JPH0158121B2 - - Google Patents

Info

Publication number
JPH0158121B2
JPH0158121B2 JP56072983A JP7298381A JPH0158121B2 JP H0158121 B2 JPH0158121 B2 JP H0158121B2 JP 56072983 A JP56072983 A JP 56072983A JP 7298381 A JP7298381 A JP 7298381A JP H0158121 B2 JPH0158121 B2 JP H0158121B2
Authority
JP
Japan
Prior art keywords
adsorption
iodine
exchange resin
anion exchange
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56072983A
Other languages
Japanese (ja)
Other versions
JPS57188403A (en
Inventor
Nobuaki Mineshima
Akitoshi Tokuyo
Hiroshi Fukuzawa
Noryuki Furuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TENNEN GASU KOGYO KK
Original Assignee
NIPPON TENNEN GASU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TENNEN GASU KOGYO KK filed Critical NIPPON TENNEN GASU KOGYO KK
Priority to JP56072983A priority Critical patent/JPS57188403A/en
Publication of JPS57188403A publication Critical patent/JPS57188403A/en
Publication of JPH0158121B2 publication Critical patent/JPH0158121B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は二層分離式ヨウ素吸着方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a two-layer separation type iodine adsorption method.

(従来の技術) 従来、イオン交換樹脂に用いるヨウ素吸着装置
については種々の流動層式吸着装置が提案されて
いる。
(Prior Art) Conventionally, various fluidized bed adsorption devices have been proposed as iodine adsorption devices used for ion exchange resins.

本出願人が先に出願した発明、特願昭43−
52025号(特公昭54−2625号)、特願昭49−130271
号(特開昭51−55779号)、特願昭53−77741号
(特開昭55−3869号)等も流動層式吸着装置に関
するものであり、既にこれらは大型装置として稼
動している。
Invention filed earlier by the applicant, patent application filed in 1977-
No. 52025 (Special Publication No. 54-2625), Patent Application No. 130271-1971
No. 55779/1983 (Japanese Unexamined Patent Publication No. 51-55779), Japanese Patent Application No. 77741/1977 (Japanese Patent Application No. 3869/1983), etc. also relate to fluidized bed adsorption devices, and these are already in operation as large-scale devices.

しかし上記の流動層式吸着塔においては、供給
されたイオン交換樹脂がすべて均一な高い性能を
有している場合は固定床と同様の吸着効率が維持
されるが、使用開始後時間の経過につれてイオン
交換樹脂の性能が次第に低下し、又物理的にも粒
子は摩耗され、粒径に大小の差が生じ、又その性
能にも差を生じてくる。
However, in the above-mentioned fluidized bed adsorption tower, if all the supplied ion exchange resins have uniform high performance, adsorption efficiency similar to that of a fixed bed is maintained, but as time passes after the start of use, The performance of the ion exchange resin gradually deteriorates, and the particles are physically worn away, resulting in differences in particle size and performance.

これらの粒径の差及び性能の差が上昇流によつ
て篩い分けられ、性能の低い粒径の小さいイオン
交換樹脂は吸着塔の上部に、性能の良い粒径の大
きい粒子は下部に偏在するようになる。
These differences in particle size and performance are sieved out by the upward flow, and the small ion exchange resin with poor performance is concentrated in the upper part of the adsorption tower, while the large particles with good performance are concentrated in the lower part. It becomes like this.

この理由は、イオン交換性能の高い樹脂粒子は
ヨウ素吸着速度が早く、ヨウ素吸着量も増大し、
それに伴つて樹脂粒子の真比重が増大し、沈降速
度が早くなり下部に沈降し易くなる。一方イオン
交換性能の低い樹脂粒子はヨウ素吸着速度が遅
く、ヨウ素吸着量もなかなか増大しないので沈降
速度も遅く、上部に停滞することになる。
The reason for this is that resin particles with high ion exchange performance have a fast iodine adsorption rate and increase the amount of iodine adsorption.
Correspondingly, the true specific gravity of the resin particles increases, the sedimentation speed increases, and the resin particles tend to settle to the bottom. On the other hand, resin particles with low ion exchange performance have a slow iodine adsorption rate, and the amount of iodine adsorbed does not easily increase, so the sedimentation rate is also slow and the particles stagnate at the top.

従つて、吸着性能の良い樹脂粒子ほど下部に沈
降し、それらは間欠的に取り出され再生されて上
部から供給されるので吸着、再生のサイクルが早
くなる。一方吸着性能の悪い樹脂粒子はヨウ素吸
着速度が遅く、ヨウ素吸着量もなかなか増大しな
いので、塔内に長く停滞し、吸着再生のサイクル
が遅くなる。
Therefore, resin particles with better adsorption performance settle to the bottom, and they are intermittently taken out, regenerated, and supplied from the top, so that the cycle of adsorption and regeneration becomes faster. On the other hand, resin particles with poor adsorption performance have a slow iodine adsorption rate and do not easily increase the amount of iodine adsorbed, so they remain in the column for a long time, slowing down the adsorption and regeneration cycle.

ところで本発明者等の知見によれば、吸着塔の
ヨウ素吸着の効率は塔内の陰イオン交換樹脂の平
均的な吸着性能によるものというより、吸着塔上
部に存在する陰イオン交換樹脂の性能の良否に多
く左右されることが分つた。
According to the findings of the present inventors, the iodine adsorption efficiency of the adsorption tower is not due to the average adsorption performance of the anion exchange resin in the tower, but rather to the performance of the anion exchange resin present in the upper part of the adsorption tower. I found out that a lot depends on whether it's good or bad.

これは遊離ヨウ素を含む液は吸着塔の上部に上
昇するに従いヨウ素は陰イオン交換樹脂で吸着さ
れてゆくので、最上層ではヨウ素含有量が最も稀
薄となつており、吸着性能の良い陰イオン交換樹
脂でなければ効果的にヨウ素を吸着することは困
難となるからである。
This is because as the liquid containing free iodine rises to the top of the adsorption tower, iodine is adsorbed by the anion exchange resin, so the iodine content is the most dilute in the uppermost layer, and the anion exchange resin has good adsorption performance. This is because unless it is a resin, it will be difficult to effectively adsorb iodine.

しかるに前記のように吸着性能の良い陰イオン
交換樹脂はヨウ素を早く吸着し、真比重を増すの
で他の吸着性能の低い粒子よりも早く沈降してし
まう。このため吸着塔上層部には比較的性能の低
い陰イオン交換樹脂の粒子が取り残されてしまう
こととなり、一般に流動層は次第に吸着効率が低
下することになる。
However, as mentioned above, anion exchange resins with good adsorption performance adsorb iodine quickly and increase true specific gravity, so that they settle faster than other particles with low adsorption performance. For this reason, particles of anion exchange resin with relatively low performance are left behind in the upper layer of the adsorption tower, and generally the adsorption efficiency of the fluidized bed gradually decreases.

このように流動層全体の吸着効率を良好に維持
してゆくには、吸着塔上部に吸着性能の良いイオ
ン交換樹脂粒子の層を形成させることが最も肝要
である。
In order to maintain good adsorption efficiency of the entire fluidized bed, it is most important to form a layer of ion exchange resin particles with good adsorption performance in the upper part of the adsorption tower.

前記のような流動層吸着塔の問題を改善する提
案としては、特公昭53−28038号が従来より知ら
れている。
Japanese Patent Publication No. 53-28038 has been known as a proposal to improve the problems of fluidized bed adsorption towers as described above.

これは流動層内を多数の多孔仕切板で上下方向
に関して多数の空間に区画することで、塔内の陰
イオン交換樹脂がヨウ素を吸着し真比重を増しな
がら沈降する自然分級の作用を維持しつつ、下方
の樹脂が上方のものと混合する所謂逆混合の現象
を上記仕切板の存在でできるだけ抑制させるよう
にしたものである。
This is done by dividing the fluidized bed into many spaces in the vertical direction using a large number of porous partition plates, thereby maintaining the effect of natural classification in which the anion exchange resin in the column adsorbs iodine and sediments while increasing its true specific gravity. At the same time, the presence of the partition plate suppresses as much as possible the phenomenon of so-called back mixing, in which the lower resin mixes with the upper resin.

しかしこの方法を効率よく実施するためには、
前陰イオン交換樹脂の吸着性能が概ね均一に維持
されていることを必要とする。このことは上記従
来例の公報中で、「樹脂の均一な流れと吸着量に
応じた分級を得るためには、樹脂の粒度分布が一
定の範囲内に限定される」旨説明されていること
からも分る。また本出願人が前記で指摘している
ように、吸着性能の悪い樹脂と吸着性能の良い樹
脂の流れが異なることからも分る。
However, in order to implement this method efficiently,
It is necessary that the adsorption performance of the anion exchange resin be maintained generally uniformly. This is explained in the above-mentioned conventional publication as ``In order to obtain a uniform flow of the resin and classification according to the amount of adsorption, the particle size distribution of the resin must be limited within a certain range.'' It can also be seen from Furthermore, as pointed out above by the present applicant, it can be seen from the fact that the flow of resin with poor adsorption performance and resin with good adsorption performance is different.

ところでこの樹脂の分級に影響する因子は、単
に樹脂の粒径のみならず、使用の繰返しによる吸
着性能の劣化等々種々の要因が考えられ、工業的
にヨウ素吸着を行なう場合に、これらの問題を避
けて均一化した性能の樹脂を使用することは実際
上不可能であるから、結局従来方法でも上記流動
層式のヨウ素吸着法における問題例えば吸着性能
が劣化した結果ヨウ素吸着量が少ない樹脂が上層
にいつまでも取り残されてしまうという問題が解
決されない。
By the way, there are various factors that affect the classification of resin, including not only the particle size of the resin but also the deterioration of adsorption performance due to repeated use. Since it is practically impossible to avoid using resins with uniform performance, even with conventional methods, problems with the above-mentioned fluidized bed iodine adsorption method, such as deterioration of adsorption performance, result in a resin with a small amount of iodine being adsorbed in the upper layer. The problem of being left behind forever remains unsolved.

(発明が解決しようとする課題) そこで本発明者は、従来の流動層式における陰
イオン交換樹脂の自然分級作用の利用という考え
方から発想を転換し、吸着塔内における相互間の
分級が全くできない上下の領域を定め、この区画
された上下の各層の樹脂は吸着性能が平均的に把
握できる群として考え、そして上層の群の樹脂と
しては、ここを通過する比較的稀薄濃度のヨウ素
が効率よく吸着できるように、平均的なヨウ素吸
着余裕が十分ある(つまり量的な吸着能力が高
い)再生又は新品の陰イオン交換樹脂を常時存在
させ、他方、下層の群の樹脂は、ここを比較的ヨ
ウ素濃度の高い液が通過するため、量的な吸着能
力が低くなつている陰イオン交換樹脂でもヨウ素
の吸着ができることから、上層で使用した後のヨ
ウ素吸着の余裕が少なくなつている樹脂群を、次
の吸着操作のサイクルで使用するようにした本発
明方法を開発したのである。
(Problem to be Solved by the Invention) Therefore, the present inventor changed the idea from the conventional fluidized bed method of utilizing the natural classification effect of the anion exchange resin, and realized that mutual classification within the adsorption column cannot be performed at all. The upper and lower regions are defined, and the resins in each of the divided upper and lower layers are considered as a group whose adsorption performance can be understood on average, and the resin in the upper layer is used to efficiently absorb the relatively dilute concentration of iodine that passes through this region. A regenerated or new anion exchange resin with sufficient average iodine adsorption margin (i.e. high quantitative adsorption capacity) is always present to allow adsorption, while the lower group of resins Because a liquid with a high iodine concentration passes through, even anion exchange resins with low quantitative adsorption capacity can adsorb iodine. , developed the method of the present invention for use in the next cycle of adsorption operation.

(課題を解決する手段) 具体的には本発明の方法の特徴は、遊離ヨウ素
を含む液を下部から上昇流で供給しヨウ素を吸着
する陰イオン交換樹脂を上部から供給し、両者を
流動状態で向流接触させてヨウ素を吸着させる流
動層式ヨウ素吸着方法において、該吸着塔内の中
間の位置に狭隘な個所を設けて前記上昇流を高速
化し、その個所より上方にある陰イオン交換樹脂
がその個所より下方に沈降することを阻止するこ
とで陰イオン交換樹脂を上下二層に実質的に分離
した状態に維持しながらヨウ素吸着操作を行なう
工程と、下層の陰イオン交換樹脂を外部に抜き出
し、上層の全陰イオン交換樹脂を下層に移行さ
せ、上層に再生又は新らしい陰イオン交換樹脂を
供給する各操作を行なう工程とを交互に繰返すよ
うにしたところにある。
(Means for Solving the Problems) Specifically, the method of the present invention is characterized by supplying a liquid containing free iodine in an upward flow from the bottom, and supplying an anion exchange resin that adsorbs iodine from the top, so that both are in a fluidized state. In a fluidized bed iodine adsorption method in which iodine is adsorbed through countercurrent contact with the adsorption tower, a narrow space is provided in the middle of the adsorption tower to speed up the upward flow, and the anion exchange resin above that location is The process involves performing an iodine adsorption operation while keeping the anion exchange resin substantially separated into two layers, the upper and lower layers, by preventing the anion exchange resin from settling below that point, and removing the lower layer of the anion exchange resin from the outside. The steps of extracting the anion exchange resin from the upper layer, transferring all the anion exchange resin from the upper layer to the lower layer, and supplying regenerated or new anion exchange resin to the upper layer are alternately repeated.

この方法によれば、一サイクルの吸着操作が終
了する毎に、上層の全樹脂は上層から下層に移行
し、下層の樹脂群からは一部又は全部が塔から抜
き出され、更に再生又は新品の樹脂群が上層に供
給されるので、上層も下層も夫々吸着性能の良い
樹脂も性能が劣化した樹脂も混在しているが、特
に上層には常に新しく供給されてるため下層に比
べて吸着性能及びヨウ素吸着量の余裕が平均的に
高い樹脂が存在することになり、しかもこの上層
の樹脂は一サイクルの吸着操作の終了毎に、全て
下層に移行されて性能劣化した樹脂のみが上層に
取り残されてしまうことがなく、従来の流動層式
の吸着塔で現れていた樹脂の吸着性能の相違によ
り滞留時間が異なる等々の問題が生じないことに
なる。
According to this method, every time one cycle of adsorption operation is completed, all the resins in the upper layer are transferred from the upper layer to the lower layer, and some or all of the resins in the lower layer are extracted from the tower, and are then recycled or new. Since a group of resins is supplied to the upper layer, both the upper and lower layers contain a mixture of resins with good adsorption performance and resins with degraded performance, but in particular, the upper layer is constantly supplied with new resin, so the adsorption performance is lower than that of the lower layer. There will be a resin with a high margin of iodine adsorption on average, and at the end of each cycle of adsorption operation, all of the resin in this upper layer will be transferred to the lower layer, leaving only the resin with degraded performance left behind in the upper layer. This eliminates problems that occur in conventional fluidized bed adsorption towers, such as differences in residence time due to differences in adsorption performance of resins.

そしてこのような方法を採用することによつ
て、下記するように排水中のヨウ素濃度が、従来
の流動層式(あるいは前記特公昭53−28038号記
載の方法)のヨウ素吸着方法に比べて著しく低下
するという極めて優れた効果の得られることが確
認された。
By adopting such a method, the iodine concentration in wastewater is significantly lower than that of the conventional fluidized bed method (or the method described in Japanese Patent Publication No. 53-28038), as described below. It was confirmed that an extremely excellent effect of reducing the amount of water was obtained.

本発明の吸着塔内の液の上昇流の流速は、前記
の狭隘な個所(以下、狭隘部という)において例
えば毎時225m以上の流速を与えるものである。
これは従来の流動層の流速が通常毎時10〜50mで
あることに比べて大きく相違する。これにより陰
イオン交換樹脂の下降は阻止され、陰イオン交換
樹脂は上下二層に分離される。
The flow rate of the upward flow of the liquid in the adsorption tower of the present invention is such as to give a flow rate of 225 m/hour or more in the narrow area (hereinafter referred to as the narrow area).
This is significantly different from the flow velocity of conventional fluidized beds, which is usually 10 to 50 m/hour. This prevents the anion exchange resin from descending and separates the anion exchange resin into two layers, upper and lower.

本発明による狭隘部は第1図に示す通りで、そ
れらは吸着塔の中間に次の通り設けられる(第1
図参照)。
The narrow sections according to the present invention are as shown in FIG. 1, and they are provided in the middle of the adsorption tower as follows (first
(see figure).

(A) 多孔板を吸着塔の中間に固定する。この場合
の孔の位置及び孔の大きさは流体力学上適当な
配置及び大きさが選らばれる。通常は孔の径は
20〜50mmが適当である(多孔板型)。
(A) Fix the perforated plate in the middle of the adsorption tower. In this case, the position and size of the holes are selected to be appropriate in terms of fluid dynamics. Usually the hole diameter is
20 to 50 mm is appropriate (perforated plate type).

(B) 吸着塔の中間部に山型の突出部及び上部にバ
ツフアを設けて流路を狭ばめる(ベンチユリー
型)。
(B) Narrow the flow path by providing a mountain-shaped protrusion in the middle of the adsorption tower and a buffer at the top (ventilary type).

(C) 吸着塔の中間部の両側から開口部を狭ばめそ
の開口部の上部にバツフアーを設ける(オリフ
イス型)。
(C) Narrow the opening from both sides of the middle part of the adsorption tower and provide a buffer above the opening (orifice type).

さらに本発明方法の実施の一態様を実施例の図
面で説明すると、第2図は吸着塔で、これは円筒
型又は角型で、その内部にはくの字状の傾斜板
4,7が多数配列されている。その吸着塔の中間
に多孔板5が配置され、塔は上層部6と下層部3
に分れ、再生された又は新しい陰イオン交換樹脂
は上層部供給口9から供給され塔内を上昇するヨ
ウ素を含む液と流動的に向流接触する。
Further, to explain one embodiment of the method of the present invention with reference to drawings of an embodiment, FIG. 2 shows an adsorption tower, which is cylindrical or square in shape, and has doglegged inclined plates 4 and 7 inside. Many are arranged. A perforated plate 5 is arranged in the middle of the adsorption tower, and the tower has an upper part 6 and a lower part 3.
The regenerated or new anion exchange resin is supplied from the upper supply port 9 and comes into fluid countercurrent contact with the iodine-containing liquid rising in the column.

しかしこの場合陰イオン交換樹脂は多孔板5に
より下層部には下降しない。又下層部においても
陰イオン交換樹脂は上昇流と流動的に向流接触し
ヨウ素を吸着する。このような吸着操作を一定時
間行なつた後下層部からヨウ素を吸着した一定量
の陰イオン交換樹脂を取出口10から抜き出し、
この時塔内の上昇流速を減少させ多孔板5におけ
る上昇流を毎時200m以下とし、多孔板5より上
部にあつた全陰イオン交換樹脂を下層部に沈降さ
せる。次にヨウ素を含む液を通常の上昇流にもど
して通液してからふたたび上層部に再生又は新し
い陰イオン交換樹脂を供給し吸着操作を開始す
る。
However, in this case, the anion exchange resin does not descend to the lower layer due to the perforated plate 5. Also in the lower layer, the anion exchange resin comes into fluid countercurrent contact with the ascending flow and adsorbs iodine. After performing such an adsorption operation for a certain period of time, a certain amount of anion exchange resin that has adsorbed iodine is extracted from the lower layer through the outlet 10.
At this time, the upward flow rate in the column is reduced to make the upward flow at the perforated plate 5 200 m/hour or less, and all the anion exchange resin present above the perforated plate 5 is allowed to settle to the lower layer. Next, the iodine-containing liquid is returned to its normal upward flow and passed through, and the regenerated or new anion exchange resin is supplied to the upper layer again to start the adsorption operation.

以上の操作を繰返すことによりヨウ素を含む液
よりヨウ素を吸着採取するものである。
By repeating the above operations, iodine is adsorbed and collected from a liquid containing iodine.

以上の操作により、吸着塔の上層部は常に量的
な吸着性能が平均的に高い樹脂で吸着が行なわれ
るので、吸着塔から排出されるヨウ素は従来法に
比してはるかに少なく、通常排出液のヨウ素含有
量が15〜20ppmであるのに対し、本発明方法によ
るときは7〜10ppmとなり吸着収率において約8
%程度向上するという極めて優れた効果を生ず
る。
Through the above operations, adsorption is always carried out in the upper layer of the adsorption tower using a resin that has an averagely high quantitative adsorption performance, so the amount of iodine discharged from the adsorption tower is much lower than in conventional methods, and is normally discharged. While the iodine content of the liquid is 15 to 20 ppm, when the method of the present invention is used, the iodine content is 7 to 10 ppm, and the adsorption yield is about 8.
%, which is an extremely excellent effect.

尚本発明方法によるときは吸着、再生のサイク
ルが早まり、ヨウ素生産の能率に良好な影響を及
ぼすものである。
In addition, when the method of the present invention is used, the cycle of adsorption and regeneration is accelerated, which has a favorable effect on the efficiency of iodine production.

(実施例) 以下本発明を一実施例によつて説明する。(Example) The present invention will be explained below by way of an example.

実施例 本発明の実験装置に使用した吸着塔は第2図に
示す通りで、塔は塩化ビニール製角型であり、下
層部の水平断面積は17.5cm×17.5cm=306.25cm2
あり、塔の高さは570cmである。
Example The adsorption tower used in the experimental apparatus of the present invention is as shown in Fig. 2. The tower is a square shape made of vinyl chloride, and the horizontal cross-sectional area of the lower layer is 17.5 cm x 17.5 cm = 306.25 cm 2 . The height of the tower is 570cm.

この内部には傾斜板が多数配列されている。傾
斜板は傾斜角度60度、夾角120度のくの字状で、
その傾斜面の長さは11.2cm、幅17.5cmで、傾斜板
間の水平平行間隔は3cmで角平行に配置され、傾
斜板は下端より40cmの位置より220cmの間に設置
されている、尚上部40cmは空隙である。この塔に
おいて、本発明による多孔板は下端から260cmの
位置に設けられ径25cmの孔を8ヶ有している。従
つてその開孔面積は39.25cm2である。
A large number of inclined plates are arranged inside this. The inclined plate has a dogleg shape with an inclination angle of 60 degrees and an included angle of 120 degrees.
The length of the sloped surface is 11.2cm, the width is 17.5cm, and the horizontal and parallel intervals between the sloped plates are 3cm, and they are arranged squarely in parallel.The sloped plates are installed between 40cm and 220cm from the bottom edge. The upper 40cm is a void. In this tower, the perforated plate according to the invention was provided at a position 260 cm from the lower end and had eight holes with a diameter of 25 cm. Therefore, its aperture area is 39.25 cm 2 .

本吸着塔の上層部は水平断面積23.5cm×23.5cm
=552.25cm2で、高さは70cmである。尚テーパ部は
高さ66cmで、テーパ部の下部30cmは空隙である。
それ以外は前記傾斜板が挿入されている。
The upper part of this adsorption tower has a horizontal cross-sectional area of 23.5cm x 23.5cm.
= 552.25cm 2 and the height is 70cm. The height of the tapered part is 66cm, and the bottom 30cm of the tapered part is a void.
In other cases, the inclined plate is inserted.

実験に使用した陰イオン交換樹脂はアンバーラ
イトIRA−400(商品名)138で、その内訳は中
性塩分解容量0.5meq/ml−Rのもの48、
0.75meq/ml−Rのもの60、0.85meq/ml−R
のもの30から成つている。
The anion exchange resin used in the experiment was Amberlite IRA-400 (trade name) 138, which had a neutral salt decomposition capacity of 0.5meq/ml-R48,
0.75meq/ml-R 60, 0.85meq/ml-R
Consists of 30 pieces.

この三種の中古イオン交換樹脂を混合し、塔に
供給して使用した。比較する従来法の場合は吸着
塔の中間に有孔板を有しない以外は全く同一の吸
着塔を使用した。
These three types of used ion exchange resins were mixed and supplied to the column for use. In the conventional method for comparison, the same adsorption tower was used except that it did not have a perforated plate in the middle of the adsorption tower.

各吸着塔への充填イオン交換樹脂量は60で、
本発明の場合はその中の9を多孔板の上部の供
給口より供給し51は多孔板の下部に供給した。
尚補給する9のイオン交換樹脂は塔外に貯え、
サイクルに使用した。
The amount of ion exchange resin packed into each adsorption tower was 60,
In the case of the present invention, 9 of them were supplied from the supply port at the upper part of the perforated plate, and 51 was supplied to the lower part of the perforated plate.
The ion exchange resin in step 9 to be replenished is stored outside the tower.
Used for cycling.

以上の吸着塔に使用した天然ガスかん水は、ヨ
ウ素含有量90ppmであり、これを遊離ヨウ素が平
均67ppm含有されるよう調整し、これを各吸着塔
へ上昇流で通液した。通液量は1260/時で、下
層部での上昇流速は40米/時であり、多孔板での
上昇流速は500米/時であつた。
The natural gas brine used in the above adsorption towers had an iodine content of 90 ppm, which was adjusted to contain free iodine at an average of 67 ppm, and was passed through each adsorption tower in an upward flow. The flow rate of liquid was 1260/hour, the upward flow rate in the lower layer was 40 meters/hour, and the upward flow rate in the perforated plate was 500 meters/hour.

上記通液の24時間毎に下部から陰イオン交換樹
脂を9抜き出し、上層部には再生した陰イオン
交換樹脂を9供給した。
Every 24 hours of the above-mentioned liquid passage, nine portions of anion exchange resin were extracted from the lower portion, and nine portions of the regenerated anion exchange resin were supplied to the upper portion.

尚上記再生には亜硫酸液と10%の硫酸を使用し
た。塔内の陰イオン交換樹脂は1サイクル約8日
間で、通常の吸着塔内に類似した樹脂の分布状態
を示し、24時間後の廃水中の平均ヨウ素含有量を
比較すると、従来型の場合の平均は16ppmであ
り、その吸着収率は82.2%であるのに対して本発
明の場合は9ppmで吸着収率は90.0%であつた。
Note that a sulfite solution and 10% sulfuric acid were used for the above regeneration. The anion exchange resin in the tower shows a resin distribution similar to that in a normal adsorption tower after one cycle of about 8 days, and when comparing the average iodine content in the wastewater after 24 hours, it is found that the average iodine content in the wastewater after 24 hours is similar to that in the conventional adsorption tower. The average was 16 ppm, and the adsorption yield was 82.2%, whereas in the case of the present invention, it was 9 ppm, and the adsorption yield was 90.0%.

又アンバーライトIRA−400の新樹脂で中性塩
分解容量1.2meq/ml−Rの樹脂を用いた場合従
来型の場合で廃水平均含量6〜8ppmであるので
陰イオン交換樹脂の性能がかなり劣化した状態で
も性能の良い吸着収率が維持できることが実証さ
れ、本発明の効果が明瞭にされた。
In addition, when using the new Amberlite IRA-400 resin with a neutral salt decomposition capacity of 1.2 meq/ml-R, the average content of wastewater is 6 to 8 ppm in the conventional case, so the performance of the anion exchange resin deteriorates considerably. It was demonstrated that a good adsorption yield could be maintained even under such conditions, and the effects of the present invention were made clear.

比較例 前記特公昭53−28038号の記載に従つて多孔板
で5段に上下多段に仕切つた他は本発明と同様の
構成の装置で、上記実施例で使用した三種の中古
イオン交換樹脂を用いて、特公昭53−28038号の
記載に従つてヨウ素吸着の操作を3サイクルに渡
つて行なつた。
Comparative Example The three types of used ion exchange resins used in the above examples were used in an apparatus having the same structure as the present invention except that it was partitioned into five upper and lower stages using perforated plates according to the description in the above-mentioned Japanese Patent Publication No. 53-28038. Using this method, iodine adsorption was carried out over three cycles in accordance with the description in Japanese Patent Publication No. 53-28038.

その結果、廃水中のヨウ素含量は平均15ppm、
吸着回収率は83%であり、本発明の優れた効果が
確認された。
As a result, the average iodine content in wastewater was 15 ppm,
The adsorption recovery rate was 83%, confirming the excellent effects of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の狭隘部の構成を示すもので(A)
は多孔板型、(B)はベンチユリー型、(C)はオリフイ
ス型を示す。第2図は本発明による吸着塔の説明
図である。 1……上昇液流入口、2……整流板、3……下
層部、4……傾斜板、5……多孔板、6……上層
部、7……傾斜板、8……流出口、9……イオン
交換樹脂供給口、10……イオン交換樹脂取出
口。
Figure 1 shows the configuration of the narrow part of the present invention (A)
indicates a perforated plate type, (B) a ventilate type, and (C) an orifice type. FIG. 2 is an explanatory diagram of an adsorption tower according to the present invention. DESCRIPTION OF SYMBOLS 1... Rising liquid inlet, 2... Straightening plate, 3... Lower layer part, 4... Inclined plate, 5... Perforated plate, 6... Upper layer part, 7... Inclined plate, 8... Outlet, 9...Ion exchange resin supply port, 10...Ion exchange resin outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 遊離ヨウ素を含む液を下部から上昇流で供給
しヨウ素を吸着する陰イオン交換樹脂を上部から
供給し、両者を流動状態で向流接触させてヨウ素
を吸着させる流動層式ヨウ素吸着方法において、
該吸着塔内の中間の位置に狭隘な個所を設けて前
記上昇流を高速化し、その個所より上方にある陰
イオン交換樹脂がその個所より下方に沈降するこ
とを阻止することで陰イオン交換樹脂を上下二層
に実質的に分離した状態に維持しながらヨウ素吸
着操作を行なう工程と、下層の陰イオン交換樹脂
の少なくとも一部を外部に抜き出し、上層の全陰
イオン交換樹脂を下層に移行させ、上層に再生又
は新らしい陰イオン交換樹脂を供給する各操作を
行なう工程と、を交互に繰返すことを特徴とする
二層分離式ヨウ素吸着方法。
1. In a fluidized bed iodine adsorption method in which a liquid containing free iodine is supplied in an upward flow from the bottom, an anion exchange resin that adsorbs iodine is supplied from the top, and the two are brought into countercurrent contact in a fluidized state to adsorb iodine.
A narrow space is provided in the middle of the adsorption tower to speed up the upward flow and prevent the anion exchange resin located above that location from settling below that location. A process of performing an iodine adsorption operation while maintaining the anion exchange resin substantially separated into upper and lower layers, extracting at least a part of the anion exchange resin in the lower layer to the outside, and transferring all the anion exchange resin in the upper layer to the lower layer. A two-layer separation type iodine adsorption method characterized by alternately repeating the steps of , , and the steps of supplying regenerated or new anion exchange resin to the upper layer.
JP56072983A 1981-05-15 1981-05-15 Separated two-bed type adsorbing apparatus for iodine Granted JPS57188403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56072983A JPS57188403A (en) 1981-05-15 1981-05-15 Separated two-bed type adsorbing apparatus for iodine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56072983A JPS57188403A (en) 1981-05-15 1981-05-15 Separated two-bed type adsorbing apparatus for iodine

Publications (2)

Publication Number Publication Date
JPS57188403A JPS57188403A (en) 1982-11-19
JPH0158121B2 true JPH0158121B2 (en) 1989-12-08

Family

ID=13505127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56072983A Granted JPS57188403A (en) 1981-05-15 1981-05-15 Separated two-bed type adsorbing apparatus for iodine

Country Status (1)

Country Link
JP (1) JPS57188403A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804649B2 (en) * 2012-10-04 2015-11-04 株式会社 東邦アーステック Adsorption tower and iodine adsorption method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328038A (en) * 1976-08-27 1978-03-15 Nippon Kokan Kk Production method of one side zinccplated steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328038A (en) * 1976-08-27 1978-03-15 Nippon Kokan Kk Production method of one side zinccplated steel sheet

Also Published As

Publication number Publication date
JPS57188403A (en) 1982-11-19

Similar Documents

Publication Publication Date Title
US4687582A (en) Method and apparatus for operating and regenerating ion exchangers
US2671714A (en) Continuous method for concentrating ions in solutions
JP2865389B2 (en) Electric deionized water production equipment and frame used for it
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
JP5015990B2 (en) Electric deionized water production equipment
FI68975C (en) REFERENCE FORM OF CHARACTERISTICS OF CHROME CONDITIONS AND BLANKING EQUIPMENT OF ANCHORS AND CHARACTERISTICS
JPH0158121B2 (en)
JP2018513019A (en) Regeneration of mixed bed resin
US2897051A (en) Treatment of solutions comprising similarly charged monovalent and polyvalent ions to concentrate the polyvalent ions
US4336140A (en) Water purification process
JPH10137751A (en) Ion exchange method and ion exchange column used for ion exchange method
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
US2773830A (en) Subsurface washing of bed
CN104661753B (en) Method for operating a counter-flow ion exchange system
US3627705A (en) Countercurrent ion exchange regeneration with sulfuric acid
CA1156925A (en) Apparatus for isotope exchange reaction
JP3907012B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JPH10180252A (en) Production of pure water and ion-exchange tower
JP4315385B2 (en) Ion exchange tower
EP0002342B1 (en) Water purification process
JP3941890B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP3880231B2 (en) Condensate desalination apparatus and method
US4108766A (en) Ion exchange process with counter-current fractional regeneration
JPS6133624B2 (en)