JPH0157208B2 - - Google Patents

Info

Publication number
JPH0157208B2
JPH0157208B2 JP13280981A JP13280981A JPH0157208B2 JP H0157208 B2 JPH0157208 B2 JP H0157208B2 JP 13280981 A JP13280981 A JP 13280981A JP 13280981 A JP13280981 A JP 13280981A JP H0157208 B2 JPH0157208 B2 JP H0157208B2
Authority
JP
Japan
Prior art keywords
fibers
fabric layer
needle
yarn
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13280981A
Other languages
Japanese (ja)
Other versions
JPS5836446A (en
Inventor
Korenori Kobayashi
Takanobu Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP13280981A priority Critical patent/JPS5836446A/en
Publication of JPS5836446A publication Critical patent/JPS5836446A/en
Publication of JPH0157208B2 publication Critical patent/JPH0157208B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、合成樹脂繊維を用いた地盤改良用土
木資材シートに関する。 治水工事、治山工事、道路建設あるいは埋め立
て地に構造物を建設する場合、地盤の変形や沈下
を生じないように前もつて地盤の改良を行うこと
が重要な課題であり、地盤の補強、載荷重の応力
分散、軟弱地盤の圧密促進による密実化、地下水
の排水、法面の保護、土砂のフイルター・セパレ
ーシヨン等地盤の改良工事を行うのが普通であ
る。 従来、これらの工事を行う時には、抗張力、弾
性、透水性及び耐久性の観点から色々な合成繊維
製の土木シートが用いられている。しかしこれら
種々の合成繊維製シートでも、地盤改良用土木シ
ートとしては充分ではない。例えば、合成繊維製
の織布シートは抗張力は大きいが、繰り返し荷重
に対する抵抗力が小さく、また透水性能(排水性
能)も充分ではない。一方、不織布シートは繰り
返し荷重に対する抵抗力及び排水効果とも大きい
が、伸び易いという問題がある。さらに不織布シ
ートと織布シートをニードルパンチで結合した積
層シートのものも知られているが、これも織布シ
ートがフラツトヤーン製の合成繊維を用いている
ため透水性能が悪く、またニードルパンチ結合に
よる初期強度の大巾な低下が見られる。 本発明者らは、このような現状に鑑み鋭意研究
を重ねた結果、排水性能や初期強度を改良した不
織布シートと織布シートからなる積層土木資材シ
ートを見い出し、本発明を完成するに至つた。 即ち本発明は、合成樹脂の長繊維もしくは短繊
維をランダムに配列して形成された不織布層と、
合成樹脂の織毛糸からなる編織布層とを、非イオ
ン系界面活性剤で表面処理してニードルパンチで
結合したことを特徴とする土木資材シートであ
る。 本発明における合成樹脂の長繊維もしくは短繊
維をランダムに配列して形成された不織布層は、
ポリアミド繊維、ポリエステル繊維、ポリアクリ
ロニトリル繊維、ポリビニルアルコール繊維、ポ
リ塩化ビニル繊維、ポリ塩化ビニリデン繊維、ポ
リエチレン繊維、ポリプロピレン繊維、ポリスチ
レン繊維等の長繊維(連続繊維を含む)もしくは
短繊維で造られた不織布であればいずれでもよ
い。このなかでは、特にポリアミド繊維、ポリエ
ステル繊維、ポリビニルアルコール繊維、ポリエ
チレン繊維、ポリプロピレン繊維で造られた不織
布が好ましい。また前記繊維は、種々のドラフト
率や延伸倍率で成形されたものがあるが、特に高
強度、低伸度のものが好ましい。また後述するニ
ードルパンチの関係から短繊維よりは長繊維が好
ましい。不織布層の長繊維もしくは短繊維は通常
溶融紡糸により成形され、ランダム化された繊維
群は、例えばスクリーン等で捕集してウエブが形
成される。さらに所望により、熱安定剤、酸化防
止剤、紫外線吸収剤、顔料、難燃剤、界面活性剤
等を溶融紡糸の際、ウエブ形成の際及びその前後
において添加したり表面処理したりしてもよい。
このようにして造られる不織布層の長繊維もしく
は短繊維は0.5ないし30デニール、特に3ないし
15デニールのものが好ましい。不織布層の目付
は、50ないし1000g/m2、特に100ないし500g/
m2が好ましい。 編織布層に用いられる合成樹脂の繊毛糸は、ポ
リアミド系、ポリエステル系、ポリアクリルニト
リル系、ポリビニルアルコール系、ポリオレフイ
ン系、ポリスチレン系等の解繊糸もしくは繊毛糸
のことであり、このなかではポリエチレンやポリ
プロピレン等のポリオレフイン系の繊毛糸が好ま
しい。繊毛糸は、300ないし2500デニール、特に
500ないし2000デニールが好ましい。また前記繊
毛糸からなる編織布層の目付は50ないし1000g/
m2、特に100ないし500g/m2が好ましい。これら
の合成樹脂繊毛糸には、所望により各種安定剤や
顔料が添加されてもよい。尚、ここでいう繊毛糸
とは網目構造を有することなく、また構成繊維各
部分の繊維分布をコントロールすることによつて
得られるスパン糸様の風合を有する崇高系であ
り、繊毛部分を有する糸のことである。 不織布層と織布層とを結合させるには、両層を
重ね合わせ、両層を貫通するニードルパンチを施
して得られる。積層体の構成は、不織布層/編織
布層の2層、或いは不織布層/編織布層/不織布
層並びに編織布層/不織布層/編織布層の3層構
造が好ましいが、4層以上も当然可能である。 両層を貫通するニードルパンチは、1cm2あたり
30ないし150回、特に50回以上のものは層間の結
合が良好であり、針深度としては8ないし15mm、
特に10ないし12mmが好ましい。この様にして得ら
れる積層体は、編織布層が繊毛糸からなるためニ
ードルパンチによる初期引張強度の低下がフラツ
ト糸に比べ小さく、また透水性能も優れている。
さらに、ニードルパンチ操作の事前に、もしくは
ニードルパンチを行いながら、両層をポリオキシ
エチレンアルキルエーテル、ポリオキシエチレン
アルキルフエニルエーテル等の非イオン系界面活
性剤を用いて表面処理することにより、ニードル
パンチによる両層の繊維切断を少なくし初期引張
強度の低下をさらに防ぐことができ、また両層が
親水性となつて透水性が改善される。 さらに詳しく性状について述べる。第1図は、
ポリプロピレンの長繊維をランダムに配列して形
成された不織布層と、ポリプロピレン製のフラツ
ト糸、解繊糸、繊毛糸でできた織布層を用いて、
1cm2あたり50回のニードルパンチを針深度を変化
させて行つたときの積層体の強度残率(ニードル
パンチを行つた積層体の編織布層の引張強度と編
織布原反の引張強度の割合。強度残率=(ニード
ルパンチを施した積層体の編織布層の引張強度/
編織布原反の引張強度)×100)と針深度の関係を
示した図である。繊毛糸及び解繊糸で造られたも
のは、フラツト糸のものに比べ、ニードルパンチ
を施した後でも初期引張強度の低下が小さく、特
に繊毛糸の場合はその効果が著しい。 第2図は、ポリプロピレン長繊維不繊布とポリ
プロピレン繊毛糸製織布を用いて、界面活性剤の
表面処理を行いながらニードルパンチを施したも
のと表面処理を行わずにニードルパンチを施した
ものとの引張強度残率と針深度の関係を示した図
である。界面活性剤による表面処理を行つたもの
は、繊維表面のぬれが大きくなつて表面摩擦低抗
が減少し、ニードルパンチ針とのからみに起因す
る繊維切断が減少して引張強度の低下が小さくな
ることが判る。 第2表は、ポリプロピレン繊毛糸の編布及び織
布を用いた本発明の土木資材シートと織布層にフ
ラツト糸の織布を用いた土木資材シートの物性を
示した表である。フラツト糸織布の土木資材シー
トに比べ、本発明の土木資材シートのほうが透水
性能、初期引張強度の高いことが判る。 第3図は、ポリプロピレン繊毛糸の織布を用い
た本発明の土木資材シートの引張強度と伸び率の
関係を示す図である。本発明の土木資材シート
は、引張試験に於て、引張開始後A点に至るまで
強さが急速に増大し、A点に於て織布の糸がほぐ
れ、或いは部分的に繊維が切れるなどして、やや
引張強さを減少してB点に至る。B点からは不織
布の相互に絡み合つた繊維により引張強さが増大
しつつ、C点に至る。C点では、不織布の絡み合
つた繊維が切断し、不織布層が破断するという経
過をたどる。 以上のように本発明の土木資材シートは、従来
の積層土木資材シートに比べ初期引張強度や透水
性能(排水性能)が良好で、また不織布層がクツ
シヨン材となり編織布層を保護するので、大きな
引張強度と伸び率及び繰り返し荷重に対する耐久
性を付与でき、長期間に亘り土木資材シートとし
ての性能を維持できるため、盛土の安定・軟弱地
盤処理等に用いる地盤補強材、道路等に用いる載
荷重の応力分散材、垂直ドレーン工法等に用いる
軟弱地盤の圧密促進材、湧水・地下水等の排水
材、河川・海等の護岸に用いる吸出防止材や洗掘
防止材、土砂のセパレーシヨンとともに繰り返し
荷重に対する耐久性を要求する鉄道路盤等の噴泥
防止材、モルタル又はコンクリート吹き付け材、
暗橲管等の目詰り防止材、トンネル等の排水材や
断熱材、パイプライン等からの油流出防止材、止
水シート・防水シート等として用いられるアスフ
アルト含浸基材等の土木資材として広い分野で用
いることができる。 次に実施例を示す。 実験例 1 ポリプロピレン長繊維(8デニール)からなる
不織布(目付200g/cm2、厚さ2mm)と、ポリプ
ロピレンの解繊糸(1500デニール)、繊毛糸
(1500デニール)を使用して、各々1inchあたり縦
8本、横8本の間隔で織つた織布とを重ね合わ
せ、両層を貫通するニードルパンチをパンチ密度
50回/cm2、針深度を10、12、14mmのそれぞれの条
件で行つた。この積層シートを5cm×20cmの短冊
型に切り取り、インストロン社製引張試験機によ
り10cmのチヤツク間にて、200mm/minの引張速
度で、引張強度及び伸びを測定した。結果は第1
表に示す。
The present invention relates to a civil engineering material sheet for ground improvement using synthetic resin fibers. When constructing structures on flood control work, mountain control work, road construction, or reclaimed land, it is important to improve the ground in advance to prevent ground deformation and subsidence. Ground improvement works such as dispersing heavy stress, promoting compaction of soft ground, draining groundwater, protecting slopes, and filtering and separating earth and sand are usually carried out. Conventionally, when performing these construction works, civil engineering sheets made of various synthetic fibers have been used from the viewpoints of tensile strength, elasticity, water permeability, and durability. However, even these various synthetic fiber sheets are not sufficient as civil engineering sheets for ground improvement. For example, woven fabric sheets made of synthetic fibers have high tensile strength, but have low resistance to repeated loads, and do not have sufficient water permeability (drainage performance). On the other hand, although nonwoven fabric sheets have a high resistance to repeated loads and a high drainage effect, they have the problem of being easily stretched. Furthermore, laminated sheets made by bonding non-woven fabric sheets and woven fabric sheets with needle punching are also known, but these also have poor water permeability because the woven fabric sheets use synthetic fibers made of flat yarn, and also have poor water permeability due to the needle punch bonding. A drastic decrease in initial strength is observed. As a result of extensive research in view of the current situation, the present inventors have discovered a laminated civil engineering material sheet consisting of a nonwoven fabric sheet and a woven fabric sheet that has improved drainage performance and initial strength, and have completed the present invention. . That is, the present invention provides a nonwoven fabric layer formed by randomly arranging long fibers or short fibers of synthetic resin;
This is a civil engineering material sheet characterized by a textile fabric layer made of synthetic resin woven wool yarn, surface treated with a nonionic surfactant and bonded by needle punching. The nonwoven fabric layer formed by randomly arranging long fibers or short fibers of synthetic resin in the present invention is
Nonwoven fabrics made from long fibers (including continuous fibers) or short fibers such as polyamide fibers, polyester fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, polyvinylidene chloride fibers, polyethylene fibers, polypropylene fibers, polystyrene fibers, etc. Either is fine as long as it is. Among these, nonwoven fabrics made of polyamide fibers, polyester fibers, polyvinyl alcohol fibers, polyethylene fibers, and polypropylene fibers are particularly preferred. The fibers may be molded with various draft ratios and draw ratios, but those with high strength and low elongation are particularly preferred. Furthermore, long fibers are preferable to short fibers due to the need for needle punching, which will be described later. The long fibers or short fibers of the nonwoven fabric layer are usually formed by melt spinning, and the randomized fiber groups are collected with a screen or the like to form a web. Furthermore, if desired, heat stabilizers, antioxidants, ultraviolet absorbers, pigments, flame retardants, surfactants, etc. may be added or surface treated during melt spinning, during web formation, before and after the web formation. .
The long fibers or short fibers of the nonwoven fabric layer produced in this way are 0.5 to 30 deniers, especially 3 to 30 deniers.
15 denier is preferred. The basis weight of the nonwoven fabric layer is 50 to 1000 g/ m2 , especially 100 to 500 g/m2.
m2 is preferred. The synthetic resin ciliated yarn used in the textile fabric layer is a fibrillated yarn or ciliated yarn made of polyamide, polyester, polyacrylonitrile, polyvinyl alcohol, polyolefin, polystyrene, etc. Among these, polyethylene Polyolefin-based ciliary yarns such as polypropylene and polypropylene are preferred. Ciliated yarn is 300 to 2500 denier, especially
500 to 2000 denier is preferred. Furthermore, the fabric weight of the knitted fabric layer made of the above-mentioned ciliated yarn is 50 to 1000 g/
m 2 , especially 100 to 500 g/m 2 is preferred. Various stabilizers and pigments may be added to these synthetic resin ciliary threads, if desired. The ciliated yarn referred to here is a sublime type that does not have a network structure and has a spun yarn-like texture obtained by controlling the fiber distribution of each component fiber, and has a ciliated portion. It's about thread. The nonwoven fabric layer and the woven fabric layer can be bonded by overlapping the two layers and punching a needle through both layers. The structure of the laminate is preferably a two-layer structure of non-woven fabric layer/knitted fabric layer, or a three-layer structure of non-woven fabric layer/knitted fabric layer/non-woven fabric layer and knitted fabric layer/non-woven fabric layer/knitted woven fabric layer, but of course four or more layers are also possible. It is possible. The needle punch that penetrates both layers is per 1cm2 .
30 to 150 times, especially 50 times or more, the bond between layers is good, the needle depth is 8 to 15 mm,
Particularly preferred is 10 to 12 mm. In the laminate thus obtained, since the textile fabric layer is made of ciliated yarn, the initial tensile strength decreases by needle punching is smaller than that of flat yarn, and the layer also has excellent water permeability.
Furthermore, by surface-treating both layers with a nonionic surfactant such as polyoxyethylene alkyl ether or polyoxyethylene alkyl phenyl ether before or during needle punching, the needle It is possible to further prevent a decrease in initial tensile strength by reducing fiber breakage in both layers due to punching, and both layers become hydrophilic, improving water permeability. The properties will be described in more detail. Figure 1 shows
Using a nonwoven fabric layer formed by randomly arranging long polypropylene fibers and a woven fabric layer made of polypropylene flat yarn, fibrillated yarn, and ciliated yarn,
The residual strength of the laminate when needle punching is performed 50 times per 1 cm2 while changing the needle depth (ratio of the tensile strength of the textile fabric layer of the laminate subjected to needle punching and the tensile strength of the original textile fabric) .Remaining strength = (Tensile strength of the textile fabric layer of the needle-punched laminate/
FIG. 2 is a diagram showing the relationship between the tensile strength of the raw textile fabric (x100) and the needle depth. Those made from ciliated yarns and fibrillated yarns have a smaller decrease in initial tensile strength even after needle punching than those made from flat yarns, and this effect is particularly remarkable in the case of ciliated yarns. Figure 2 shows two types of polypropylene long fiber nonwoven fabric and polypropylene ciliated yarn woven fabric, one that was needle-punched while surface-treated with a surfactant, and one that was needle-punched without surface treatment. It is a figure showing the relationship between tensile strength residual rate and needle depth. For those that have been surface-treated with a surfactant, the wetting of the fiber surface increases, the surface friction resistance decreases, and fiber breakage due to entanglement with the needle punch needle decreases, resulting in less decrease in tensile strength. I understand that. Table 2 shows the physical properties of the civil engineering material sheet of the present invention using knitted and woven fabrics made of polypropylene ciliated yarn, and the civil engineering material sheet using a woven fabric made of flat yarn in the woven fabric layer. It can be seen that the civil engineering material sheet of the present invention has higher water permeability and initial tensile strength than the civil engineering material sheet made of flat thread woven fabric. FIG. 3 is a diagram showing the relationship between tensile strength and elongation of the civil engineering material sheet of the present invention using a woven fabric of polypropylene ciliated yarn. In a tensile test, the civil engineering material sheet of the present invention shows that the strength rapidly increases after the start of tension until it reaches point A, and at point A, the threads of the woven fabric loosen or the fibers partially break. Then, the tensile strength decreases slightly and reaches point B. From point B, the tensile strength increases due to the intertwined fibers of the nonwoven fabric and reaches point C. At point C, the intertwined fibers of the nonwoven fabric are cut and the nonwoven fabric layer breaks. As described above, the civil engineering material sheet of the present invention has better initial tensile strength and water permeability (drainage performance) than conventional laminated civil engineering material sheets, and since the nonwoven fabric layer acts as a cushion material and protects the knitted fabric layer, Because it can provide tensile strength, elongation rate, and durability against repeated loads, and maintain its performance as a civil engineering material sheet over a long period of time, it can be used as a ground reinforcement material for stabilizing embankments and treating soft ground, and as a load-bearing material for roads, etc. Stress dispersion materials, consolidation accelerators for soft ground used in vertical drain construction methods, drainage materials for spring water, groundwater, etc., suction prevention materials and scour prevention materials used for river and sea revetments, and earth and sand separation materials. Mud prevention materials for railway road decks that require durability against loads, mortar or concrete spraying materials,
Used in a wide range of fields as civil engineering materials such as clogging prevention materials for underpass pipes, drainage materials and insulation materials for tunnels, oil spill prevention materials from pipelines, etc., asphalt-impregnated base materials used as water-stop sheets, waterproof sheets, etc. It can be used in Next, examples will be shown. Experimental example 1 Using a nonwoven fabric (fabric weight 200 g/cm 2 , thickness 2 mm) made of polypropylene long fibers (8 denier), fibrillated polypropylene yarn (1500 denier), and ciliated yarn (1500 denier), each 1 inch The woven fabric is woven at intervals of 8 vertically and 8 horizontally, and the needle punches that penetrate both layers are used to increase the punch density.
The experiment was performed at 50 times/cm 2 and at needle depths of 10, 12, and 14 mm. This laminated sheet was cut into strips of 5 cm x 20 cm, and the tensile strength and elongation were measured using an Instron tensile tester between 10 cm chucks at a tensile speed of 200 mm/min. The result is the first
Shown in the table.

【表】【table】

【表】 実験例 2 実験例1の積層シート製造時に、非イオン系界
面活性剤を4g/m2の割合でスプレーしながらニ
ードルパンチを行う方法を用いた。できた積層シ
ートの性能を第2表に示す。 実験例 3 ポリプロピレン長繊維(8デニール)からなる
不織布(目付200g/m2、厚さ2mm)とポリプロ
ピレンのフラツト糸(1500デニール)を使用し
て、1inchあたり縦8本横8本の間隔で織つた織
布を作り、実験例2と同様の操作で積層シートを
得た。積層シートの性能を第2表に示す。
[Table] Experimental Example 2 When manufacturing the laminated sheet of Experimental Example 1, a method was used in which needle punching was performed while spraying a nonionic surfactant at a rate of 4 g/m 2 . Table 2 shows the performance of the resulting laminated sheet. Experimental Example 3 Using a non-woven fabric (fabric weight 200 g/m 2 , thickness 2 mm) made of polypropylene long fibers (8 denier) and polypropylene flat yarn (1500 denier), weaving was carried out at an interval of 8 vertically and 8 horizontally per inch. A vine woven fabric was made and a laminated sheet was obtained in the same manner as in Experimental Example 2. The performance of the laminated sheet is shown in Table 2.

【表】【table】

【表】 実験例 4 ポリエチレンテレフタレート(5デニール、繊
維長35mm)よりなる不織布(目付200g/m2、厚
さ1.8mm)と、ポリプロピレンの繊毛糸(1500デ
ニール)を1inchあたり縦8本、横8本の間隔で
織つた織布とを重ね合わせ、非イオン系界面活性
剤を4g/m2の割合でスプレーしながら、両層を
貫通するニードルパンチを密度50回/cm2、針深度
を10、12、14mmのそれぞれの条件で行い、積層シ
ートを得た。積層シートの性能を第3表に示す。
[Table] Experimental example 4 A nonwoven fabric (fabric weight 200 g/m 2 , thickness 1.8 mm) made of polyethylene terephthalate (5 denier, fiber length 35 mm) and a polypropylene ciliary thread (1500 denier) were made of 8 vertically and 8 horizontally per inch. The woven fabrics woven at the book spacing were overlapped, and while spraying a nonionic surfactant at a rate of 4 g/m 2 , needle punches were applied to penetrate both layers at a density of 50 times/cm 2 and a needle depth of 10. , 12, and 14 mm, and laminated sheets were obtained. Table 3 shows the performance of the laminated sheet.

【表】【table】

【表】 実験例 5 編織布層がポリプロピレン繊毛糸(1500デニー
ル)の編布(目付120g/m2)を使用して実験例
2と同様にして積層シートを得た。積層シートの
性能を第4表に示す。 実験例 6 編織布層がポリプロピレンフラツト系(1500デ
ニール)の編布(目付120g/m2)を使用して実
験例5と同様にして積層シートを得た。積層シー
トの性能を第4表に示す。
[Table] Experimental Example 5 A laminated sheet was obtained in the same manner as in Experimental Example 2 using a knitted fabric (fabric weight 120 g/m 2 ) of polypropylene ciliated yarn (1500 denier) as the knitted fabric layer. Table 4 shows the performance of the laminated sheet. Experimental Example 6 A laminated sheet was obtained in the same manner as in Experimental Example 5 using a polypropylene flat (1500 denier) knitted fabric (basis weight 120 g/m 2 ) for the knitted fabric layer. Table 4 shows the performance of the laminated sheet.

【表】【table】

【表】 実験例 7 ポリプロピレン長繊維(8デニール)からなる
不織布(目付200g/m2、厚さ2mm)とポリプロ
ピレン繊毛糸(1500デニール)を1inchあたり縦
16本、横16本の間隔で織つた織布とを重ね合わ
せ、非イオン系界面活性剤を4g/m2の割合でス
プレーしながら、両層を貫通するニードルパンチ
をニードルパンチ密度50回/cm2及び90回/cm2、針
深度を12mmの条件下で行い両層を一体化した。こ
の積層シートの性能を第5表に示す。 実験例 8 ポリプロピレン長繊維(5デニール)からなる
不織布(目付100g/m2、厚さ1mm)を実験例7
と同じ織布の両面に重ね合わせ、実験例7と同一
条件下でニードルパンチを行い両層を一体化し
た。積層シートの性能を第5表に示す。 実験例 9 ポリプロピレンのフラツト系(1600デニール)
を1inchあたり縦15本、横15本の間隔で織つた織
布層を実験例7と同じ不織布に重ね合わせ、非イ
オン系界面活性剤を4g/m2の割合でスプレーし
ながら両層を貫通するニードルパンチを針深度12
mm、ニードルパンチ密度を50回/cm2の条件下で行
い両層を一体化した。この積層シートの性能を第
5表に示す。 実験例 10 比較例3と同じ織布層の両面に実験例8と同じ
不織布層を重ね合わせ、実験例9と同様のニード
ルパンチ条件で3層積層シートを得た。このシー
トの性能を第5表に示す。
[Table] Experimental Example 7 A nonwoven fabric made of polypropylene long fibers (8 denier) (basis weight 200 g/m 2 , thickness 2 mm) and polypropylene ciliated yarn (1500 denier) were woven vertically per inch.
A woven fabric woven at intervals of 16 strips and 16 strips horizontally was layered, and while spraying a nonionic surfactant at a rate of 4 g/m 2 , a needle punch was applied to penetrate both layers at a needle punch density of 50 times/ Both layers were integrated under the conditions of cm 2 and 90 times/cm 2 and a needle depth of 12 mm. Table 5 shows the performance of this laminated sheet. Experimental Example 8 Experimental Example 7 A nonwoven fabric (fabric weight 100 g/m 2 , thickness 1 mm) made of polypropylene long fibers (5 denier)
Both layers were stacked on both sides of the same woven fabric, and needle punched under the same conditions as in Experimental Example 7 to integrate both layers. Table 5 shows the performance of the laminated sheet. Experimental example 9 Polypropylene flat type (1600 denier)
A woven fabric layer woven at intervals of 15 vertically and 15 horizontally per inch was superimposed on the same nonwoven fabric as in Experimental Example 7, and a nonionic surfactant was sprayed at a rate of 4 g/m 2 to penetrate both layers. Needle punch to needle depth 12
mm, and needle punch density was performed under conditions of 50 times/cm 2 to integrate both layers. Table 5 shows the performance of this laminated sheet. Experimental Example 10 The same nonwoven fabric layer as in Experimental Example 8 was superimposed on both sides of the same woven fabric layer as in Comparative Example 3, and a three-layer laminate sheet was obtained under the same needle punching conditions as in Experimental Example 9. The performance of this sheet is shown in Table 5.

【表】【table】

【表】 * 比較例3及び4は、織布破断時に不織布層も同時
に破断
[Table] * In Comparative Examples 3 and 4, the nonwoven fabric layer also broke at the same time as the woven fabric broke.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ポリプロピレン不織布とポリプロピ
レンの繊毛糸、解繊糸、フラツト糸を用いて平織
された織布層とを重ね合わせ、ニードルパンチで
一体化した積層シートの織布層の強度残率とニー
ドルパンチの針深度との関係を示した図である。
第2図は、ポリプロピレン不織布とポリプロピレ
ン繊毛糸の織布をニードルパンチで一体化すると
き、界面活性剤を用いたものと用いないものの織
布層の強度残率とニードルパンチの針深度との関
係図である。第3図は、本発明の土木資材シート
の引張強度と伸び率との関係を示した図である。
第4図は本発明で使用する繊毛糸の構造の一態様
を拡大して示した図である。
Figure 1 shows the residual strength of the woven fabric layer of a laminated sheet in which a polypropylene nonwoven fabric and a woven fabric layer plain woven using polypropylene ciliated yarn, defibrated yarn, and flat yarn are laminated and integrated by needle punching. It is a figure showing the relationship with the needle depth of a needle punch.
Figure 2 shows the relationship between the residual strength of the woven fabric layer and the needle depth of the needle punch when a polypropylene nonwoven fabric and a woven fabric of polypropylene ciliary yarn are integrated by needle punching, with and without surfactant. It is a diagram. FIG. 3 is a diagram showing the relationship between tensile strength and elongation of the civil engineering material sheet of the present invention.
FIG. 4 is an enlarged view showing one aspect of the structure of the ciliary thread used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 合成樹脂の長繊維もしくは短繊維をランダム
に配列して形成される不織布層と、合成樹脂の繊
毛糸からなる編織布層とを、非イオン系界面活性
剤で表面処理してニードルパンチで結合したこと
を特徴とする土木資材シート。
1 A nonwoven fabric layer formed by randomly arranging long or short synthetic resin fibers and a knitted fabric layer made of synthetic resin ciliary threads are surface-treated with a nonionic surfactant and bonded with a needle punch. A civil engineering material sheet that is characterized by:
JP13280981A 1981-08-26 1981-08-26 Civil-engineering material sheet Granted JPS5836446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13280981A JPS5836446A (en) 1981-08-26 1981-08-26 Civil-engineering material sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13280981A JPS5836446A (en) 1981-08-26 1981-08-26 Civil-engineering material sheet

Publications (2)

Publication Number Publication Date
JPS5836446A JPS5836446A (en) 1983-03-03
JPH0157208B2 true JPH0157208B2 (en) 1989-12-05

Family

ID=15090081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13280981A Granted JPS5836446A (en) 1981-08-26 1981-08-26 Civil-engineering material sheet

Country Status (1)

Country Link
JP (1) JPS5836446A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585707B2 (en) * 1988-04-21 1997-02-26 三井石油化学工業株式会社 Laminated non-woven fabric
US5237945A (en) * 1990-12-17 1993-08-24 American Colloid Company Water barrier formed from a clay-fiber mat
JP2018179056A (en) * 2017-04-06 2018-11-15 日動電工株式会社 Protective sheet of underground pipe conduit

Also Published As

Publication number Publication date
JPS5836446A (en) 1983-03-03

Similar Documents

Publication Publication Date Title
JP2585707B2 (en) Laminated non-woven fabric
US4181450A (en) Erosion control matting
US11426972B2 (en) Cross-plane drainage fabric
WO2014137497A1 (en) Geosynthetic composite for filtration and drainage of fine-grained geomaterials
JPS58983B2 (en) Asphalt waterproof base material
JPH0157208B2 (en)
CN112078195B (en) Elastic reverse filtering geotextile and preparation method thereof
KR101275164B1 (en) Geocomposite containing multi arranged fiber and manufacturing method thereof
JP4916625B2 (en) Nonwoven fabric for civil engineering materials
KR101255551B1 (en) Manufacturing method of geocomposite having improved hydraulic characteristics and geocomposite manufactured thereby
JP3591063B2 (en) Permeable civil engineering sheet and method for producing the same
JP2007169836A (en) Sheet for block mat
JPS6322187Y2 (en)
KR101273949B1 (en) Method for protection waterroof hibrid compound mat and leachate drain regulation
JPH0647952Y2 (en) Civil engineering mat
CN210062283U (en) High-strength capital construction geotextile
JPS64478Y2 (en)
JPH0714419Y2 (en) Textile sheet for civil engineering construction
DE10138000B4 (en) Use of a foil nonwoven fabric as geotextile
JPH081120B2 (en) Drain material
JP2879466B2 (en) Fiber net type sheet with drainage
JP2002348751A (en) Sheet for civil engineering work excellent in tear resistance
JP2501457Y2 (en) Civil engineering seat
JPH01142197A (en) Cut off sheet
KR200270970Y1 (en) Single layer non-woven fabric geotextiles with high permeability under high load