JPH0156130B2 - - Google Patents

Info

Publication number
JPH0156130B2
JPH0156130B2 JP9518985A JP9518985A JPH0156130B2 JP H0156130 B2 JPH0156130 B2 JP H0156130B2 JP 9518985 A JP9518985 A JP 9518985A JP 9518985 A JP9518985 A JP 9518985A JP H0156130 B2 JPH0156130 B2 JP H0156130B2
Authority
JP
Japan
Prior art keywords
metals
alloys
alloying
metal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9518985A
Other languages
Japanese (ja)
Other versions
JPS61253333A (en
Inventor
Tooru Degawa
Takashi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP9518985A priority Critical patent/JPS61253333A/en
Publication of JPS61253333A publication Critical patent/JPS61253333A/en
Publication of JPH0156130B2 publication Critical patent/JPH0156130B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は合金化方法に係り、特にできるだけ低
い温度で合金化せせる場合に採用するに好適な合
金化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an alloying method, and particularly to an alloying method suitable for use when alloying is performed at as low a temperature as possible.

[従来の技術] 異なる2種以上の金属又は合金を合金化させる
場合に、できるだけ低い温度で合金化するのが好
ましい場合が多い。例えば、Fe−Si合金を製造
する場合に、カルシア(CaO)質耐火物で内張り
された溶解炉中でFeを融解しておき、この中に
Siを添加する場合がある。このCaO質耐火物は極
めて安定であり、金属の高温溶解が十分に行なえ
るものである。しかしながら、溶湯にSiを多量に
添加すると、このSiとCaOが反応し、金属カルシ
ウム(Ca)が生じ、このCaがFe−Si合金に混入
することが知られている。例えば、CaO質耐火物
で内張りされた坩堝を用いて1550℃でFeを溶解
し、これにSiを10%添加する場合、得られるFe
−Si合金にはCaが通常200〜300ppm含まれるよ
うになる。同様の、炉壁の還元により金属不純物
が混入する現象は、Si以外にも多量のアルミニウ
ム(Al)などを添加する場合にも生じ得る。
[Prior Art] When alloying two or more different metals or alloys, it is often preferable to alloy them at as low a temperature as possible. For example, when manufacturing Fe-Si alloy, Fe is melted in a melting furnace lined with calcia (CaO) refractory, and then
Si may be added. This CaO-based refractory is extremely stable and can sufficiently melt metals at high temperatures. However, it is known that when a large amount of Si is added to the molten metal, the Si and CaO react to produce metallic calcium (Ca), which is mixed into the Fe-Si alloy. For example, if Fe is melted at 1550℃ using a crucible lined with CaO refractory and 10% Si is added to it, the resulting Fe
-Si alloys typically contain 200 to 300 ppm of Ca. A similar phenomenon in which metal impurities are mixed in due to reduction of the furnace wall can also occur when a large amount of aluminum (Al) or the like is added in addition to Si.

また、合金化方法として、予め2種以上の金属
又は合金を坩堝内に混入した後、融点よりも高い
所定の温度に加熱して融合する方法もとられてい
るが、このように高い温度に加熱した場合には、
上記と同様の炉壁の還元による金属不純物の混入
が避けられなかつた。
In addition, as an alloying method, two or more metals or alloys are mixed in a crucible in advance and then heated to a predetermined temperature higher than the melting point to fuse them. When heated,
The contamination of metal impurities due to the reduction of the furnace wall as described above was unavoidable.

[発明が解決しようとする問題点] このように、従来の合金化方法においては、合
金化時の温度が高いので、炉壁の還元による金属
不純物が合金中に混入し易かつた。また、溶融温
度が高いので合金化に要する熱エネルギーが多く
なると共に、内張耐火物の消耗も激しかつた。
[Problems to be Solved by the Invention] As described above, in the conventional alloying method, since the temperature during alloying is high, metal impurities due to reduction of the furnace wall are likely to be mixed into the alloy. Furthermore, since the melting temperature was high, the thermal energy required for alloying was large, and the lining refractory was rapidly consumed.

[問題点を解決するための手段及び作用] 上記問題点を解決するために、本発明は、異な
る2種以上の金属又は合金を合金化させるに際
し、 これらの金属又は合金を混合しておき、次い
で上記金属又はいずれの融点よりも低い温度ま
で加熱、昇温させ、金属又は合金同志の接触部
において生ずる熱を利用して、又は、 これらの金属又は合金の一方のものをまず上
記金属又は合金のいずれの融点よりも低い温度
にまで加熱、昇温させ、次に他方のものを添加
し、該一方のものと他方のものとの接触部にお
いて生ずる熱を利用して、 これらの金属又は合金の融合を図るものである。
[Means and effects for solving the problems] In order to solve the above problems, the present invention provides a method in which, when alloying two or more different metals or alloys, these metals or alloys are mixed in advance, Then, one of these metals or alloys is heated to a temperature lower than the melting point of the metal or alloy, and the heat generated at the contact between the metals or alloys is used. These metals or alloys are heated to a temperature lower than the melting point of either of them, then the other is added, and the heat generated at the contact between the one and the other is used to make these metals or alloys. It aims to integrate the following.

(作 用) 本発明において、合金化させる金属をそれぞれ
の融点よりも低い温度で接触させる。そうする
と、両金属の接触面において、合金化反応や融解
反応が開始し、両者の融合が始まる。この融解反
応により融解熱が、また合金化反応により反応熱
がそれぞれ発生し、両者の融合が促進される。ま
た、通常、2種以上の金属を融合させると、合金
の融点は低下するようになるので、上記の融合反
応が速やかに行なわれるようになる。
(Function) In the present invention, metals to be alloyed are brought into contact at a temperature lower than their respective melting points. Then, an alloying reaction or a melting reaction starts at the contact surface between the two metals, and fusion of the two metals begins. This melting reaction generates heat of fusion, and the alloying reaction generates reaction heat, promoting the fusion of the two. Furthermore, when two or more metals are fused together, the melting point of the alloy is usually lowered, so that the fusion reaction described above occurs quickly.

このようにそれぞれの金属の融点(凝固点)よ
りも低い温度に保持した状態において、合金化が
行なわれる。そのため、融合が穏やかに行なわれ
ると共に、炉壁の浸食や、炉壁の還元による不純
物の混入が防止される。
In this way, alloying is performed while the temperature is maintained at a temperature lower than the melting point (freezing point) of each metal. Therefore, fusion is performed gently, and erosion of the furnace wall and contamination of impurities due to reduction of the furnace wall are prevented.

以下本発明を更に詳細に説明する。 The present invention will be explained in more detail below.

本発明の方法によつて合金化されるものとして
は、Fe−Siや、Fe−B又はFe−P、Fe−Al等反
応熱を生じるすべての二元系又は三元系以上の系
等が挙げられる。合金化させる場合、金属の単体
同志を合金化させても良く、合金同志は合金と単
体金属とを合金化させても良い。
Items that can be alloyed by the method of the present invention include all binary systems, ternary systems, or higher systems that generate reaction heat, such as Fe-Si, Fe-B, Fe-P, and Fe-Al. Can be mentioned. In the case of alloying, elemental metals may be alloyed together, or alloys may be formed by alloying an alloy and an elemental metal.

本発明において、合金化させる温度は、それぞ
れの金属又は合金の融点よりも低い温度である。
また、その温度の下限は、合金化によつて生ず
る、目的とする合金の融点よりも高い温度が好ま
しい。
In the present invention, the alloying temperature is lower than the melting point of the respective metal or alloy.
Further, the lower limit of the temperature is preferably a temperature higher than the melting point of the target alloy produced by alloying.

合金化させる際の雰囲気は、合金を構成する金
属元素の種類にもよるが、通常は、真空、アルゴ
ン又は窒素等の不活性雰囲気とすることが望まし
いが、大気中でも可能である。
Although the atmosphere during alloying depends on the type of metal elements constituting the alloy, it is usually desirable to use a vacuum, an inert atmosphere such as argon or nitrogen, but air is also possible.

合金化させる原料たる金属又は合金は、比較的
大きなインゴツト状としておいてもよいのである
が、粒状もしくは粉状としておけば、接触面積が
大きくなるので、迅速な合金化が可能である。
The metal or alloy that is the raw material for alloying may be in the form of a relatively large ingot, but if it is in the form of granules or powder, the contact area becomes larger, so that rapid alloying is possible.

合金化の具体的な方法としては、 原料たる金属又は合金を混合しておき、これ
を坩堝等の容器中に入れて所定の融合開始温度
まで加熱する方法、 原料たる金属又は合金の一方のものを予め坩
堝等の容器中に入れておき、まず融合開始温度
まで加熱し、しかる後、他方(もしくは残部)
の金属又は合金を、一度にもしくは少しずつ、
一方の上にふりかけるようにして添加する方
法、 等が用いられる。
Specific methods for alloying include mixing raw material metals or alloys, placing the mixture in a container such as a crucible, and heating it to a predetermined fusion starting temperature; or one of the raw material metals or alloys. is placed in a container such as a crucible in advance, heated to the temperature at which fusion starts, and then the other (or remaining)
metal or alloy all at once or little by little,
A method of adding it by sprinkling it on one side, etc. is used.

[実施例] 以下実施例について説明する。[Example] Examples will be described below.

実施例 1 電解鉄と金属シリコンを本法を用いて計1Kg
を合金化させた。即ち、Fe−9.5%Si合金を作成
するために、カルシア(CaO)坩堝中にて、アル
ゴン1気圧雰囲気下、高周波誘導溶解炉を用い
て、Feを1400℃の温度に保持した。この時、Fe
は完全な凝固状態である。この後、金属Si粒を
徐々に凝固したFeの表面上に添加していくと、
しだいにFe表面が溶け始め、Siを全量添加した
ところで完全に溶解が完了する。5分間、1400℃
で保持後、金型に鋳込んで凝固させた後、鋳塊を
切断し、組織をチエツクしたところ、FeとSiは
完全に固溶しており、CaO坩堝からのCaの混入
も10ppm以下であつた。
Example 1 A total of 1 kg of electrolytic iron and metal silicon was prepared using this method.
was alloyed. That is, in order to create a Fe-9.5% Si alloy, Fe was maintained at a temperature of 1400°C in a calcia (CaO) crucible under an argon atmosphere of 1 atm using a high frequency induction melting furnace. At this time, Fe
is in a completely coagulated state. After this, when metal Si particles are gradually added onto the surface of the solidified Fe,
Gradually, the Fe surface begins to melt, and the melting is completed when the entire amount of Si is added. 5 minutes, 1400℃
After holding the ingot, it was poured into a mold and solidified, and then the ingot was cut and the structure was checked. Fe and Si were completely dissolved in solid solution, and the amount of Ca mixed in from the CaO crucible was less than 10 ppm. It was hot.

一方、比較例として1550℃に保持した溶解Fe
中に、金属Siを全量添加し、5分間保持後、同様
に凝固させたものは、均一に固溶しているもの
の、CaO坩堝からのCaの混入は250ppmと非常に
高く、材質ももろいものであつた。
On the other hand, as a comparative example, melted Fe kept at 1550℃
When the entire amount of metallic Si is added and solidified in the same manner after being held for 5 minutes, the material is uniformly dissolved, but the Ca content from the CaO crucible is extremely high at 250 ppm, and the material is brittle. It was hot.

実施例 2 電解鉄と金属シリコンを本法を用いて計1Kg
を合金化させた。即ち、Fe−9、5%Si合金を
作成するために、所定量のFe粒とSi粒とを混合
し、これをカルシア(CaO)坩堝中にて、アルゴ
ン1気圧雰囲気下、高周波誘導溶解炉を用いて、
1400℃の温度に保持した。その結果、金属Si粒と
Fe粒の接触面から溶解が始まつた。10分間、
1400℃で保持後、金型に鋳込んで凝固させた後、
鋳塊を切断し、組織をチエツクしたところ、Fe
とSiは完全に固溶しており、CaO坩堝からのCa
の混入も10ppm以下であつた。
Example 2 A total of 1 kg of electrolytic iron and metal silicon using this method
was alloyed. That is, in order to create a Fe-9, 5% Si alloy, a predetermined amount of Fe grains and Si grains are mixed, and this is placed in a calcia (CaO) crucible in a high frequency induction melting furnace under an argon atmosphere of 1 atm. Using,
The temperature was maintained at 1400°C. As a result, metal Si particles and
Dissolution started from the contact surface of Fe grains. 10 minutes,
After holding it at 1400℃, casting it into a mold and solidifying it,
When the ingot was cut and the structure was checked, Fe
and Si are completely dissolved in solid solution, and Ca from the CaO crucible
The amount of contamination was also less than 10 ppm.

[効果] 以上詳述した通り、本発明によれば合金を構成
する原料金属の融点よりも低い温度にて合金化を
行なうことができるので、炉壁の還元による金属
不純物の合金への混入が抑制され、高純度の合金
を得ることができる。また、合金化に要する熱エ
ネルギーも低減されると共に、耐火物の損傷等も
大幅に減少される。
[Effects] As detailed above, according to the present invention, alloying can be carried out at a temperature lower than the melting point of the raw material metals constituting the alloy, thereby preventing metal impurities from being mixed into the alloy due to reduction on the furnace wall. and high purity alloys can be obtained. In addition, the thermal energy required for alloying is reduced, and damage to refractories is also significantly reduced.

Claims (1)

【特許請求の範囲】 1 異なる2種以上の金属又は合金を合金化させ
る方法において、これらの金属又は合金を混合し
ておき、次いで上記金属又は合金のいずれの融点
よりも低い温度まで加熱、昇温させ、金属又は合
金同志の接触部において生ずる熱を利用してこれ
らの金属又は合金を融合させることを特徴とする
合金化方法。 2 異なる2種以上の金属又は合金を合金化させ
る方法において、これらの金属又は合金の一方の
ものをまず上記金属又は合金のいずれの融点より
も低い温度にまで加熱、昇温させ、次に他方のも
のを添加し、該一方のものと他方のものとの接触
部において生ずる熱を利用してこれらの金属又は
合金を融合させることを特徴とする合金化方法。
[Claims] 1. A method for alloying two or more different metals or alloys, which involves mixing these metals or alloys and then heating and raising the temperature to a temperature lower than the melting point of any of the metals or alloys. An alloying method characterized by heating the metals or alloys and fusing these metals or alloys by utilizing the heat generated at the contact portion of the metals or alloys. 2. In a method of alloying two or more different metals or alloys, one of these metals or alloys is first heated to a temperature lower than the melting point of any of the metals or alloys, and then the other An alloying method characterized by adding metals or alloys, and fusing these metals or alloys by utilizing heat generated at the contact area between the one metal and the other metal.
JP9518985A 1985-05-02 1985-05-02 Alloying method Granted JPS61253333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9518985A JPS61253333A (en) 1985-05-02 1985-05-02 Alloying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9518985A JPS61253333A (en) 1985-05-02 1985-05-02 Alloying method

Publications (2)

Publication Number Publication Date
JPS61253333A JPS61253333A (en) 1986-11-11
JPH0156130B2 true JPH0156130B2 (en) 1989-11-29

Family

ID=14130804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9518985A Granted JPS61253333A (en) 1985-05-02 1985-05-02 Alloying method

Country Status (1)

Country Link
JP (1) JPS61253333A (en)

Also Published As

Publication number Publication date
JPS61253333A (en) 1986-11-11

Similar Documents

Publication Publication Date Title
US5102450A (en) Method for melting titanium aluminide alloys in ceramic crucible
US3548915A (en) New procedure for chill casting beryllium composite
JPH04314836A (en) Method and equipment for manufacturing alloy composed mainly of titanium and aluminum
JPH0364574B2 (en)
JP3571212B2 (en) Metal and alloy melting method and melting casting method
US4088475A (en) Addition of reactive elements in powder wire form to copper base alloys
CN110592455A (en) Preparation method of copper-tungsten alloy and copper-tungsten alloy prepared by same
JPH0156130B2 (en)
US3501291A (en) Method for introducing lithium into high melting alloys and steels
Breig et al. Induction skull melting of titanium aluminides
US4297132A (en) Electroslag remelting method and flux composition
GB2080831A (en) Process for the production of chromium alloys low in nitrogen
JPS63273562A (en) Production of ti-al alloy casting
US3508914A (en) Methods of forming and purifying nickel-titanium containing alloys
EP0067634B1 (en) Method of melting an alloy in an induction furnace
US3544312A (en) Alloying method
JPH0225526A (en) Production of metal or metal alloy lower in oxygen affinity than alkaline earth metal
JPS6158532B2 (en)
US3679394A (en) Method for casting high ti content alloys
US4161398A (en) Method for electroslag remelting of a copper-nickel alloy
JPH0645831B2 (en) Method for melting Al-Li alloy
JPH0364423A (en) Method for melting intermetallic compound ti-al-base alloy
CA1243491A (en) Method of manufacturing a hydrogen-storing alloy
JP2695433B2 (en) Method for adjusting magnesium content of molten aluminum
EP0277890A1 (en) Method for forming metals with reduced impurity concentrations