JPH0157674B2 - - Google Patents

Info

Publication number
JPH0157674B2
JPH0157674B2 JP58071999A JP7199983A JPH0157674B2 JP H0157674 B2 JPH0157674 B2 JP H0157674B2 JP 58071999 A JP58071999 A JP 58071999A JP 7199983 A JP7199983 A JP 7199983A JP H0157674 B2 JPH0157674 B2 JP H0157674B2
Authority
JP
Japan
Prior art keywords
evoh
layer
laminated
film
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58071999A
Other languages
Japanese (ja)
Other versions
JPS59196246A (en
Inventor
Kazuo Kondo
Shinya Ishiguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Industrial Co Ltd
Original Assignee
Okura Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Industrial Co Ltd filed Critical Okura Industrial Co Ltd
Priority to JP7199983A priority Critical patent/JPS59196246A/en
Publication of JPS59196246A publication Critical patent/JPS59196246A/en
Publication of JPH0157674B2 publication Critical patent/JPH0157674B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本願発明は、エチレン−酢酸ビニール共重合体
ケン化物(以下エチレン−酢酸ビニール共重合体
ケン化物を本明細書においてはEVOHと称す。)
とポリアミド樹脂とからなる積層物を延伸してな
る積層延伸フイルムに関するものであり、さらに
詳しくは物理的強度に優れている事は勿論、実用
上の障害となるようなカール現象が無く、しかも
ラミネート用基材フイルムとして使用した際、外
気が多湿状態であつても気体遮断性が低下せず、
常に高い気体遮断を維持することのできる、ラミ
ネート用基材フイルムとして最適な積層延伸フイ
ルム及び、該積層延伸フイルムを用いたラミネー
トフイルムに関するものである。 一般に、二軸延伸ポリアミドフイルムは物理的
強度に優れている為包装資材として、特にラミネ
ート用基材フイルムとして広く利用されている。
しかし、該フイルムはポリエチレン、ポリプロピ
レン、或は、エチレン−酢酸ビニール共重合体等
のフイルムと比較すると気体遮断性は優れている
が、それでも食品包装用等に於ては十分な気体遮
断性を有しているものとは云えない。 又、EVOHフイルムは非常に優れた気体遮断
性を有し、しかも、延伸処理を施す事によりその
特徴はさらに向上し、又透明、光沢にも優れてい
る事から有用なる包装資材となりうる事が一般に
知られている。この様な高度の気体遮断性を有す
るフイルム用としては、エチレン含有率が25モル
%から45モル%で、ケン化度が98%以上である
EVOHが一般に用いられている。しかし、該フ
イルムは親水性であるため、耐水性、耐煮沸性及
び耐透湿性に劣り、吸水性を有している。しか
も、吸水状態に於ては気体遮断性は大幅に低下し
てしまう。この様な性質は延伸工程を経る事によ
り改良する事は出来るが未だ十分ではない。又、
EVOHは高価である為に、出来るだけ薄膜化さ
せる必要がある。 そこで、二軸延伸ポリアミドフイルムの物理的
特性と二軸延伸EVOHフイルムの気体遮断性と
の特徴を合せ持たせる様、これらの二種類のフイ
ルムを積層させたフイルムは非常に優れた性能を
発揮するものと考えられる。この様な積層延伸フ
イルムの製造方法としては各フイルムを別々に延
伸製膜しその後にドライラミネートさせる方法が
ある。しかし、該方法では製造工程が煩雑で、し
かもEVOH層の薄膜化が困難である。そこで、
別の製造方法としては、ポリアミド樹脂と
EVOHとの接着性が非常に良好である事を利用
し、共押出し積層されたフイルムを同時に二軸延
伸させる方法が工程も簡単で、EVOH層を薄膜
化出来る等、好ましい方法であると考えられ、特
開昭52−115880等に該方法が記されている。 しかし、上記方法等によるポリアミド樹脂と
EVOHとの二層延伸フイルムは、ポリアミド樹
脂とEVOHの延伸後の応力緩和に伴う収縮量及
び熱収縮量又は吸湿に伴う自然伸縮量等の違いに
より、カール現象を生じてしまう。さらに、該二
層延伸フイルムはポリアミド樹脂層側にシーラン
ト材をラミネートして包装用袋等に使用した際、
最外層のEVOH層は外気の水分を吸収し、該層
の最大の特徴である気体遮断性を大幅に低下して
しまう。又、ポリアミド樹脂層を最外層として使
用した場合にも、ポリアミド樹脂層の透湿度が大
きい為に、中間層のEVOHは吸湿してしまい、
やはり気体遮断性を損ねてしまう。 本願発明者等は、ポリアミド樹脂とEVOHと
の積層延伸フイルムに於けるカール現象を無く
し、該積層延伸フイルムよりなるラミネートフイ
ルムでの湿度による気体遮断性の低下を防ぐべく
鋭意研究を行なつた。その結果、エチレン含有率
が25モル%から45モル%でケン化度が98%以上か
らなるエチレン−酢酸ビニール共重合体ケン化物
層Aとポリアミド樹脂層Bとエチレン含有率が35
モル%から70モル%でケン化度が50%以上のエチ
レン−酢酸ビニール共重合体ケン化物層Cとが上
記順序で、積層二軸延伸された積層延伸フイルム
(本願第1発明)を見い出した。又、この積層延
伸フイルムのエチレン−酢酸ビニール共重合体ケ
ン化物層A側にシーラント材をラミネートさせて
なるラミネートフイルム(本願第2発明)は外気
の湿度に関係なく乾燥状態から多湿状態まで高い
気体遮断性を発揮すると共に、煮沸殺菌に耐える
だけの耐煮沸性を見い出した。 以下本願各発明の積層延伸フイルム及び該積層
延伸フイルムよりなるラミネートフイルムについ
て説明する。 ポリアミド樹脂とEVOHとの二層延伸フイル
ムのカール現象は前記した如く、両層の延伸後の
応力緩和に伴う収縮率、及び熱収縮量又は、吸湿
に伴う自然伸縮量等の違いによるものと考えられ
る。それ故に、このカール現象を無くする為に
は、延伸後の熱処理方法を工夫する事により大幅
に改良する事は出来る。しかし、熱処理工程のみ
でカール現象を皆無にする事は至難の技であり、
しかも、熱処理条件をカール現象が無くなる事の
みに適合させているとポリアミド樹脂及び
EVOHの優れた特性を殺してしまう事になりか
ねない。又、該積層延伸フイルムを熱収縮性ラミ
ネートとして用いる場合には十分な熱処理を行な
う事が出来ず、カール現象を無くするには困難で
ある。 しかし、この様なカール現象を無くする為に、
積層延伸フイルムの構成を検討すると、左右対称
の構成、即ちポリアミド樹脂層、EVOH層、ポ
リアミド樹脂層の順、或はEVOH層、ポリアミ
ド樹脂層、EVOH層の順に構成する事が好まし
いと考えられる。そこで、これら構成の積層延伸
フイルムを種々試作した所、両構成共に両外層が
ほぼ同じ厚みの場合には、熱処理後は勿論の事、
延伸直後に於てもカール現象は全く認められなか
つた。又、両外側の一方の層厚みが他層の厚みの
3〜4倍以内である場合にも、カール現象はほと
んど見られず、実用上問題はなく、一般実用包装
フイルムに於て、ほとんどの厚み構成に於て常に
カール現象を生ずる事はないと思われる。 次にポリアミド樹脂とEVOHとの二層延伸フ
イルムは、前記した如く、ポリアミド樹脂層及び
EVOH層のどちらを最外層としたラミネートフ
イルムも包装用袋等に使用した場合、外気の湿度
の影響を受け、気体遮断性は大幅に低下してしま
つていた。これは、EVOH層が外気から吸湿し
或は外気の水分がポリアミド樹脂層を透過して
EVOH層に吸収されてしまい、その結果、
EVOHが本来持つていた気体遮断性を損なつた
為であろうと考えられる。従来よりこの点の改良
方法として、最外層に疎水性樹脂、例えばポリエ
チレン、ポリプロピレン、ポリエチレンテレフタ
レート等を積層させる方法が考えられている。そ
して、その製造方法としては、これらの樹脂をフ
イルム化し、最外層にドライラミネートする方法
がある。しかし、この様な方法ではこれらのフイ
ルムを製膜し、さらに、ドライラミネートを行な
う等工程が煩雑となり、出来上つた製品が大幅な
コストアツプとなつてしまう。又、これら疎水性
樹脂を該積層延伸フイルムに押出しラミネートす
る方法も有るが、層間接着力が不十分である。さ
らに、疎水性樹脂をポリアミド樹脂及びEVOH
と共押出し延伸する方法も考えられるが、これら
疎水性樹脂はポリアミド樹脂、或はEVOHとの
接着性が十分でなく、共押出し時に層間剥離を生
じてしまい仮に層間接着していても、延伸工程時
に層間剥離を生じてしまう。 以上の事から、ポリアミド樹脂層とEVOH層
のみからなる積層延伸フイルムで、しかも、外気
の湿度の影響を受けない様な構成の積層延伸フイ
ルムを見い出し、該積層延伸フイルムを用いたラ
ミネートフイルムを得る事が従来より強く望まれ
ていた。 しかし、この様な積層延伸フイルムの構成を検
討する際、前記した様にカール現象の面から両外
層はポリアミド樹脂か、又はEVOHのどちらか
同一樹脂である事が必要である。そこで、ポリア
ミド樹脂層、EVOH層、ポリアミド樹脂層の順、
及びEVOH層、ポリアミド樹脂層、EVOH層の
順の構成よりなる積層延伸フイルムを用い、ラミ
ネートフイルムを試作し、多湿状態での気体遮断
を調べた。その結果、両構成ラミネートフイルム
共に気体遮断は悪く、高度の気体遮断を要求され
る食品包装用には不適当であつた。その理由とし
ては、ポリアミド樹脂とEVOHの二層延伸フイ
ルムからなるラミネートフイルムに於ける理由と
同じであると考えられる。 本願発明者等は、ラミネートフイルムとして最
外層となるポリアミド樹脂及びEVOHフイルム
の透湿度について細かく調査を重ねた。その結
果、ポリアミド未延伸フイルム(30μ)の透湿度
は100g/m2・20hr以上であり、二軸延伸を施し
たフイルム(30μ)でも60〜80g/m2・24hr程度
であり、さらにEVOHについても未延伸ラミネ
ート(30μ)で40〜60g/m2・24hrと共に大きな
透湿度を示していた。しかし、高度の気体遮断性
フイルム用としては一般に使用されていた様な
EVOH、即ち、エチレン含有量が多くケン化度
の低いEVOHについては、その透湿性が疎水性
樹脂に近い値を示す事を見い出した。そこで、こ
の様なEVOHであるエチレン含有率が35モル%
から70モル%で、ケン化度が50%以上のもの(以
下この様なEVOHを部分EVOHと称す。)とポリ
アミド樹脂とを積層延伸させると、従来の高い気
体遮断性を有するEVOHであるエチレン含有率
が25モル%から45モル%でケン化度が98%以上の
もの(以下この様なEVOHを高EVOHと称す。)
と同様、ポリアミド樹脂との接着性は良好で、積
層延伸が可能であり、しかも、延伸後層間剥離を
生ずる様な事もなかつた。しかし、この様な部分
EVOHは一般に気体遮断性が低く、高度の気体
遮断性を有する積層延伸フイルム用として使用す
る際にはどうしても高EVOH層を併用させる事
が必要であつた。 以上の結果にもとづいてポリアミド樹脂層の両
外層に部分EVOHと高EVOHとを、積層させて
延伸してなる積層延伸フイルムを試作したとこ
ろ、ポリアミド樹脂層の両外層に高EVOHを積
層させ、延伸した積層延伸フイルムと同様カール
現象は生じなかつた。さらに該試作積層延伸フイ
ルムの高EVOH層側にシーラント材をラミネー
トしたラミネートフイルムについて、多湿状態で
の気体遮断性を調べると、最外層の部分EVOH
層の透過度が低く良好である為に、中間に位置す
る高EVOH層が外気からの水分を部分EVOHと
ポリアミド樹脂層とを透過して吸収する事はな
く、常に高い気体遮断性を維持する事を見い出し
本願各発明に到達したものである。 尚、シーラント材は一般に疎水性樹脂が用いら
れている為、透湿度は小さく、高EVOH層がシ
ーラント層を透過して水分を吸収し、気体遮断性
を損なう事はありえない。 本願各発明に使用し得るポリアミド樹脂とは、
ポリε−カプロラクタム、或はポリヘキサメチレ
ンアジパミド等が有り、包装用としてはこれらが
好ましい。しかし、本願各発明の要旨を変えない
範囲でこれらの樹脂と、又は他の樹脂との共重合
体或はブレンド物を使用する事も出来る。さら
に、熱安定剤、可塑剤、滑剤、紫外線吸収剤等の
添加剤を加える事はなんら制約されるものではな
い。 又、高EVOHとしては、高度の気体遮断性を
有する食品包装用フイルム等には、一般に酸素透
過率が乾燥状態では勿論、25℃、70%RHに於て
も2〜5c.c./m2・24hr以下である事が必要とされ
ている事から、次の様な条件を具備している事が
必要である。 即ち、エチレン含有率が25モル%から45モル%
までケン化度は98%以上のEVOHである。エチ
レン含有率が45モル%を越えると気体遮断性が低
下し、高い気体遮断性フイルムとしては使用出来
なくなり、25モル%未満ではエチレン含有量が少
なく、押出し及び延伸加工が困難である。又、エ
チレン含有率が25モル%から45モル%であつて
も、ケン化度が98%に達していないと気体遮断性
が悪くなつてしまう。 高EVOH層の気体遮断性を維持させる部分
EVOHとしては、気体遮断性よりも透湿度の低
い、耐水性、耐煮沸性の良好なEVOHを選ぶ必
要がある。この点から該EVOHとしてはエチレ
ン含有率の高いものほど、又ケン化度の低いもの
ほど好ましいと考えられる。しかし、余りエチレ
ン含有率が高くなりすぎたり、又は、ケン化度が
低くなりすぎると、ポリアミド樹脂との接着性が
低下し、しかも、ポリアミド樹脂及び高EVOH
との間に余りにも延伸条件、延伸応力等が相違
し、積層延伸が不可能であつたり、或は層間剥離
を生じてしまつたりする。さらにこの様な
EVOHを使用すると、積層延伸が可能な場合で
も延伸後の応力緩和に伴う収縮量、及び熱収縮量
又は吸湿に伴う自然伸縮量等が高EVOHと大幅
に相違し、カール現象を生じてしまいポリアミド
樹脂の両外層にEVOHを積層させてカール現象
を無くしようとする本願各発明の主旨に添わなく
なつてしまう。 以上の事から、本願各発明に使用する部分
EVOHとしては、エチレン含有率が35モル%か
ら70モル%までで、ケン化度は50%以上の条件を
具備している必要がある。エチレン含有率が35モ
ル%未満であると、透湿性、耐水性、耐煮沸性が
悪く、高EVOH層の高い気体遮断性を外気の湿
度から守る事が出来ない。又、エチレン含有率が
70モル%を越えるとポリアミド樹脂及び高
EVOHとの積層延伸が困難となる。仮に積層延
伸が可能であつたとしても、層間剥離又はカール
現象を生じてしまい使用出来ない。さらにエチレ
ン含有率が35モル%から70モル%までであつて
も、ケン化度が50%未満ではエチレン含有率の多
い場合と同様、積層延伸が困難であつたり、層間
剥離やカール現象を生じてしまい、やはり使用不
可能であつた。 尚、本願第2発明の主旨からいえば、積層延伸
フイルムにシーラント材をラミネートさせた際、
最外層として透湿防止用に使用される部分
EVOHは、気体遮断層としての高EVOHのエチ
レン含有率よりも高いエチレン含有率のEVOH
を選ぶ事は勿論である。しかも部分EVOHのケ
ン化度は、高EVOHのケン化度よりも低いもの
が好ましい事も、本願第2発明の主旨から当然で
ある。 又、両EVOH共に、本願各発明の要旨を変え
ない範囲で他の樹脂をブレンドしたり、熱安定
剤、可塑剤、滑剤、着色剤、紫外線吸収剤等の添
加剤を加える事はなんら制約されるものではな
い。 本願各発明の積層延伸フイルム及び該積層延伸
フイルムを用いたラミネートフイルムは特に各層
の厚みを限定するものではないが、ポリアミド樹
脂層は包装用フイルムとして使用した際の物理的
特性の面から5μ〜15μ程度が好ましい。又、高
EVOH層については気体遮断性の面から2μ以上
が好ましく、しかも製品コスト面からは10μ以下
にする事が好ましい。さらに、部分EVOH層は
耐透湿性の面から3μ〜15μ程度が好ましく、しか
も、該層厚みは高EVOH層と余り厚み差のない
方が、得られた積層延伸フイルムのカール現象の
面から好ましい。しかし、一方のEVOH層厚み
が他方のEVOH層厚みの3〜4倍程度までであ
れば、カール現象はほとんど問題とはならない。
又、シーラント材は、一般に20〜30μ程度の層厚
みにするのが普通である。 さらに、本願各発明での積層延伸フイルムの延
伸倍率としては、高倍率で延伸を行なう事が気体
遮断性及び、耐透湿性等多くの物性を向上させる
ので好ましい。一般に延伸倍率としては、縦方
向、横方向共に2.5倍以上、好ましくは3.0倍以上
である。しかし、ポリアミド樹脂とEVOHとの
積層延伸フイルムの延伸可能倍率としては、高々
4倍程度までである。 本願各発明の積層延伸フイルムは、実用上の障
害となるようなカール現象を生じない事は勿論、
延伸加工されているために、未延伸フイルムより
気体遮断性、耐透湿性が大幅に向上し、しかも、
初期弾性率が高く、腰の強い光学的性質に優れた
フイルムである。さらに、中間層にポリアミド樹
脂を用いている為に引張強度及び衝撃強度等物理
的強度に優れている事は勿論であるが、部分
EVOH層をも用いている為に、延伸物の一般的
欠点である引裂強度もさほど低下していない。又
高EVOH層へは印刷適性が非常に良好である事
等、ラミネート用基材フイルムとしての多くの特
性を備えている。 さらに、積層延伸フイルムの高EVOH層側に
シーラント材をラミネートさせた本願第2発明の
ラミネートフイルムは、乾燥状態に於て非常に高
い気体遮断性を示している事は勿論であるが、多
湿状態に於ても高い気体遮断性を維持していた。
又、耐煮沸性に関しても耐熱水性の劣る高
EVOHを中間層となり、耐熱水性の良好な部分
EVOHが表層となつている為に良好であつた。
しかも、該ラミネートフイルムは、高EVOH層
が外気から吸湿しないためフイルムの腰が低下し
ない等、ラミネートフイルムとして、特に食品包
装用ラミネートフイルムとして多くの有用なる特
長を有している。 本願各発明の積層延伸フイルムは高EVOH、
ポリアミド樹脂そして部分EVOHをこの順序に
積層して得られた未延伸積層フイルムを延伸する
工程を経て得られるものである。該積層方法とし
ては、共押し出し方法、押出ラミネート方法、そ
してドライラミネート方法等が有るが、共押出方
法が工程が簡単である事等から好ましい。そして
該共押出し方法としては特に限定されるものでは
ないが、一般にはダイ内接着が好ましい。又、延
伸方法としてはテンター方式とインフレーシヨン
方式とが有るが、EVOHの延伸には同時二軸延
伸が好ましく、しかもテンター方式の同時二軸延
伸装置は非常に高価である事等を考え合せると、
インフレーシヨン方式による同時二軸延伸が有効
であると思われる。 具体的な製造方法の例としては、これら三種類
の樹脂を定められた順序に積層させたチユーブ状
積層原反フイルムを共押出しし、周速度の異なる
二組のニツプロール間で外部加熱装置による加熱
と、内部気体圧によつて同時二軸延伸する方法が
有る。この際、原反の含有水分率は2.0wt%以下
に保持しその原反を50℃〜100℃に予熱する連続
加熱帯域を5秒以内で通過せしめ、その後直ちに
延伸を開始させる。しかも、延伸帯域に於ては、
前記チユーブ状フイルムを予熱温度以上に加熱さ
せ、さらに、延伸帯域のほぼ中央部で最高温度と
なる様な条件にて同時二軸延伸を行う。 得られた積層延伸フイルムは、熱収縮性フイル
ムとして使用する場合には熱固定を行なわず、或
は、多少の熱固定を行なつて使用する。又、一般
のラミネート用基材フイルムとして使用する場合
には、熱固定を行ない、熱収縮性を無くして使用
する。尚、熱固定方法としては、インフレーシヨ
ン方式、テンター方式、或は両者を併用して行な
う方法等がある。 又、本願第2発明のラミネートフイルムは、本
願第1発明の積層延伸フイルムにおける高
EVOH層側にシーラント材をラミネートさせる
事によつて得られる。そのラミネート方法として
は、従来より一般に行なわれている方法を用いる
事が出来る。しかし、押出ラミネート方法の場合
には、高EVOH層とシーラント材、例えば、ポ
リエチレンやエチレン−酢酸ビニール共重合体等
との層間接着力が十分ではないので、この層間に
接着性樹脂等を何等かの方法で挿入させる等の工
夫が必要となる。これに反し、ドライラミネート
方法の場合には、従来一般の接着剤を使用し、通
常の方法で行なえば高EVOH層とシーラント材
層との接着強度は強く、容易にラミネートする事
が出来るので、好ましい方法と思われる。 以上の如く、本願第1発明の積層延伸フイルム
は実用上の障害となるようなカール現象が無く、
引張強度、衝撃強度等の物理的特性や光学特性に
も優れ、熱収縮用、或は一般ラミネート用基材フ
イルムとして非常に有用である。さらに、本願第
1発明の積層延伸フイルムにシーラント材をラミ
ネート加工して得られる本願第2発明のラミネー
トフイルムは上記第1発明の諸効果を有するほ
か、外気の湿度に関係なく常に高い気体遮断性を
保持し続けると共に、耐煮沸性が良好であるの
で、高度の気体遮断性を必要とする熱収縮包装用
ラミネートフイルム又は一般包装用ラミネートフ
イルムとしてその特徴を発揮するものである。よ
つて本願各発明の積層延伸フイルム及び該積層延
伸フイルムよりなるラミネートフイルムは産業
界、特に食品包装分野等に大きく貢献するもので
ある。 以下、本願各発明の実施例及び比較例を示し、
本願各発明の有用性をさらに一層明らかにする。 実施例 1 エチレン含有率が29モル%、ケン化度が99%以
上の高EVOHとポリε−カプロラクタム及びエ
チレン含有率が45モル%、ケン化度が96%の部分
EVOHとをこの順序にチユーブ状に共押出し、
水冷方式により各種厚み構成の未延伸積層チユー
ブを得た。これら未延伸積層チユーブの含有水分
率を2.0wt%以下に保持し、70℃に予熱する連続
加熱帯域通過時間を2.6秒とし延伸帯域での該チ
ユーブを予熱温度以上に、しかも延伸帯域のほぼ
中央部が80℃で最高温度になる様に加熱しながら
インフレーシヨン方式によつて縦方向、横方向共
に3、4倍に同時二軸延伸を行ない、各種厚み構
成の積層延伸フイルムを得た。次に該積層延伸フ
イルムを170℃で縦方向、横方向共に5%収縮さ
せながらインフレーシヨン方式によつて熱固定を
行なつた。得られた積層延伸フイルムのカール現
象の有無及び各種物性を表1と表2に示す。
The present invention is a saponified ethylene-vinyl acetate copolymer (hereinafter, a saponified ethylene-vinyl acetate copolymer is referred to as EVOH in this specification).
The invention relates to a laminated stretched film made by stretching a laminate consisting of a polyamide resin and a polyamide resin. When used as a base material film, the gas barrier properties do not deteriorate even in humid outside air.
The present invention relates to a laminated stretched film that can always maintain a high gas barrier and is optimal as a base film for lamination, and a laminated film using the laminated stretched film. In general, biaxially stretched polyamide films have excellent physical strength and are therefore widely used as packaging materials, particularly as base films for laminates.
However, although this film has superior gas barrier properties compared to films made of polyethylene, polypropylene, or ethylene-vinyl acetate copolymer, it still does not have sufficient gas barrier properties for food packaging, etc. I can't say it's what I'm doing. In addition, EVOH film has excellent gas barrier properties, and its characteristics are further improved by stretching, and it also has excellent transparency and gloss, so it can be used as a useful packaging material. generally known. For films with such high gas barrier properties, the ethylene content should be between 25 mol% and 45 mol%, and the degree of saponification should be 98% or higher.
EVOH is commonly used. However, since the film is hydrophilic, it has poor water resistance, boiling resistance, and moisture permeability, and has water absorption. Moreover, in the state of water absorption, the gas barrier properties are significantly reduced. Although such properties can be improved through a stretching process, it is still not sufficient. or,
Since EVOH is expensive, it is necessary to make it as thin as possible. Therefore, in order to combine the physical properties of biaxially oriented polyamide film with the gas barrier properties of biaxially oriented EVOH film, a film made by laminating these two types of films exhibits extremely excellent performance. considered to be a thing. As a method for producing such a laminated stretched film, there is a method in which each film is separately stretched and then dry laminated. However, with this method, the manufacturing process is complicated, and furthermore, it is difficult to make the EVOH layer thin. Therefore,
Another manufacturing method is to use polyamide resin and
Taking advantage of the very good adhesion with EVOH, the method of simultaneously biaxially stretching the coextruded laminated film is considered to be a preferable method because the process is simple and the EVOH layer can be made thin. This method is described in JP-A-52-115880 and the like. However, polyamide resin produced by the above method etc.
A two-layer stretched film with EVOH will suffer from curling due to the difference in the amount of shrinkage and heat shrinkage due to stress relaxation after stretching between the polyamide resin and EVOH, or the amount of natural expansion and contraction due to moisture absorption. Furthermore, when the two-layer stretched film is used for packaging bags etc. by laminating a sealant material on the polyamide resin layer side,
The outermost EVOH layer absorbs moisture from the outside air, significantly reducing the gas barrier properties that are the most important feature of this layer. Also, even when a polyamide resin layer is used as the outermost layer, the EVOH in the middle layer absorbs moisture due to the high moisture permeability of the polyamide resin layer.
This also impairs gas barrier properties. The inventors of the present application have conducted intensive research in order to eliminate the curling phenomenon in a laminated stretched film of polyamide resin and EVOH, and to prevent the deterioration of gas barrier properties due to humidity in a laminate film made of the laminated stretched film. As a result, a saponified ethylene-vinyl acetate copolymer layer A with an ethylene content of 25 mol% to 45 mol% and a saponification degree of 98% or more, a polyamide resin layer B, and an ethylene content of 35%
A laminated and biaxially stretched film (first invention of the present application) has been found in which saponified ethylene-vinyl acetate copolymer layer C having a saponification degree of 50% or more is laminated and biaxially stretched in the above order with a saponification degree of from 70 mol% to 70 mol%. . In addition, the laminated film (second invention of the present application), which is formed by laminating a sealant material on the saponified ethylene-vinyl acetate copolymer layer A side of this laminated stretched film (second invention of the present application), is highly gas resistant from dry to humid conditions regardless of the humidity of the outside air. In addition to exhibiting barrier properties, they have also found boiling resistance sufficient to withstand boiling sterilization. The laminated stretched films of the various inventions of the present application and the laminated films made of the laminated stretched films will be explained below. As mentioned above, the curling phenomenon of a two-layer stretched film made of polyamide resin and EVOH is thought to be due to the difference in the shrinkage rate and amount of thermal shrinkage due to stress relaxation after stretching of both layers, or the amount of natural expansion and contraction due to moisture absorption. It will be done. Therefore, in order to eliminate this curl phenomenon, a significant improvement can be made by devising the heat treatment method after stretching. However, it is extremely difficult to completely eliminate the curling phenomenon through the heat treatment process alone.
Moreover, if the heat treatment conditions are adapted only to eliminate the curling phenomenon, polyamide resin and
This may destroy the excellent characteristics of EVOH. Further, when the laminated stretched film is used as a heat-shrinkable laminate, sufficient heat treatment cannot be performed, and it is difficult to eliminate the curling phenomenon. However, in order to eliminate this curl phenomenon,
When considering the structure of the laminated stretched film, it is considered preferable to have a laterally symmetrical structure, that is, a polyamide resin layer, an EVOH layer, and a polyamide resin layer in this order, or an EVOH layer, a polyamide resin layer, and an EVOH layer in this order. Therefore, we made various prototypes of laminated stretched films with these configurations, and found that in both configurations, when both outer layers had approximately the same thickness, after heat treatment,
No curling phenomenon was observed even immediately after stretching. In addition, even if the thickness of one of the outer layers is within 3 to 4 times the thickness of the other layer, curling phenomenon is hardly observed and there is no problem in practical use. It seems that the curling phenomenon does not always occur depending on the thickness structure. Next, as mentioned above, the two-layer stretched film of polyamide resin and EVOH is made of polyamide resin layer and EVOH.
When a laminate film with either of the EVOH layers as the outermost layer is used for packaging bags, etc., it is affected by the humidity of the outside air and its gas barrier properties are significantly reduced. This is because the EVOH layer absorbs moisture from the outside air or moisture from the outside air permeates through the polyamide resin layer.
It is absorbed into the EVOH layer, and as a result,
This is thought to be because EVOH lost its original gas barrier properties. Conventionally, as a method for improving this point, a method has been considered in which a hydrophobic resin such as polyethylene, polypropylene, polyethylene terephthalate, etc. is laminated on the outermost layer. As a manufacturing method, there is a method in which these resins are formed into a film and dry laminated as the outermost layer. However, this method requires complicated steps such as forming these films and dry laminating them, resulting in a significant increase in the cost of the finished product. There is also a method of extrusion laminating these hydrophobic resins onto the laminated stretched film, but the interlayer adhesive strength is insufficient. In addition, hydrophobic resins such as polyamide resin and EVOH
A method of coextrusion stretching with polyamide resin or EVOH is also considered, but these hydrophobic resins do not have sufficient adhesion with polyamide resin or EVOH, and delamination occurs during coextrusion, so even if there is interlayer adhesion, the stretching process Sometimes delamination occurs. Based on the above, we have found a laminated stretched film consisting only of a polyamide resin layer and an EVOH layer, which has a structure that is not affected by the humidity of the outside air, and obtained a laminated film using this laminated stretched film. This was more strongly desired than before. However, when considering the structure of such a laminated stretched film, it is necessary that both outer layers be made of the same resin, either polyamide resin or EVOH, from the viewpoint of curling, as described above. Therefore, the order of polyamide resin layer, EVOH layer, polyamide resin layer,
Using a laminated stretched film consisting of an EVOH layer, a polyamide resin layer, and an EVOH layer in this order, a laminate film was prototyped and its gas barrier properties under humid conditions were investigated. As a result, both of the laminated films had poor gas barrier properties and were unsuitable for food packaging, which requires a high degree of gas barrier. The reason for this is thought to be the same as the reason for the laminate film consisting of a two-layer stretched film of polyamide resin and EVOH. The inventors of the present application have repeatedly investigated in detail the moisture permeability of the polyamide resin and EVOH film that serve as the outermost layer of the laminate film. As a result, the moisture permeability of unstretched polyamide film (30μ) is more than 100g/ m2・20hr, and even the biaxially stretched film (30μ) is about 60-80g/ m2・24hr, and the EVOH The unstretched laminate (30μ) also showed a large moisture permeability of 40 to 60 g/m 2 ·24 hr. However, for highly gas barrier films, the
It has been found that EVOH, ie, EVOH with a high ethylene content and a low degree of saponification, exhibits a moisture permeability value close to that of hydrophobic resins. Therefore, the ethylene content of EVOH is 35 mol%.
When polyamide resin is laminated and stretched with 70 mol% of EVOH and a degree of saponification of 50% or more (hereinafter such EVOH is referred to as partial EVOH), ethylene, which is an EVOH with a conventional high gas barrier property, is produced. EVOH with a content of 25 mol% to 45 mol% and a degree of saponification of 98% or more (hereinafter such EVOH is referred to as high EVOH).
Similarly, the adhesiveness with the polyamide resin was good, and laminated stretching was possible, and no delamination occurred after stretching. However, parts like this
EVOH generally has low gas barrier properties, and when used for laminated stretched films with high gas barrier properties, it has been necessary to use a high EVOH layer in combination. Based on the above results, a laminated stretched film was produced by laminating partial EVOH and high EVOH on both outer layers of a polyamide resin layer and stretching. Similar to the laminated stretched film, no curling phenomenon occurred. Furthermore, when we investigated the gas barrier properties in humid conditions of the laminated film in which a sealant material was laminated on the high EVOH layer side of the prototype laminated stretched film, we found that the outermost layer had a high EVOH
Because the permeability of the layer is low and good, the high EVOH layer located in the middle does not absorb moisture from the outside air by passing through the partial EVOH and polyamide resin layer, always maintaining high gas barrier properties. The inventions of the present application have been achieved by discovering the following. Furthermore, since hydrophobic resin is generally used as the sealant material, the moisture permeability is low, and it is unlikely that the high EVOH layer will penetrate the sealant layer and absorb moisture, thereby impairing the gas barrier properties. Polyamide resins that can be used in each invention of the present application include:
Examples include polyε-caprolactam and polyhexamethylene adipamide, and these are preferred for packaging. However, copolymers or blends of these resins or other resins can also be used without departing from the gist of the present invention. Furthermore, there are no restrictions on adding additives such as heat stabilizers, plasticizers, lubricants, and ultraviolet absorbers. In addition, as for high EVOH, food packaging films with high gas barrier properties generally have an oxygen permeability of 2 to 5 c.c./m not only in a dry state but also at 25°C and 70% RH. Since it is required to be 2.24 hours or less, it is necessary to meet the following conditions. That is, the ethylene content ranges from 25 mol% to 45 mol%.
The saponification degree is more than 98% EVOH. If the ethylene content exceeds 45 mol %, the gas barrier properties will be reduced and the film cannot be used as a high gas barrier film. If the ethylene content is less than 25 mol %, the ethylene content will be so low that extrusion and stretching will be difficult. Further, even if the ethylene content is from 25 mol% to 45 mol%, if the degree of saponification does not reach 98%, the gas barrier properties will deteriorate. Part that maintains gas barrier properties of high EVOH layer
As EVOH, it is necessary to select an EVOH that has lower moisture permeability than gas barrier properties, and has good water resistance and boiling resistance. From this point of view, it is considered that the EVOH having a higher ethylene content and a lower degree of saponification are more preferable. However, if the ethylene content becomes too high or the degree of saponification becomes too low, the adhesiveness with polyamide resin will decrease, and moreover, if the ethylene content becomes too high or the degree of saponification becomes too low, the
The stretching conditions, stretching stress, etc. are too different between the two, making lamination stretching impossible or causing delamination. Even more like this
When EVOH is used, even if lamination stretching is possible, the amount of shrinkage due to stress relaxation after stretching, the amount of heat shrinkage, or the amount of natural expansion and contraction due to moisture absorption, etc., are significantly different from those of high EVOH, resulting in curling phenomenon. This does not meet the purpose of the inventions of the present application, which attempts to eliminate the curling phenomenon by laminating EVOH on both outer layers of the resin. Based on the above, the parts used in each invention of the present application
EVOH must have an ethylene content of 35 mol% to 70 mol% and a saponification degree of 50% or more. If the ethylene content is less than 35 mol%, the moisture permeability, water resistance, and boiling resistance will be poor, and the high gas barrier properties of the high EVOH layer will not be able to protect from the humidity of the outside air. In addition, the ethylene content
If it exceeds 70 mol%, polyamide resin and high
Lamination and stretching with EVOH becomes difficult. Even if lamination and stretching were possible, delamination or curling would occur, making it unusable. Furthermore, even if the ethylene content is between 35 mol% and 70 mol%, if the degree of saponification is less than 50%, lamination and stretching may be difficult, and delamination or curling may occur, just as in the case of high ethylene content. As a result, it was still unusable. In addition, in terms of the gist of the second invention of the present application, when a sealant material is laminated on a laminated stretched film,
The part used as the outermost layer to prevent moisture permeation.
EVOH with higher ethylene content than high EVOH ethylene content as gas barrier layer
Of course you can choose. Moreover, it is natural from the gist of the second invention of the present application that the degree of saponification of partial EVOH is preferably lower than the degree of saponification of high EVOH. In addition, there are no restrictions on blending other resins or adding additives such as heat stabilizers, plasticizers, lubricants, colorants, and ultraviolet absorbers to both EVOHs without changing the gist of the inventions. It's not something you can do. Although the thickness of each layer of the laminated stretched film of each invention of the present application and the laminated film using the laminated stretched film is not particularly limited, the thickness of the polyamide resin layer is 5 μm or more from the viewpoint of physical properties when used as a packaging film. Approximately 15μ is preferable. Also, high
The EVOH layer is preferably 2μ or more from the viewpoint of gas barrier properties, and preferably 10μ or less from the viewpoint of product cost. Further, the partial EVOH layer preferably has a thickness of about 3μ to 15μ from the viewpoint of moisture permeability, and it is preferable that the thickness of the layer is not much different from that of the high EVOH layer from the viewpoint of curling of the obtained laminated stretched film. . However, if the thickness of one EVOH layer is up to about 3 to 4 times the thickness of the other EVOH layer, the curl phenomenon hardly becomes a problem.
Further, the layer thickness of the sealant material is generally about 20 to 30 microns. Furthermore, as for the stretching ratio of the laminated stretched film in each invention of the present application, it is preferable to stretch at a high ratio because this improves many physical properties such as gas barrier properties and moisture permeability resistance. Generally, the stretching ratio is 2.5 times or more, preferably 3.0 times or more in both the longitudinal and transverse directions. However, the possible stretching ratio of a laminated stretched film of polyamide resin and EVOH is about 4 times at most. It goes without saying that the laminated stretched films of each invention of the present application do not cause any curling phenomenon that would pose a practical problem.
Because it is stretched, it has significantly improved gas barrier properties and moisture permeability compared to unstretched films, and
This film has a high initial elastic modulus, is strong and has excellent optical properties. Furthermore, since polyamide resin is used for the intermediate layer, it has excellent physical strength such as tensile strength and impact strength, but the
Since an EVOH layer is also used, the tear strength, which is a common drawback of stretched products, is not significantly reduced. It also has many properties suitable as a base film for lamination, such as very good printing suitability for high EVOH layers. Furthermore, the laminated film of the second invention of the present application, in which a sealant material is laminated on the high EVOH layer side of the laminated stretched film, exhibits extremely high gas barrier properties in a dry state, but it also exhibits extremely high gas barrier properties in a humid state. It also maintained high gas barrier properties.
In addition, in terms of boiling resistance, high
EVOH is used as the middle layer and has good hot water resistance.
It was good because EVOH was on the surface layer.
Moreover, the laminate film has many useful features as a laminate film, particularly as a laminate film for food packaging, such as the high EVOH layer does not absorb moisture from the outside air, so the stiffness of the film does not decrease. The laminated stretched films of each invention of the present application have high EVOH,
It is obtained through a step of stretching an unstretched laminated film obtained by laminating a polyamide resin and a partial EVOH in this order. The lamination method includes a coextrusion method, an extrusion lamination method, a dry lamination method, etc., and the coextrusion method is preferable because the process is simple. The coextrusion method is not particularly limited, but in-die adhesion is generally preferred. In addition, there are two stretching methods: tenter method and inflation method, but simultaneous biaxial stretching is preferable for EVOH stretching, and considering that tenter method simultaneous biaxial stretching equipment is very expensive. and,
Simultaneous biaxial stretching using an inflation method seems to be effective. A specific example of a manufacturing method is to coextrude a tube-shaped laminated raw film in which these three types of resin are laminated in a predetermined order, and then heat the film between two sets of Nippro rolls with different peripheral speeds using an external heating device. There is also a method of simultaneous biaxial stretching using internal gas pressure. At this time, the moisture content of the original fabric is maintained at 2.0 wt % or less, and the original fabric is passed through a continuous heating zone that is preheated to 50°C to 100°C within 5 seconds, and then stretching is immediately started. Moreover, in the stretching zone,
The tube-shaped film is heated to a temperature higher than the preheating temperature, and then simultaneous biaxial stretching is performed under conditions such that the maximum temperature is approximately at the center of the stretching zone. When the obtained laminated stretched film is used as a heat-shrinkable film, it is used without heat setting or after some heat setting. When used as a general laminate base film, it is heat-set to eliminate heat-shrinkability. Note that heat fixing methods include an inflation method, a tenter method, or a combination of both methods. Moreover, the laminated film of the second invention of the present application has a higher height than the laminated stretched film of the first invention of the present application.
Obtained by laminating a sealant material on the EVOH layer side. As the laminating method, a conventionally commonly used method can be used. However, in the case of extrusion lamination, the interlayer adhesion between the high EVOH layer and the sealant material, such as polyethylene or ethylene-vinyl acetate copolymer, is not sufficient, so it is necessary to use an adhesive resin or the like between the layers. It is necessary to devise measures such as inserting it using the following method. On the other hand, in the case of the dry lamination method, the adhesive strength between the high EVOH layer and the sealant material layer is strong and lamination can be easily performed if a conventional general adhesive is used and the sealant material layer is used in a conventional manner. Seems to be the preferred method. As described above, the laminated stretched film of the first invention of the present application does not have the curling phenomenon that poses a practical problem.
It has excellent physical properties such as tensile strength and impact strength, and optical properties, and is very useful as a base film for heat shrinkage or general lamination. Furthermore, the laminated film of the second invention of the present invention obtained by laminating the laminated stretched film of the first invention of the present application with a sealant material has not only the effects of the first invention described above, but also has always high gas barrier properties regardless of the humidity of the outside air. It continues to maintain the same properties and has good boiling resistance, so it exhibits its characteristics as a laminate film for heat-shrinkable packaging or a laminate film for general packaging that requires a high degree of gas barrier property. Therefore, the laminated stretched films of the present invention and the laminated films made of the laminated stretched films will greatly contribute to the industry, especially the food packaging field. Examples and comparative examples of each invention of the present application are shown below,
The usefulness of each invention of the present application will be further clarified. Example 1 High EVOH and polyε-caprolactam with an ethylene content of 29 mol% and a saponification degree of 99% or more and a part with an ethylene content of 45 mol% and a saponification degree of 96%
Co-extrude EVOH and EVOH in this order into a tube shape,
Unstretched laminated tubes with various thickness configurations were obtained by water cooling. The moisture content of these unstretched laminated tubes was maintained at 2.0wt% or less, and the continuous heating zone passage time for preheating to 70°C was 2.6 seconds, so that the tubes in the stretching zone were heated to a temperature higher than the preheating temperature, and moreover, at approximately the center of the stretching zone. While heating the film to a maximum temperature of 80° C., simultaneous biaxial stretching was carried out by 3 to 4 times in both the longitudinal and transverse directions using an inflation method to obtain laminated stretched films of various thickness configurations. Next, the laminated stretched film was heat-set by an inflation method at 170° C. while shrinking by 5% in both the longitudinal and transverse directions. Tables 1 and 2 show the presence or absence of curling phenomenon and various physical properties of the obtained laminated stretched film.

【表】【table】

【表】 実施例 2 実施例1試験No.2の積層延伸フイルムの高
EVOH層側にシーラント材として30μの低密度ポ
リエチレンフイルムをウレタン系接着剤を用いて
ドライラミネートを行なつた。得られたラミネー
トフイルムの物性値と該ラミネートフイルムより
製袋された袋の物性とその包装適性を表3に示
す。
[Table] Example 2 Height of the laminated stretched film of Example 1 Test No. 2
A 30μ low density polyethylene film was dry laminated as a sealant on the EVOH layer side using a urethane adhesive. Table 3 shows the physical properties of the obtained laminate film, the physical properties of the bag made from the laminate film, and its packaging suitability.

【表】 比較例 1 実施例1試験No.2の積層延伸フイルムの部分
EVOH層側に実施例2と同様に30μの低密度ポリ
エチレンフイルムをドライラミネートした。しか
し、得られたラミネートフイルムは酸素透過率が
23℃、75%RHに於て8.4c.c./m2・24hrと実施例2
とは大幅に劣る値を示し、高い気体遮断性を有す
るラミネートフイルムとしては到底使用する事は
出来なかつた。しかも煮沸試験に於ても表層の高
EVOH層が多少白化してしまい、食品包装用ラ
ミネートフイルム等として使用出来なかつた。 比較例 2 エチレン含有率及びケン化度の相違する各種の
EVOHをポリε−カプロラクタムの両外層に共
押出しし、各種の積層延伸フイルムを試作した。
その結果、表4に示す様な構成に於ては全て良好
なる積層延伸フイルムは得られなかつた。尚、各
層の厚み構成としては、ポリアミド樹脂層が10μ
で、ラミネートする際シーラント材層側の
EVOH層を5μ、ラミネートフイルムに於て、最
外層となるEVOH層側を10μとした。
[Table] Comparative Example 1 Part of the laminated stretched film of Example 1 Test No. 2
A 30μ low density polyethylene film was dry laminated on the EVOH layer side in the same manner as in Example 2. However, the obtained laminate film has a low oxygen permeability.
8.4cc/ m2・24hr at 23℃, 75%RH and Example 2
It showed a significantly inferior value, and could not be used as a laminate film with high gas barrier properties. Moreover, even in the boiling test, the height of the surface layer was
The EVOH layer was slightly whitened and could not be used as a laminated film for food packaging. Comparative Example 2 Various types with different ethylene content and saponification degree
EVOH was coextruded onto both outer layers of polyε-caprolactam, and various laminated stretched films were prototyped.
As a result, no good laminated stretched film was obtained in any of the configurations shown in Table 4. The thickness of each layer is 10μ for the polyamide resin layer.
When laminating, the sealant layer side
The EVOH layer was 5μ, and the outermost EVOH layer of the laminated film was 10μ.

【表】【table】

Claims (1)

【特許請求の範囲】 1 エチレン含有率が25モル%から45モル%でケ
ン化度が98%以上からなるエチレン−酢酸ビニー
ル共重合体ケン化物層Aとポリアミド樹脂層Bと
エチレン含有率が35モル%から70モル%でケン化
度が50%以上のエチレン−酢酸ビニール共重合体
ケン化物層Cとが上記順序で積層二軸延伸されて
いる事を特徴とする積層延伸フイルム。 2 エチレン含有率が25モル%から45モル%でケ
ン化度が98%以上からなるエチレン−酢酸ビニー
ル共重合体ケン化物層Aとポリアミド樹脂層Bと
エチレン含有率が35モル%から70モル%でケン化
度が50%以上のエチレン−酢酸ビニール共重合体
ケン化物層Cとが上記順序で積層二軸延伸された
積層延伸フイルムの前記エチレン−酢酸ビニール
共重合体ケン化物層A側にシーラント材がラミネ
ートされている事を特徴とするラミネートフイル
ム。
[Claims] 1. A saponified ethylene-vinyl acetate copolymer layer A having an ethylene content of 25 mol% to 45 mol% and a saponification degree of 98% or more, a polyamide resin layer B, and an ethylene content of 35 mol%. A laminated stretched film characterized in that a saponified ethylene-vinyl acetate copolymer layer C having a saponification degree of 50% or more and a saponification degree of 50% or more is laminated and biaxially stretched in the above order. 2 Ethylene-vinyl acetate copolymer saponified layer A having an ethylene content of 25 mol% to 45 mol% and a saponification degree of 98% or more, a polyamide resin layer B, and an ethylene content of 35 mol% to 70 mol% A saponified ethylene-vinyl acetate copolymer layer C having a degree of saponification of 50% or more is laminated in the above order and a sealant is applied to the saponified ethylene-vinyl acetate copolymer layer A side of the biaxially stretched laminated stretched film. A laminate film characterized by laminated materials.
JP7199983A 1983-04-22 1983-04-22 Laminated stretched film and laminated film consisting of said laminated stretched film Granted JPS59196246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7199983A JPS59196246A (en) 1983-04-22 1983-04-22 Laminated stretched film and laminated film consisting of said laminated stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7199983A JPS59196246A (en) 1983-04-22 1983-04-22 Laminated stretched film and laminated film consisting of said laminated stretched film

Publications (2)

Publication Number Publication Date
JPS59196246A JPS59196246A (en) 1984-11-07
JPH0157674B2 true JPH0157674B2 (en) 1989-12-06

Family

ID=13476678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7199983A Granted JPS59196246A (en) 1983-04-22 1983-04-22 Laminated stretched film and laminated film consisting of said laminated stretched film

Country Status (1)

Country Link
JP (1) JPS59196246A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585459A4 (en) * 1992-03-18 1994-08-24 Sumitomo Bakelite Co Multilayered stretched film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911970A (en) * 1972-05-11 1974-02-01
JPS52115880A (en) * 1976-03-24 1977-09-28 Mitsubishi Plastics Ind Method of manufacturing composite film with superior property of gas enterception
JPS55135659A (en) * 1979-04-10 1980-10-22 Toray Industries Multilayer laminated film
JPS5712612A (en) * 1980-06-26 1982-01-22 Nippon Synthetic Chem Ind Co Ltd:The Stretching method for film of saponified ethylene-vinyl acetate copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911970A (en) * 1972-05-11 1974-02-01
JPS52115880A (en) * 1976-03-24 1977-09-28 Mitsubishi Plastics Ind Method of manufacturing composite film with superior property of gas enterception
JPS55135659A (en) * 1979-04-10 1980-10-22 Toray Industries Multilayer laminated film
JPS5712612A (en) * 1980-06-26 1982-01-22 Nippon Synthetic Chem Ind Co Ltd:The Stretching method for film of saponified ethylene-vinyl acetate copolymer

Also Published As

Publication number Publication date
JPS59196246A (en) 1984-11-07

Similar Documents

Publication Publication Date Title
US4532189A (en) Linear polyethylene shrink films
US4911963A (en) Multilayer film containing amorphous nylon
US5128212A (en) Multilayer heat shrinkable polymeric film containing recycle polymer
EP0229715B1 (en) Multilayered polyolefin high shrinkage low-shrink force shrink film
US5077109A (en) Oriented multilayer film and process for making same
EP0454420B1 (en) Biaxially stretched multilayer film and process for manufacturing same
GB2115348A (en) Linear polyethylene shrink films
JPH021014B2 (en)
US6391411B1 (en) Machine direction oriented high molecular weight, high density polyethylene films with enhanced water vapor transmission properties
EP0457598A2 (en) Breathable abuse resistant film for packaging cheese
JP2001505145A (en) High biaxially oriented high density polyethylene film
JPS63262242A (en) Film having low shrinkage energy
JPS6412226B2 (en)
US6344250B1 (en) Multilayered polyolefin high shrinkage, low shrink force shrink film
EP0528980A4 (en) Multilayer heat shrinkable polymeric film containing recycle polymer
JPH0471701B2 (en)
JPH04232048A (en) Ethylene propyrene terpolymer film
GB2135239A (en) Improved linear laminated polyethylene shrink films
JPH0157674B2 (en)
US4731214A (en) Process for preparing a thermally shrinkable multilayer film
JPS625060B2 (en)
GB2135240A (en) Linear polyethylene shrink films
JP3914440B2 (en) Overwrap package
JP3766116B2 (en) Method for producing coextruded multilayer stretched film
JPS6122613B2 (en)