JPH0156363B2 - - Google Patents

Info

Publication number
JPH0156363B2
JPH0156363B2 JP1331783A JP1331783A JPH0156363B2 JP H0156363 B2 JPH0156363 B2 JP H0156363B2 JP 1331783 A JP1331783 A JP 1331783A JP 1331783 A JP1331783 A JP 1331783A JP H0156363 B2 JPH0156363 B2 JP H0156363B2
Authority
JP
Japan
Prior art keywords
contact
tool
sensing means
threshold
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1331783A
Other languages
Japanese (ja)
Other versions
JPS59138913A (en
Inventor
Shizuka Kawabata
Tsutomu Hisazaki
Akira Isono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1331783A priority Critical patent/JPS59138913A/en
Publication of JPS59138913A publication Critical patent/JPS59138913A/en
Publication of JPH0156363B2 publication Critical patent/JPH0156363B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

【発明の詳細な説明】 本発明は、数値制御工作機械などにおいて、物
と物との接触を感知するのに用いる接触感知器
(タツチセンサー)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a touch sensor used to detect contact between objects in numerically controlled machine tools and the like.

工作機械、特に数値制御工作機械に於て、工具
の長さを知る為には、従来は試し削りを行なつた
り、各種のセンサにより工具長の測定を行なつた
りしていた。しかし、試し削りを行なうことは確
実ではあるが、その為に多大の時間を費やし、特
に数値制御工作機械の様な高能率な機械には好ま
しくない。又、従来のセンサは、その検出がある
値以上か又はそれ未満かだけの判別を行ういわゆ
る2値判別のものが多く、工具位置を正確に求め
る為には、工具あるいはセンサーを十分ゆつくり
動かしてセンサーの検知出力が変化する位置で正
確に停める必要があり、機械操作に熟練を要し、
時間もかかつた。又、3値判別(予め定めた第1
及び第2の閾値の中間、第1の閾値以下、第2の
閾値以上の3つの領域のうちのどれに入るかの判
別)センサー、又は位置がダイヤル、メーター等
で読めるタイプのセンサーとして磁気による近接
センサー、差動トランスによる位置センサー等が
あるが、これらは、精度が工具の先端形状に左右
され易くかつたり、感知長さが測定の繰り返しの
都度変わりいわゆる繰り返し精度が低かつたり、
センサーや工具が損傷を受けやすい等の欠点があ
つた。このように、従来の工作機械に用いられた
工具長さ(即ち、工具先端位置)の感知器は、測
定に長時間を要したり、熟練が必要であつたり、
測定精度が悪かつたり、高価であつたりした。こ
れらの欠点は、工具先端の接触が精度よく感知で
き、操作が容易で安価な接触感知器があれば解決
できる。
Conventionally, in machine tools, especially numerically controlled machine tools, in order to know the length of a tool, trial cutting has been performed or the tool length has been measured using various sensors. However, although it is certain to perform trial cutting, it requires a great deal of time, which is particularly undesirable for highly efficient machines such as numerically controlled machine tools. In addition, many conventional sensors use so-called binary discrimination, which only determines whether the detected value is above or below a certain value.In order to accurately determine the tool position, the tool or sensor must be moved slowly enough. It is necessary to stop the machine accurately at the position where the sensor's detection output changes, and it requires skill to operate the machine.
It took time. In addition, three-value discrimination (predetermined first
(and determining which of the three regions it falls into, intermediate between the second threshold, below the first threshold, and above the second threshold), or a type of sensor whose position can be read with a dial, meter, etc., based on magnetism. There are proximity sensors, position sensors using differential transformers, etc., but the accuracy of these sensors tends to depend on the shape of the tip of the tool, the sensing length changes each time the measurement is repeated, and the so-called repeatability is low.
There were drawbacks such as sensors and tools being easily damaged. As described above, the tool length (i.e., tool tip position) sensor used in conventional machine tools takes a long time to measure, requires skill,
Measurement accuracy was poor and the cost was high. These drawbacks can be solved if there is a contact sensor that can accurately sense the contact of the tool tip, is easy to operate, and is inexpensive.

本発明の目的は、感知精度がよく、取扱いが容
易で、安価な接触感知器の提供にある。
An object of the present invention is to provide a contact sensor that has good sensing accuracy, is easy to handle, and is inexpensive.

本発明による接触感知器の構成は、接触体の接
触による被接触部の変位に応じて断面の変形が起
る弾性管に流体を流しその流体の流量又は圧力の
変化から前記接触を感知する流体式接触感知手段
と、前記接触体と前記被接触部との間の絶縁抵抗
の変化から前記接触を感知する電気的接触感知手
段と、前記両接触感知手段の出力を受ける論理回
路とを備え、前記流体式接触感知手段が前記接触
を感知する前記変位を第1の閾値とした前記電気
式接触感知手段が前記接触を感知する前記変位を
第2の閾値としたとき前記第1の閾値は前記第2
の閾値より大きく、前記論理回路は前記変位と前
記第1及び第2の閾値との大きさの比較に応じた
論理信号を出力することを特徴とする。
The structure of the contact sensor according to the present invention is such that a fluid is passed through an elastic tube whose cross section is deformed in accordance with the displacement of a contacted part due to contact with a contact body, and the contact is sensed from a change in the flow rate or pressure of the fluid. a type contact sensing means, an electrical contact sensing means for sensing the contact from a change in insulation resistance between the contact body and the touched part, and a logic circuit receiving outputs of both the contact sensing means, When the fluid contact sensing means senses the contact, the displacement is a first threshold, and the electrical contact sensing means senses the contact, the displacement is a second threshold. Second
is larger than a threshold value, and the logic circuit outputs a logic signal according to a comparison between the displacement and the first and second threshold values.

以下に図面を参照して接触体を詳細に説明す
る。
The contact body will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の全体構成図であ
り、1は流体の供給装置で空気等の流体を供給し
ている。2は調整器で、供給装置1から送られて
くる流体の圧力又は流量を一定にして、配管3を
通し、全体に送つている。10は、第2図に横断
面図を示すセンサー部で、配管3と接続する変形
自在なゴム材等で形成されたパイプ11と、この
パイプ11を収納支持するケース12と、このケ
ース12の上部に上下動自在に嵌合されパイプ1
1を変形させる接触片113とからなつている。
4は流体式のセンサーで、工具7が接触片13を
押したときに生じる配管3内の流体の流量の減少
又は圧力損失の増加を検知する。又、工具7と接
触片13との接触を電気的に検知すべく、電気式
センサー5の検出端子を接触片13及び工具7に
接続しておく。そして、以上の電気式及び流体式
の2つのセンサー4,5各々の出力を論理回路を
内蔵して表示器6に接続する。
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, and 1 is a fluid supply device that supplies fluid such as air. Reference numeral 2 denotes a regulator that keeps the pressure or flow rate of the fluid sent from the supply device 1 constant and sends it throughout the system through piping 3. Reference numeral 10 denotes a sensor section whose cross-sectional view is shown in FIG. Pipe 1 is fitted to the top so that it can move up and down.
1 and a contact piece 113 that deforms the contact piece 113.
4 is a fluid type sensor that detects a decrease in the flow rate of fluid in the pipe 3 or an increase in pressure loss that occurs when the tool 7 presses the contact piece 13. Further, the detection terminal of the electric sensor 5 is connected to the contact piece 13 and the tool 7 in order to electrically detect the contact between the tool 7 and the contact piece 13. The outputs of the two electrical and fluid sensors 4 and 5 are connected to a display 6 with a built-in logic circuit.

ここで、工具7が、遠くからセンサー部10に
徐々に近ずく場合を考えると、まず、工具7と接
触片13の間の絶縁が破られて電気式センサー5
が作動し、次に接触片13が押されてパイプ11
が変形し、これにより流体式センサー4が作動す
る。流体式センサー4の設定感度を調整すること
により、第3図に示す順番で2つのセンサー4,
5を作動させることができる。そして、この2つ
のセンサー4,5の出力を表示器6内に備えてあ
る第4図の論理回路に加え、第3図のA,B,C
領域に応じてランプ61,62,63を点灯さ
せ、工具長の3つの状態“短かい”、“適当であ
る”、“長すぎる”の別(3値判別)をそれぞれ表
示する。第4図の論理回路は、反転入力論理積回
路64、排他的論理回路65、論理積回路66か
らなつている。一般の工作機械では工具と機械と
の電気的接続があるので、電気式センサー5の検
出端子は、片方を接触片13に、他方を機械の適
当な位置に接続する。また、通常時(工具7が接
触片13に接触してないとき)における接触片1
3と機械との電気的接触を避ける為に絶縁板14
がケース12の下面に貼付けてある。
Here, if we consider a case where the tool 7 gradually approaches the sensor section 10 from a distance, first, the insulation between the tool 7 and the contact piece 13 is broken and the electric sensor 10
is activated, and then the contact piece 13 is pushed and the pipe 11
is deformed, which causes the fluid sensor 4 to operate. By adjusting the setting sensitivity of the fluid type sensor 4, the two sensors 4,
5 can be activated. Then, the outputs of these two sensors 4 and 5 are added to the logic circuit shown in FIG.
Lamps 61, 62, and 63 are lit according to the area, and three states of the tool length are displayed: "short,""appropriate," and "too long" (three-value discrimination). The logic circuit shown in FIG. 4 consists of an inverting input AND circuit 64, an exclusive logic circuit 65, and an AND circuit 66. In general machine tools, there is an electrical connection between the tool and the machine, so one of the detection terminals of the electric sensor 5 is connected to the contact piece 13 and the other to an appropriate position on the machine. In addition, the contact piece 1 in the normal state (when the tool 7 is not in contact with the contact piece 13)
Insulating plate 14 to avoid electrical contact between 3 and the machine.
is attached to the bottom of the case 12.

センサー部10は、工作機械の基準面に下面を
固着してあり、この下面と接触片13の上面との
距離は予め測定してある。そこで、工具7の下端
が接触片13に接触して、第3図のB領域にその
下端があるとき(ランプ62が点灯するとき)に
おける工具7の下端と基準面との距離は予め分る
から、ランプ61〜63の点灯状態から工具7の
下端と基準面との距離、ひいては工具7の長さの
適否が判別できる。すなわち、ランプ61,62
及び63の点灯は、工具長が短い(又は、工具長
補正量不足)、工具長適切(又は、工具長補正量
適切)、及び工具長が長い(又は、工具長補正量
過多)をそれぞれ現わす。
The lower surface of the sensor section 10 is fixed to the reference surface of the machine tool, and the distance between this lower surface and the upper surface of the contact piece 13 is measured in advance. Therefore, the distance between the lower end of the tool 7 and the reference surface when the lower end of the tool 7 contacts the contact piece 13 and is located in area B in FIG. 3 (when the lamp 62 is lit) is known in advance. From this, it is possible to determine the distance between the lower end of the tool 7 and the reference surface, and the suitability of the length of the tool 7, from the lighting states of the lamps 61 to 63. That is, the lamps 61, 62
The lighting of and 63 indicates that the tool length is short (or the tool length compensation amount is insufficient), the tool length is appropriate (or the tool length compensation amount is appropriate), and the tool length is long (or the tool length compensation amount is excessive). Was.

以上説明したように、本発明による接触感知器
は、3値判別式であるから感知精度がよく、感知
が迅速で、取扱いが容易であり、更に高価な部品
を要せず構成が簡単であるから安価で、耐衝撃性
も高い。そこで、この接触感知器は、実施例に挙
げた工作機械だけでなく、各種の装置における接
触感知、位置感知して用いることができる。
As explained above, the contact sensor according to the present invention uses a three-value discriminant, so it has good sensing accuracy, quick sensing, and easy handling. Furthermore, it does not require expensive parts and has a simple configuration. It is inexpensive and has high impact resistance. Therefore, this contact sensor can be used not only for the machine tool mentioned in the embodiment but also for contact sensing and position sensing in various devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は
この実施例におけるセンサー部の横中央断面図、
第3図は第1図実施例における工具の位置とセン
サー動作との関係を示す図、第4図はやはりこの
実施例における3値判別の為の表示器の回路図で
ある。 1……流体供給装置、2……調節器、3……配
管、4……流体式センサー、5……電気式センサ
ー、6……工具位置表示器、7……工具、10…
…センサー部、11……肉薄パイプ、12……ケ
ース、13……接触部、14……絶縁板。
FIG. 1 is a configuration diagram of an embodiment of the present invention, and FIG. 2 is a horizontal cross-sectional view of the sensor section in this embodiment.
FIG. 3 is a diagram showing the relationship between the tool position and sensor operation in the embodiment shown in FIG. 1, and FIG. 4 is a circuit diagram of a display for three-value discrimination in this embodiment. DESCRIPTION OF SYMBOLS 1...Fluid supply device, 2...Adjuster, 3...Piping, 4...Fluid type sensor, 5...Electric sensor, 6...Tool position indicator, 7...Tool, 10...
...Sensor part, 11...Thin pipe, 12...Case, 13...Contact part, 14...Insulating plate.

Claims (1)

【特許請求の範囲】[Claims] 1 接触体の接触による被接触部の変位に応じて
断面の変形が起る弾性管に流体を流しその流体の
流量又は圧力の変化から前記接触を感知する流体
式接触感知手段と、前記接触体と前記被接触部と
の間の絶縁抵抗の変化から前記接触を感知する電
気的接触感知手段と、前記両接触感知手段の出力
を受ける論理回路とを備え、前記流体式接触感知
手段が前記接触を感知する前記変位を第1の閾値
とし前記電気式接触感知手段が前記接触を感知す
る前記変位を第2の閾値としたとき前記第1の閾
値は前記第2の閾値より大きく、前記論理回路は
前記変位と前記第1及び第2の閾値との大きさの
比較に応じた論理信号を出力することを特徴とす
る接触感知器。
1. Fluid type contact sensing means for detecting the contact from changes in the flow rate or pressure of the fluid by flowing a fluid through an elastic tube whose cross section is deformed in accordance with the displacement of the contacted part due to the contact of the contact body, and the contact body electrical contact sensing means for sensing the contact based on a change in insulation resistance between the contact portion and the contact portion; and a logic circuit receiving outputs from both of the contact sensing means, the fluidic contact sensing means detecting the contact. When the displacement at which the electrical contact sensing means senses the contact is set as a first threshold and the displacement at which the electrical contact sensing means senses the contact is set as a second threshold, the first threshold is larger than the second threshold, and the logic circuit The contact sensor is characterized in that it outputs a logic signal according to a comparison between the displacement and the first and second threshold values.
JP1331783A 1983-01-28 1983-01-28 Contact sensor Granted JPS59138913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1331783A JPS59138913A (en) 1983-01-28 1983-01-28 Contact sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1331783A JPS59138913A (en) 1983-01-28 1983-01-28 Contact sensor

Publications (2)

Publication Number Publication Date
JPS59138913A JPS59138913A (en) 1984-08-09
JPH0156363B2 true JPH0156363B2 (en) 1989-11-29

Family

ID=11829790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331783A Granted JPS59138913A (en) 1983-01-28 1983-01-28 Contact sensor

Country Status (1)

Country Link
JP (1) JPS59138913A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297550U (en) * 1989-01-19 1990-08-03

Also Published As

Publication number Publication date
JPS59138913A (en) 1984-08-09

Similar Documents

Publication Publication Date Title
US4498043A (en) Probes for measuring apparatus
US4898022A (en) Steam trap operation detector
US7091868B2 (en) Portable liquid level detector
CN101110009A (en) Touch detection method and system for a touch sensor
EP0483709A3 (en) Improved stylus sensing system
GB1531209A (en) Sensing probe
EP0429677A4 (en) Measuring robot system
WO1983003467A1 (en) Bi-directional touch sensor
CN204988059U (en) Digital display slide caliper
JPH0156363B2 (en)
CN207066265U (en) A kind of slide measure
JP2010091310A (en) Contact thermometer
JPS57175233A (en) Measuring method of residual stress
CN201464117U (en) Electronic oil pressure sensor
CN109540379A (en) A kind of pressure gauge with function of failure alarm
US4689890A (en) Digital display measuring apparatus
CN209197985U (en) A kind of pressure gauge with function of failure alarm
CN210322071U (en) Electronic thermometer
CN201191176Y (en) Planarity detection apparatus for memory disc separation tablet
CN2267759Y (en) Electronic water-level sensor for dish-washing machine
KR890004755Y1 (en) Glass water guage by strain guage
CN103674161A (en) Oil level detecting device
CN218270893U (en) Embedded sensor for precession vortex flowmeter
CN212674319U (en) Sensor for measuring fluid temperature by using thermal resistor rapid sealing device
CN219416298U (en) Plug-in electromagnetic flowmeter probe structure