JPH0155891B2 - - Google Patents

Info

Publication number
JPH0155891B2
JPH0155891B2 JP59279555A JP27955584A JPH0155891B2 JP H0155891 B2 JPH0155891 B2 JP H0155891B2 JP 59279555 A JP59279555 A JP 59279555A JP 27955584 A JP27955584 A JP 27955584A JP H0155891 B2 JPH0155891 B2 JP H0155891B2
Authority
JP
Japan
Prior art keywords
exhaust gas
boiler
flow path
temperature
main flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59279555A
Other languages
Japanese (ja)
Other versions
JPS61157333A (en
Inventor
Haruo Tarui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59279555A priority Critical patent/JPS61157333A/en
Publication of JPS61157333A publication Critical patent/JPS61157333A/en
Publication of JPH0155891B2 publication Critical patent/JPH0155891B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラ出口排ガス温度制御装置に係
り、特にボイラ出側に脱硝装置を具備したボイラ
設備に用いるに好適な排ガス温度制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a boiler outlet exhaust gas temperature control device, and particularly to an exhaust gas temperature control device suitable for use in boiler equipment equipped with a denitrification device on the boiler outlet side.

〔従来の技術〕[Conventional technology]

ボイラは燃料を燃焼する火炉と、この火炉で得
られた高温の燃焼排ガスでボイラ水管群を加熱す
べく形成された排ガス流路とを有し、排ガスが排
ガス流路を通流する際に熱交換を行つて加熱蒸気
を得るようにしている。また、ボイラ出口から排
出された排ガスは窒素酸化物(NOx)を含有し
ているので、排ガス経路には脱硝装置が配備さ
れ、窒素酸化物を除去するようにしている。脱硝
装置としては、通常、乾式脱硝装置が用いられ、
その触媒には一般に有効温度範囲が定められてい
るので、脱硝装置に通流される排ガス温度は触媒
の有効温度範囲に収まるように調整される必要が
ある。
A boiler has a furnace that burns fuel and an exhaust gas passage formed to heat a group of boiler water tubes with high-temperature combustion exhaust gas obtained from the furnace, and when the exhaust gas flows through the exhaust gas passage, heat is generated. The exchange is performed to obtain heated steam. Furthermore, since the exhaust gas discharged from the boiler outlet contains nitrogen oxides (NOx), a denitrification device is installed in the exhaust gas path to remove nitrogen oxides. Dry type denitrification equipment is usually used as the denitrification equipment.
Since the catalyst generally has a defined effective temperature range, the temperature of the exhaust gas flowing through the denitrification device must be adjusted so that it falls within the effective temperature range of the catalyst.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、ボイラ燃料が一定種類で、排出する
排ガス温度が脱硝装置触媒の有効温度範囲内にあ
れば問題がないが、ボイラが重油および石油ピツ
チの各専焼が可能なものである場合には各専燃に
より排ガス温度とボイラ出口窒素酸化物濃度が異
なつてしまい、脱硝装置触媒の有効温度範囲から
外れてしまう問題があつた。これは、石油ピツチ
を燃料とする場合には排ガス中のNOx濃度が高
くなり、排ガス出口温度を高温とする必要がある
が重油を燃料とする場合には排ガス中のNOx濃
度が比較的低くしかも効率燃焼が重要となるため
排ガス温度を低温とする必要がある。両燃料の燃
焼による排ガス温度に大幅な差が生じ、これらを
カバーする脱硝触媒とすることはできないからで
ある。
However, if the boiler fuel is of a certain type and the exhaust gas temperature is within the effective temperature range of the denitrification equipment catalyst, there will be no problem, but if the boiler is capable of burning heavy oil and oil pit, There was a problem in that the exhaust gas temperature and the nitrogen oxide concentration at the boiler outlet differed depending on the combustion, which caused the temperature to fall outside the effective temperature range of the denitrification equipment catalyst. This is because when oil pit is used as fuel, the NOx concentration in the exhaust gas is high and the exhaust gas outlet temperature needs to be high, but when heavy oil is used as fuel, the NOx concentration in the exhaust gas is relatively low. Since efficient combustion is important, the exhaust gas temperature must be kept low. This is because there is a large difference in exhaust gas temperature due to the combustion of both fuels, and it is impossible to use a denitrification catalyst that covers these differences.

一方、ボイラ出口排ガス温度を脱硝媒体の有効
温度範囲に収めるようにする方法が、例えば特開
昭52−151669号公報および実公昭55−14903号公
報に提案されている。これらによれば、ボイラ又
は煙道の高温部域から高温燃焼ガスを抜出してボ
イラ出口排ガスに混入し、これによつて排ガス温
度を所望値に調整することができる。
On the other hand, methods for keeping the boiler outlet exhaust gas temperature within the effective temperature range of the denitrification medium have been proposed, for example, in Japanese Patent Laid-Open No. 52-151669 and Japanese Utility Model Publication No. 55-14903. According to these, high-temperature combustion gas is extracted from the high-temperature region of the boiler or the flue and mixed into the exhaust gas at the boiler outlet, thereby making it possible to adjust the exhaust gas temperature to a desired value.

ここで、前者の公報に記載されたものは、水平
煙管形のボイラであり、高温域に設けられた下部
煙管形のボイラであり、高温域に設けられた下部
煙管の高温ガス流入部に一定のガス滞留空間が形
成されるから、この滞留部のボイラ外壁から高温
ガスを抜出し、ボイラ出口ダクトに注入するよう
にすることは容易である。
Here, the boiler described in the former publication is a horizontal smoke tube type boiler, which is a lower smoke tube type boiler installed in a high temperature area, and has a constant temperature at the high temperature gas inflow part of the lower smoke tube installed in the high temperature area. Since this gas retention space is formed, it is easy to extract high-temperature gas from the outer wall of the boiler in this retention area and inject it into the boiler outlet duct.

一方、後者の公報に記載されたものは、ボイラ
出口のダクト内にエコノマイザが設けられている
から、このエコノマイザ上流側のダクトから高温
排ガスを抜出し、これをエコノマイザ下流のダク
トに注入することは容易である。
On the other hand, in the latter publication, the economizer is installed in the duct at the boiler outlet, so it is easy to extract high-temperature exhaust gas from the duct upstream of the economizer and inject it into the duct downstream of the economizer. It is.

しかし、火炉で発生した燃焼ガスを火炉上部か
ら抜出して水管群が垂設された隔壁室の上部に導
びき、この隔離室内の水管群間に画成されてなる
上下蛇行流路を通流させた後、この隔壁室下部に
連通されかつこの隔壁室水冷壁に沿つて垂直に延
設された排ガス主流路に導びき、この主流路を介
して脱硝装置に送出する構成を含んでなる形成の
ボイラにあつては、上記のような高温ガスの滞留
部あるいはエコノマイザが無く、高温の燃焼ガス
を抜出す適当な場所がなく、装置の構成が複雑で
大型になつてしまうという問題がある。
However, the combustion gas generated in the furnace is extracted from the upper part of the furnace and guided to the upper part of a bulkhead room where a group of water pipes are installed vertically, and then passed through a vertical meandering flow path defined between the groups of water pipes in this isolation chamber. After that, the exhaust gas is led to a main flow path that communicates with the lower part of the partition chamber and extends vertically along the water-cooled wall of the partition chamber, and is sent to the denitrification device via this main flow path. Boilers do not have a high-temperature gas retention section or economizer as described above, and there is no suitable place to extract high-temperature combustion gas, resulting in a complicated and large-sized device.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、上記従来の問題点に着目し、ボイラ
出口排ガス温度を燃料の如何にかかわらず脱硝装
置触媒の有効温度範囲内に収まるように調整で
き、もつて脱硝作用を有効に機能させることがで
き、しかも簡単な構成により実現することができ
るようにしたボイラの出口排ガス温度制御装置を
提供することを目的とする。
The present invention focuses on the above-mentioned conventional problems, and makes it possible to adjust the exhaust gas temperature at the boiler outlet so that it falls within the effective temperature range of the denitrification equipment catalyst regardless of the fuel, thereby making it possible to make the denitrification function work effectively. It is an object of the present invention to provide a boiler outlet exhaust gas temperature control device that can be realized with a simple configuration.

上記目的を達成するため、本発明は、火炉で発
生した燃焼ガスを火炉上部から抜出して水管群が
垂設された隔壁室の上部に導びき、この隔離室内
の水管群間に画成されてなる上下蛇行流路を通流
させた後、この隔壁室下部に連通されかつこの隔
壁室水冷壁に沿つて垂直に延設された排ガス主流
路に導びき、この主流路を介して脱硝装置に送出
する構成を含んでなるボイラの出口排ガス温度制
御装置において、前記隔壁室の水冷壁上部を形成
するチユーブであつて、前記排ガス主流路に対向
する位置のチユーブ間のフインを切欠いて開口を
設け、この開口を開度調整可能なダンパを有する
ダクトを介して前記排ガス主流路に連通してなる
ことを特徴とする。
In order to achieve the above object, the present invention extracts combustion gas generated in a furnace from the upper part of the furnace and guides it to the upper part of a partition chamber in which a group of water pipes is vertically installed, and a partition wall is defined between the groups of water tubes in this isolation chamber. After passing through the up-and-down meandering flow path, the exhaust gas is led to a main flow path that communicates with the lower part of the bulkhead chamber and extends vertically along the water-cooled wall of the bulkhead chamber, and is then led to the denitrification device via this main flow path. In the boiler outlet exhaust gas temperature control device including a configuration for sending out, an opening is provided by cutting out a fin between the tubes forming the upper part of the water-cooled wall of the partition chamber and facing the main flow path of the exhaust gas. , the opening is connected to the exhaust gas main flow passage through a duct having a damper whose opening degree can be adjusted.

〔作用〕[Effect]

上記構成により、ボイラ内の排ガス流路の温度
勾配を利用して、従来からある末端の出口ダクト
からの低温排ガスと、それより上流側に今回設け
た出口ダクトからの高温ガスとを、ダンパ開度を
調整して混合し、所望の温度に調整できるのであ
る。
With the above configuration, the temperature gradient of the exhaust gas flow path in the boiler is used to transfer the low temperature exhaust gas from the conventional end outlet duct and the high temperature gas from the outlet duct installed upstream from the damper. By adjusting the temperature and mixing, the desired temperature can be adjusted.

〔発明の実施例〕[Embodiments of the invention]

以下に、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図はボイラ出口排ガス温度制御方法を実施
するに用いるボイラの断面図である。ボイラ10
は一端面側にバーナ12が配置され、重油や石油
ピツチを燃料として、該バーナ12が臨む火炉1
4内で燃焼させるようにしている。また、ボイラ
10内には火炉14に隣接した隔室が設けられ、
この隔室内には下部に管寄せ16を配置するとと
もに、上部に気水ドラム18を配置し、両者を水
管群20により連結している。そして、火炉14
と隔室の間の仕切壁21の上部は開口され、火炉
14からの燃焼排ガスの導入口22としている。
導入口22の内部には過熱器24が配置されてお
り、気水ドラム18からの蒸気を過熱するものと
している。また前記隔室内には、仕切壁21と略
平行に気水ドラム18から下方に垂下されて下端
を開口した第1バツフア26Aと、この第1バツ
フア26Aとボイラ外壁である水冷壁28の間に
位置して管寄せ16から立ち上げられ上端を開口
した第2バツフア26Bが設けられ、これらバツ
フア26A,26Bにより形成される上下蛇行流
路を排ガス流路30としている。排ガス流路30
の末端は第2バツフア26Bと前記水冷壁28と
の間に囲まれる下部の管寄せ16に対面する箇所
に相当しており、当該位置における水冷壁28に
開口32を形成し、この開口32にダンパ34を
内蔵する末端出口ダクト36を接続している。こ
の末端出口ダクト36は排ガスのボイラ出口とさ
れ、排ガス主流路38に接続されている。排ガス
主流路38の下流側には脱硝装置40が配設され
ている。
FIG. 1 is a sectional view of a boiler used to implement the boiler outlet exhaust gas temperature control method. Boiler 10
A burner 12 is arranged on one end side, and the furnace 1 facing the burner 12 uses heavy oil or petroleum pit as fuel.
I try to burn it within 4. Further, a compartment adjacent to the furnace 14 is provided in the boiler 10,
Inside this compartment, a pipe header 16 is arranged at the lower part, and an air/water drum 18 is arranged at the upper part, and both are connected by a water pipe group 20. And furnace 14
The upper part of the partition wall 21 between the furnace 14 and the compartment is opened and serves as an inlet 22 for flue gas from the furnace 14.
A superheater 24 is disposed inside the inlet 22 to superheat the steam from the air/water drum 18. Also, inside the compartment, there is a first buffer 26A that hangs downward from the air-water drum 18 substantially parallel to the partition wall 21 and has an open lower end, and a space between the first buffer 26A and the water-cooled wall 28 which is the outer wall of the boiler. A second buffer 26B is provided which stands up from the header 16 and has an open upper end, and the vertical meandering flow path formed by these buffers 26A and 26B is an exhaust gas flow path 30. Exhaust gas flow path 30
The end corresponds to a location facing the lower header 16 surrounded by the second buffer 26B and the water cooling wall 28, and an opening 32 is formed in the water cooling wall 28 at this location, and a hole is formed in the opening 32. A terminal outlet duct 36 containing a damper 34 is connected thereto. This terminal outlet duct 36 serves as a boiler outlet for exhaust gas, and is connected to an exhaust gas main flow path 38 . A denitrification device 40 is disposed downstream of the exhaust gas main flow path 38.

斯かるボイラ10に対し、本実施例は特に、ボ
イラ10内の排ガス流路30の上流側、具体的に
は、第2バツフア26の上端開口部に対応する水
冷壁28にも出口開口42を形成したものであ
る。この出口開口42は、第2〜3図に示すよう
に水冷壁28に窓44を設けて水冷壁用フイン付
ボイラチユーブ46を臨ませ、チユーブ46間の
フイン48を切欠いて形成される(第2図ハツチ
ング部)。斯かる出口開口42には、やはりダン
パ50を内蔵した出口ダクト52が接続され、こ
のダクト52を前記排ガス主流路38に接続して
いる。このダクト52と排ガス主流路38の接続
位置は脱硝装置40の上流位置としている。
For such a boiler 10, the present embodiment particularly provides an outlet opening 42 on the upstream side of the exhaust gas passage 30 in the boiler 10, specifically, on the water cooling wall 28 corresponding to the upper end opening of the second buffer 26. It was formed. The outlet opening 42 is formed by providing a window 44 in the water cooling wall 28 to face the finned boiler tube 46 for the water cooling wall, and cutting out the fins 48 between the tubes 46, as shown in FIGS. Figure 2 (hatched part). An outlet duct 52 also having a built-in damper 50 is connected to the outlet opening 42, and this duct 52 is connected to the exhaust gas main flow path 38. The connection position between the duct 52 and the exhaust gas main flow path 38 is located upstream of the denitrification device 40.

このような構成に係るボイラ10にてボイラ出
口排ガス温度を制御する方法は次のように行われ
る。まず、通常の運転は、追加出口ダクト52の
ダンパ50を閉じ、下部に設けた排ガス流路30
の末端出口ダクト36のダンパ34を全開にして
行う。このとき、ボイラ水管群20を加熱した排
ガスは末端のダクト36から排ガス主流路38に
流出し、脱硝装置40を通流して窒素酸化物が除
去される。この末端出口ダクト36から流出する
出口排ガス温度は重油、石油ピツチを燃料とした
場合、略322℃〜220℃の範囲とされる。この温度
範囲が脱硝装置40の触媒の有効温度範囲であれ
ばよいが、有効温度範囲より低い場合には、上流
側の追加出口ダクト52におけるダンパ50を開
き、先の末端出口ダクト36中のダンパ34を閉
方向に動作させるものである。追加出口ダクト5
2の位置における排ガス温度は、415℃〜300℃の
範囲であるため、高温排ガスが混入されることと
なり、脱硝装置40の直前では排ガス温度は末端
出口ダクト36のみを通流してきた場合における
排ガス温度より高温となり、触媒有効温度範囲に
収まるように排ガス温度を調整できるのである。
したがつて、該実施例では、脱硝装置40への排
ガス温度をダンパ34,50の開度調整により、
220℃〜415℃の範囲で制御することが可能とな
る。具体的には、ダンパ34,50の開度と出口
排ガス温度の関係を予め求めておき、脱硝装置4
0の直上流位置に設けた温度センサによつて自動
的にダンパ34,50の開度調整をしておけばよ
い。
A method for controlling the boiler outlet exhaust gas temperature in the boiler 10 having such a configuration is performed as follows. First, in normal operation, the damper 50 of the additional outlet duct 52 is closed, and the exhaust gas flow path 30 provided at the bottom is closed.
The damper 34 of the terminal outlet duct 36 is fully opened. At this time, the exhaust gas that has heated the boiler water tube group 20 flows out from the duct 36 at the end into the exhaust gas main flow path 38, passes through the denitrification device 40, and nitrogen oxides are removed. The temperature of the outlet exhaust gas flowing out from the terminal outlet duct 36 is in the range of approximately 322°C to 220°C when heavy oil or petroleum pit is used as fuel. It is sufficient if this temperature range is the effective temperature range of the catalyst of the denitrification device 40, but if it is lower than the effective temperature range, the damper 50 in the additional outlet duct 52 on the upstream side is opened, and the damper in the previous terminal outlet duct 36 is opened. 34 in the closing direction. Additional outlet duct 5
Since the exhaust gas temperature at position 2 is in the range of 415°C to 300°C, high-temperature exhaust gas will be mixed in. Immediately before the denitrification device 40, the exhaust gas temperature will be the same as that of the exhaust gas when it flows only through the terminal outlet duct 36. The exhaust gas temperature can be adjusted to stay within the catalyst effective temperature range.
Therefore, in this embodiment, the exhaust gas temperature to the denitrification device 40 is adjusted by adjusting the opening degree of the dampers 34 and 50.
It becomes possible to control the temperature within the range of 220°C to 415°C. Specifically, the relationship between the opening degrees of the dampers 34 and 50 and the outlet exhaust gas temperature is determined in advance, and the denitrification device 4
The opening degrees of the dampers 34 and 50 may be automatically adjusted using a temperature sensor provided immediately upstream of the dampers 34 and 50.

このような実施例によれば、熱交換器などの余
分な機器を設置することなく、ボイラ10の水冷
壁28の一部を改造するだけで、簡単な方法によ
り排ガス出口温度を制御することができる。ま
た、ボイラ10の負荷に関係なく、ダンパ34,
50の開度を制御するだけで、ボイラ出口に設置
されるNOx除去用乾式脱硝装置40に対して最
適の排ガス温度に制御できるのである。
According to such an embodiment, the exhaust gas outlet temperature can be controlled in a simple manner by simply modifying a part of the water cooling wall 28 of the boiler 10 without installing extra equipment such as a heat exchanger. can. Moreover, regardless of the load on the boiler 10, the damper 34,
By simply controlling the opening degree of 50, it is possible to control the exhaust gas temperature to the optimum temperature for the dry denitrification device 40 for NOx removal installed at the boiler outlet.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば、隔壁室の水冷壁
上部を形成するチユーブであつて、前記排ガス主
流路に対向する位置のチユーブ間のフインを切欠
いて開口を設け、この開口を開度調整可能なダン
パを有するダクトを介して前記排ガス主流路に連
通した構成としていることから、簡単な構成によ
り隔離室を通流している高温の燃焼ガスを抜出し
て排ガス主流路に混入することができる。この結
果、ボイラ出口排ガス温度を燃料の如何にかかわ
らず脱硝装置媒体の有効温度範囲内に収まるよう
に調整でき、もつて脱硝作用を有効に機能させる
ことができるという作用に加え、以下の効果があ
る。
As described above, according to the present invention, an opening is provided by cutting out the fin between the tubes forming the upper part of the water-cooled wall of the partition chamber and located at a position facing the main exhaust gas passage, and the opening degree of the opening is adjusted. Since the combustion gas is connected to the main exhaust gas passage through a duct having a damper, the high temperature combustion gas flowing through the isolation chamber can be extracted and mixed into the main exhaust gas passage with a simple structure. As a result, the boiler outlet exhaust gas temperature can be adjusted to stay within the effective temperature range of the denitrification device medium regardless of the fuel, and in addition to the effect that the denitrification function can function effectively, the following effects are achieved. be.

本発明によれば、ボイラ本体にはチユーブ間の
フインを切欠いて開口を設けるだけでよく、かつ
この開口に対向する位置に延在する排ガス主流路
と短い直状ダクトで連絡するだけでよいことか
ら、構成が簡単であり、従来に比して製作、施工
の手数がかからないという効果がある。
According to the present invention, it is only necessary to provide an opening in the boiler main body by cutting out the fins between the tubes, and to communicate with the main exhaust gas passage extending at a position opposite to this opening through a short straight duct. Therefore, the structure is simple, and there is an advantage that it requires less effort in manufacturing and construction than in the past.

特に、既設のボイラについても、簡単な改造を
加えるだけで、本発明を実現できるという効果が
ある。
In particular, there is an advantage that the present invention can be realized by simply modifying an existing boiler.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る制御方法の実施に適用す
るボイラの構造断面図、第2図は出口開口正面
図、第3図は出口開口部の断面図である。 10……ボイラ、14……火炉、20……ボイ
ラ水管群、26A,26B……バツフア、28…
…水冷壁、30……排ガス流路、34,50……
ダンパ、36,52……出口ダクト、38……排
ガス主流路、40……脱硝装置。
FIG. 1 is a structural sectional view of a boiler to which the control method according to the present invention is applied, FIG. 2 is a front view of the outlet opening, and FIG. 3 is a sectional view of the outlet opening. 10...Boiler, 14...Furnace, 20...Boiler water tube group, 26A, 26B...Batsuhua, 28...
...Water cooling wall, 30...Exhaust gas flow path, 34, 50...
Damper, 36, 52... Outlet duct, 38... Exhaust gas main flow path, 40... Denitrification device.

Claims (1)

【特許請求の範囲】[Claims] 1 火炉で発生した燃焼ガスを火炉上部から抜出
して水管群が垂設された隔壁室の上部に導びき、
この隔離室内の水管群間に画成されてなる上下蛇
行流路を通流させた後、この隔壁室下部に連通さ
れかつこの隔壁室水冷壁に沿つて垂直に延設され
た排ガス主流路に導びき、この主流路を介して脱
硝装置に送出する構成を含んでなるボイラの出口
排ガス温度制御装置において、前記隔壁室の水冷
壁上部を形成するチユーブであつて、前記排ガス
主流路に対向する位置のチユーブ間のフインを切
欠いて開口を設け、この開口を開度調整可能なダ
ンパを有するダクトを介して前記排ガス主流路に
連通してなることを特徴技術とするボイラの出口
排ガス温度制御装置。
1. The combustion gas generated in the furnace is extracted from the upper part of the furnace and guided to the upper part of the bulkhead room where a group of water pipes are installed vertically.
After passing through the vertical meandering flow path defined between the water pipe groups in this isolation chamber, the exhaust gas flows through a main flow path that communicates with the lower part of this bulkhead chamber and extends vertically along the water cooling wall of this bulkhead chamber. In a boiler outlet exhaust gas temperature control device comprising a configuration in which the exhaust gas is guided and sent to the denitrification device via the main flow path, the tube forms the upper part of the water cooling wall of the partition chamber and faces the exhaust gas main flow path. A boiler outlet exhaust gas temperature control device characterized in that an opening is provided by notching a fin between tubes at a position, and the opening is communicated with the exhaust gas main flow passage through a duct having a damper whose opening degree can be adjusted. .
JP59279555A 1984-12-28 1984-12-28 Method for controlling temperature of exhaust gas at outlet of boiler Granted JPS61157333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59279555A JPS61157333A (en) 1984-12-28 1984-12-28 Method for controlling temperature of exhaust gas at outlet of boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59279555A JPS61157333A (en) 1984-12-28 1984-12-28 Method for controlling temperature of exhaust gas at outlet of boiler

Publications (2)

Publication Number Publication Date
JPS61157333A JPS61157333A (en) 1986-07-17
JPH0155891B2 true JPH0155891B2 (en) 1989-11-28

Family

ID=17612595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59279555A Granted JPS61157333A (en) 1984-12-28 1984-12-28 Method for controlling temperature of exhaust gas at outlet of boiler

Country Status (1)

Country Link
JP (1) JPS61157333A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151669A (en) * 1976-06-14 1977-12-16 Hirakawa Tekkosho Temperature control system for exhaust smoke denitration apparatus
JPS5514903U (en) * 1978-07-10 1980-01-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151669A (en) * 1976-06-14 1977-12-16 Hirakawa Tekkosho Temperature control system for exhaust smoke denitration apparatus
JPS5514903U (en) * 1978-07-10 1980-01-30

Also Published As

Publication number Publication date
JPS61157333A (en) 1986-07-17

Similar Documents

Publication Publication Date Title
CA1230025A (en) Gas-fired condensing mode furnace
JPH0313482B2 (en)
US2708915A (en) Crossed duct vertical boiler construction
US2543201A (en) Circular radiator air heating furnace with spiral air baffles
JP2002535587A (en) Fossil fuel boiler
JPH06123420A (en) Heating equipment for liquid
JPH0155891B2 (en)
JP2772584B2 (en) Economizer system for steam generator
JP3190939B2 (en) Steam generator
RU2084770C1 (en) Hot-water boiler
JPS60142106A (en) Steam generator
RU217520U1 (en) DEVICE FOR INCREASING THE TEMPERATURE OF COMBUSTION PRODUCTS AT THE INLET OF THE CONVECTIVE SUPERHEATER OF THE STEAM BOILER
CA1125597A (en) Steam generator arrangement
US2181597A (en) Furnace heat economizer
CN213841346U (en) Hot water buffer device and heating and hot water dual-purpose furnace
RU135086U1 (en) HEAT EXCHANGE DEVICE
RU2525374C1 (en) Method of heat exchanger operation and heat exchanger
CN212657698U (en) Intelligent and safe fluidized bed furnace
SU1467330A1 (en) Hot-water boiler
JPS6341708A (en) Fluidized bed combustion method
KR840001311Y1 (en) Boiler
JPH08327005A (en) Multitubular once-through boiler
CN2360793Y (en) Horizontal cross-burning atmospheric hot water boiler
RU7468U1 (en) WATER BOILER TUBE
JP3007822B2 (en) Can body structure of multi-tube once-through boiler