepared and imaged in the same manner as in Example 1. Image density 0.17 at normal temperature and humidity
I could only get a poor image of it. Example 11 Styrene-butyl methacrylate (weight ratio 7:
3) 100 parts by weight of copolymer, 10 parts by weight of phthalocyanine blue pigment and 3 parts by weight of polyethylene wax were mixed and melt-kneaded in a roll mill. After cooling, it was coarsely pulverized in a hammer mill, and then finely pulverized in a jet pulverizer. Next, it was classified using an air classifier to obtain a fine powder toner having a particle size of approximately 5 to 20 Όm. 100 parts by weight of this fine powder and amino-modified silicone oil (viscosity 70 cps at 25°C, amine equivalent
830) treated alumina (oil treatment amount: 20% by weight, specific surface area: 100 m 2 /g) and 1 part by weight of alumina (oil treatment amount: 20% by weight, specific surface area: 100 m 2 /g) to prepare a positively charged insulating nonmagnetic toner. Using the obtained positively charged insulating non-magnetic toner, an image was produced in the same manner as in Example 1, and the image density was
A good image of 1.35 was obtained. Comparative Example 6 Dimethyl silicone oil (viscosity 50 cps at 25°C) instead of amino-modified silicone oil
A toner having treated alumina on the surface of the toner particles was prepared in the same manner as in Example 11, except for using alumina treated with . Compared to Example 11, only a poor image with an image density of 0.41 was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第図〜第図は、絶瞁性非磁性トナヌを甚い
た珟像方法の実斜態様の䟋を瀺す説明図。   静電像保持䜓。  トナヌ担持䜓。
  塗垃手段。  トナヌ。  バむアス電
源。
1 to 5 are explanatory views showing examples of embodiments of a developing method using insulating nonmagnetic toner. 1... Electrostatic image holder. 2...Toner carrier. 4
...Applying means. 5... Toner. 6...Bias power supply.

Claims (1)

【特蚱請求の範囲】  静電像を衚面に保持する静電像保持䜓ず偎鎖
にアミンを有するシリコヌンオむルで凊理された
無機埮粉䜓䜆し、ケむ酞埮粉䜓陀くをトナヌ
粒子䞭たたはトナヌ粒子衚面に有する正荷電性絶
瞁性非磁性トナヌを衚面に担持するトナヌ担持䜓
ずを珟像郚においお䞀定の間隙を蚭けお配眮し、
正荷電性絶瞁性非磁性トナヌをトナヌ担持䜓䞊に
前蚘間隙よりも薄い厚さに担持させ、該トナヌを
珟像郚においお前蚘静電像保持䜓に転移させ珟像
するこずを特城ずする珟像方法。  珟像郚においおトナヌ担持䜓ず静電像保持䜓
面ずの間で亀流及びたたは盎流バむアスが印加
される特蚱請求の範囲第項蚘茉の珟像方法。  偎鎖にアミンを有するシリコヌンオむルは、
䞋蚘構成単䜍 匏䞭、R1は氎玠、アルキル基、アリヌル基又
はアルコキシ基を衚わし、R2はアルキレン基又
はプニレン基を衚わし、R3及びR4は氎玠、ア
ルキル基たたはアリヌル基を衚わす。 を有する特蚱請求の範囲第項たたは第項蚘茉
の珟像方法。  偎鎖にアミンを有するシリコヌンオむルは、
アミン圓量320〜8800及び25℃における粘床20〜
3500cpsを有する特蚱請求の範囲第項乃至第
項蚘茉のいずれかに蚘茉の珟像方法。
[Claims] 1. An electrostatic image carrier that holds an electrostatic image on its surface and an inorganic fine powder treated with silicone oil having an amine in its side chain (excluding silicic acid fine powder) are contained in toner particles or A toner carrier carrying positively charged insulating non-magnetic toner on the surface of the toner particles is arranged with a certain gap in a developing section,
A developing method comprising: supporting a positively charged insulating non-magnetic toner on a toner carrier to a thickness thinner than the gap, and transferring the toner to the electrostatic image carrier in a developing section for development. 2. The developing method according to claim 1, wherein an alternating current and/or direct current bias is applied between the toner carrier and the electrostatic image carrier surface in the developing section. 3 Silicone oil with amine in the side chain is
The following structural units [In the formula, R 1 represents hydrogen, an alkyl group, an aryl group, or an alkoxy group, R 2 represents an alkylene group or a phenylene group, and R 3 and R 4 represent hydrogen, an alkyl group, or an aryl group. ] The developing method according to claim 1 or 2, which has the following. 4 Silicone oil with amine in the side chain is
Amine equivalent 320~8800 and viscosity at 25℃ 20~
Claims 1 to 3 having 3500 cps
The developing method described in any of the paragraphs.
JP58074557A 1983-04-25 1983-04-27 Developing method Granted JPS59200266A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58074557A JPS59200266A (en) 1983-04-27 1983-04-27 Developing method
US06/603,429 US4568625A (en) 1983-04-25 1984-04-24 Developer comprising a modified silicone oil and development process for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58074557A JPS59200266A (en) 1983-04-27 1983-04-27 Developing method

Publications (2)

Publication Number Publication Date
JPS59200266A JPS59200266A (en) 1984-11-13
JPH0158500B2 true JPH0158500B2 (en) 1989-12-12

Family

ID=13550647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58074557A Granted JPS59200266A (en) 1983-04-25 1983-04-27 Developing method

Country Status (1)

Country Link
JP (1) JPS59200266A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183664A (en) * 1985-02-08 1986-08-16 Ricoh Co Ltd Electrostatic charge image developing toner
JP2854331B2 (en) * 1989-07-28 1999-02-03 キダノン株匏䌚瀟 Electrostatic latent image developing developer, image forming apparatus unit, and image forming method
JP2765554B2 (en) * 1996-01-22 1998-06-18 富士れロックス株匏䌚瀟 Developer

Also Published As

Publication number Publication date
JPS59200266A (en) 1984-11-13

Similar Documents

Publication Publication Date Title
JPH0727272B2 (en) Development method
JPH06100848B2 (en) Development method
JPS59200265A (en) Developing method
JPH03121462A (en) Image forming method and image forming device
JPH0158500B2 (en)
JPH026059B2 (en)
JPH0727271B2 (en) Development method
JPS6128958A (en) Image forming method
JPH0157906B2 (en)
US4666814A (en) Method for developing electrostatic latent image with non-magnetic toner
KR20030053023A (en) Magnetic toner composition having superior electrification homogeneity
JPS619663A (en) Magnetic powder dispersed type microcarrier
JPH0157904B2 (en)
JPS59187359A (en) Development method
JPS59200251A (en) Toner
JPH0731455B2 (en) Development method
JPH0157903B2 (en)
JPH0421861B2 (en)
JPS6132860A (en) Image forming method
JPS6087346A (en) Developing method
JPH0473788B2 (en)
JPH0473787B2 (en)
JPS641017B2 (en)
JPS645703B2 (en)
JPS59222862A (en) Developing method