JPH0155546B2 - - Google Patents

Info

Publication number
JPH0155546B2
JPH0155546B2 JP56171111A JP17111181A JPH0155546B2 JP H0155546 B2 JPH0155546 B2 JP H0155546B2 JP 56171111 A JP56171111 A JP 56171111A JP 17111181 A JP17111181 A JP 17111181A JP H0155546 B2 JPH0155546 B2 JP H0155546B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
ultrasonic
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56171111A
Other languages
Japanese (ja)
Other versions
JPS5873966A (en
Inventor
Masanori Sato
Yoshiro Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP17111181A priority Critical patent/JPS5873966A/en
Publication of JPS5873966A publication Critical patent/JPS5873966A/en
Publication of JPH0155546B2 publication Critical patent/JPH0155546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes

Description

【発明の詳細な説明】 この発明はLi、Na、Ca、K等の軽金属を負極
活物質とする非水電解液電池の製造方法に関し、
特に、その負極活物質と負極電極との間の良好な
電気的接合状態が得られるようにした製造方法に
関する。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a nonaqueous electrolyte battery using light metals such as Li, Na, Ca, and K as negative electrode active materials.
In particular, the present invention relates to a manufacturing method that provides a good electrical connection between the negative active material and the negative electrode.

第1図は本発明の対象である非水電解液電池の
代表的な構造を示している。同図に示すものは偏
平ボタン型電池と称される構造で、周知のよう
に、電池ケースを兼ねる皿形容器状の正極電極1
と負極電極2とが封口ガスケツト3を介して組合
わされ、正極電極1の内側の正極活物質4、負極
電極2の内側の負極活物質5、および両者の間に
介在する非水電解液を含んだセパレータ6からな
る発電要素が密封入されている。
FIG. 1 shows a typical structure of a non-aqueous electrolyte battery that is the object of the present invention. The structure shown in the figure is a so-called flat button battery, and as is well known, the positive electrode 1 has a dish-shaped container that also serves as a battery case
and a negative electrode 2 are combined via a sealing gasket 3, and include a positive active material 4 inside the positive electrode 1, a negative active material 5 inside the negative electrode 2, and a non-aqueous electrolyte interposed between the two. A power generation element consisting of a separator 6 is hermetically sealed.

非水電解液電池では上記負極活物質5はリチウ
ム等の軽金属からなる訳だが、特にこの種の電池
は、負極活物質5と負極電極2との間の電気的接
触が不完全になり易いという問題を有している。
つまり、負極活物質5としてのリチウム等は酸素
分子との反応性が激しいため、その表面に酸化被
膜等の不電導性皮膜が生じ易く、そのため、負極
活物質5を負極電極2にプレス機等で単に機械的
に押付けて圧着しただけでは、両者間の電気的接
触抵抗を充分小さくすることができず、電極2に
よる所望の集電効果が得られない。
In a non-aqueous electrolyte battery, the negative electrode active material 5 is made of a light metal such as lithium, but in this type of battery in particular, the electrical contact between the negative electrode active material 5 and the negative electrode 2 tends to be incomplete. I have a problem.
In other words, since lithium or the like as the negative electrode active material 5 is highly reactive with oxygen molecules, a nonconductive film such as an oxide film is likely to be formed on its surface. If the electrodes 2 are simply mechanically pressed and crimped, the electrical contact resistance between them cannot be sufficiently reduced, and the desired current collecting effect by the electrodes 2 cannot be obtained.

上記のような不電導性皮膜による障害を排除す
るために、従来の多くの非水電解液電池において
は、薄いステンレス製エキスパンデツドメタル等
からなる鋭い凹凸のある集電板を上記負極電極2
の内面にスポツト溶接し、この集電板に上記負極
活物質5を圧着することにより、上記不電導性皮
膜を突き破つて良好な電気的接触を得るようにし
た構造が採用されている。
In order to eliminate the problems caused by the non-conductive film as described above, in many conventional non-aqueous electrolyte batteries, a sharply uneven current collector plate made of thin stainless steel expanded metal or the like is used as the negative electrode 2.
A structure is adopted in which the negative electrode active material 5 is spot-welded to the inner surface of the current collector plate and the negative electrode active material 5 is crimped onto the current collector plate, thereby breaking through the non-conductive film and obtaining good electrical contact.

しかし上記の構造では、エキスパンデツドメタ
ル等の集電板およびその溶接のため、部品点数お
よび組立工数が増大し、コスト高となる欠点の
他、エキスパンデツドメタル等の集電板が電池ケ
ース内に占める容積が相当大きく、その分だけ発
電要素の有効充填容積が減少し、電池の小型化か
つ電気的大容量化という基本的な要求に反するこ
ととなつていた。
However, in the above structure, the number of parts and assembly man-hours increase due to the current collector plate made of expanded metal and welding, which increases the cost. The volume occupied by the battery is quite large, and the effective filling volume of the power generation element is reduced by that amount, which goes against the basic requirements of miniaturizing the battery and increasing its electrical capacity.

このような従来の問題点を克服するために、本
発明者らは先に、非水電解液電池の製造に際し、
超音波溶着技術を用いて負極活物質を負極電極に
圧接することを提案しており、これにより極めて
良好な電気的接合状態が得られることを確認して
いる。
In order to overcome these conventional problems, the present inventors first developed a method for manufacturing non-aqueous electrolyte batteries.
We have proposed using ultrasonic welding technology to pressure-contact the negative active material to the negative electrode, and have confirmed that an extremely good electrical bond can be obtained by this method.

ところが従来、上記超音波溶着による接合を具
体化するのに、第2図に示すように、受台7上に
負極電極2をその内側面を上方に向けて載せ、そ
の負極電極2の内側面の中央にリチウム等の負極
活物質5を載せ、その負極活物質5を上方から合
成樹脂製の押圧治具8で押圧し、その押圧治具8
の上面部に超音波ホーン9を押し当てて、この超
音波ホーン9から負極活物質5と負極電極2の接
触部分に超音波を印加し、これにより両者を溶着
してた。この方法を繰り返し実施した結果、次の
ような不都合点が明らかとなつた。まず、超音波
ホーン9からの超音波が溶着すべき負極活物質5
と負極電極2の接触部分に達するまでに、合成樹
脂製の押圧治具8および負極活物質5自体を経る
こととなり、その間の伝達損失が大きい(金属製
のホーン9をリチウム等の負極活物質5に直接接
触させることはできず、またリチウム等の軽金属
は内部損失が大きい)。そのため、加えた超音波
出力の大部分が溶着部分に達する前に減衰されて
しまうこととなり、従つて溶着部分に充分な超音
波エネルギーを供給するために、大出力の超音波
発振源が必要となつていた。また、負極活物質5
の負極電極2との接合面以外の部分に相当大きな
超音波が加わることから、負極活物質5の縁部等
が流動化してしまい、押圧治具8と負極電極2と
の隙間から這い出し、負極活物質5の形態が所望
のものから著しく変形してしまうことがあつた。
However, conventionally, in order to realize the above-mentioned joining by ultrasonic welding, as shown in FIG. A negative electrode active material 5 such as lithium is placed in the center of the plate, and the negative electrode active material 5 is pressed from above with a synthetic resin pressing jig 8.
An ultrasonic horn 9 was pressed against the upper surface of the anode, and ultrasonic waves were applied from the ultrasonic horn 9 to the contact area between the anode active material 5 and the anode electrode 2, thereby welding them together. As a result of repeatedly implementing this method, the following disadvantages became clear. First, the negative electrode active material 5 to be welded by ultrasonic waves from the ultrasonic horn 9
Before reaching the contact area between the metal horn 9 and the negative electrode 2, it passes through the synthetic resin pressing jig 8 and the negative electrode active material 5 itself, resulting in a large transmission loss. 5, and light metals such as lithium have large internal losses). As a result, most of the applied ultrasonic power is attenuated before reaching the weld, and therefore a high-output ultrasonic oscillation source is required to supply sufficient ultrasonic energy to the weld. I was getting used to it. In addition, the negative electrode active material 5
Since a considerably large ultrasonic wave is applied to the parts other than the bonding surface with the negative electrode 2, the edges of the negative electrode active material 5 become fluidized, creep out from the gap between the pressing jig 8 and the negative electrode 2, and the negative electrode In some cases, the shape of the active material 5 was significantly deformed from the desired shape.

この発明は上述した従来の方法の問題点に鑑み
なされたもので、その目的は、リチウム等の負極
活物質を負極電極に超音波溶着する際に、超音波
発振源の出力が小さくて済み、かつ負極活物質の
不要で有害な流動化を生じないようにした非水電
解液電池の製造方法を提供することにある。
This invention was made in view of the problems of the conventional methods described above, and its purpose is to reduce the output of the ultrasonic oscillation source when ultrasonically welding a negative active material such as lithium to a negative electrode. Another object of the present invention is to provide a method for manufacturing a nonaqueous electrolyte battery that does not cause unnecessary and harmful fluidization of a negative electrode active material.

上記の目的を達成するために、この発明は、負
極活物質を凹状の合成樹脂製受け治具上に載せる
とともに、この負極活性物質上に負極電極を載置
し、負極電極の負極活物質と接する面の反対側の
面に超音波ホーンを押し当てて、この負極電極側
からこれと上記負極活物質との接触部分に超音波
を印加し、これにより上記負極活物質を上記負極
電極に超音波溶着させることを特徴とする。
In order to achieve the above object, the present invention places a negative electrode active material on a concave synthetic resin receiving jig, places a negative electrode on this negative electrode active material, and connects the negative electrode active material of the negative electrode with the negative electrode active material. An ultrasonic horn is pressed against the surface opposite to the surface in contact, and ultrasonic waves are applied from the negative electrode side to the contact area between this and the negative active material, thereby causing the negative active material to contact the negative electrode. It is characterized by sonic welding.

第3図は上述した本発明の方法による接合工程
を示している。同図に示すように、本発明の方法
では、合成樹脂製の受け治具10の上面凹部にリ
チウム等の軽金属からなる負極活物質5を載せ、
更にその上に、負極電極2をその内側面を下に向
けて被せるごとく載せ、その負極電極2の上面に
超音波ホーン9を押し当てて、負極電極2に直接
的に超音波を印加する。すると、その超音波は印
加面の直下の溶着部分に極めて効率的に伝わり、
そのため超音波発振源の出力が小さくても、負極
電極2と負極活物質5の接合面に充分な超音波エ
ネルギーを提供することができる。また、負極活
物質5には負極電極2を介してその接触面に集中
的に超音波エネルギーが印加させ、他の部分に余
分な超音波エネルギーが加わらないため、負極活
物質5が不必要に流動化することがなくなる。
FIG. 3 shows the bonding process according to the method of the present invention described above. As shown in the figure, in the method of the present invention, a negative electrode active material 5 made of a light metal such as lithium is placed in the recessed part of the upper surface of a receiving jig 10 made of synthetic resin,
Furthermore, the negative electrode 2 is placed on top of the negative electrode 2 with its inner surface facing downward, and the ultrasonic horn 9 is pressed against the upper surface of the negative electrode 2 to directly apply ultrasonic waves to the negative electrode 2. Then, the ultrasonic waves are transmitted extremely efficiently to the welded area directly below the application surface,
Therefore, even if the output of the ultrasonic oscillation source is small, sufficient ultrasonic energy can be provided to the bonding surface between the negative electrode 2 and the negative active material 5. In addition, ultrasonic energy is intensively applied to the contact surface of the negative electrode active material 5 via the negative electrode 2, and unnecessary ultrasonic energy is not applied to other parts, so that the negative electrode active material 5 is not used unnecessarily. No more fluidization.

以上詳細に説明したように、この発明に係る非
水電解液電池の製造方法によれば、電気的接触が
問題となる負極活物質と負極電極との接合を超音
波溶着により極めて効果的に行なうことができ
る。
As explained in detail above, according to the method for manufacturing a non-aqueous electrolyte battery according to the present invention, the bonding between the negative active material and the negative electrode, where electrical contact is a problem, is extremely effectively performed by ultrasonic welding. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は非水電解液電池の構造例を示す断面
図、第2図は超音波を用いた従来の方法の説明
図、第3図は超音波を用いた本発明の方法の説明
図である。 1……正極電極、2……負極電極、3……封口
ガスケツト、4……正極活物質、5……負極活物
質、6……セパレータ、8……押圧治具、9……
超音波ホーン、10……受け治具。
Figure 1 is a cross-sectional view showing an example of the structure of a non-aqueous electrolyte battery, Figure 2 is an explanatory diagram of a conventional method using ultrasound, and Figure 3 is an illustration of the method of the present invention using ultrasound. be. DESCRIPTION OF SYMBOLS 1... Positive electrode, 2... Negative electrode, 3... Sealing gasket, 4... Positive electrode active material, 5... Negative electrode active material, 6... Separator, 8... Pressing jig, 9...
Ultrasonic horn, 10... receiving jig.

Claims (1)

【特許請求の範囲】[Claims] 1 Li、Na、Ca、K等の軽金属を負極活物質と
する非水電解液電池の製造方法において、上記負
極活物質を負極電極に溶着するに際し、上記負極
活物質を凹状の合成樹脂製受け治具上に載せると
ともに、この負極活物質上に上記負極電極を載置
し、上記負極電極の上記負極活物質と接する面の
反対側の面に超音波ホーンを押し当てて、この負
極電極側からこれと上記負極活物質との接触部分
に超音波を印加し、これにより上記負極活物質を
上記負極電極に超音波溶着させることを特徴とす
る非水電解液電池の製造方法。
1. In a method for manufacturing a non-aqueous electrolyte battery using a light metal such as Li, Na, Ca, K, etc. as a negative electrode active material, when welding the negative electrode active material to the negative electrode, the negative electrode active material is attached to a concave synthetic resin receiver. At the same time as placing it on a jig, place the negative electrode on this negative electrode active material, and press an ultrasonic horn to the surface of the negative electrode opposite to the surface in contact with the negative electrode active material. A method for manufacturing a non-aqueous electrolyte battery, comprising: applying ultrasonic waves to a contact portion between the negative electrode active material and the negative electrode active material, thereby ultrasonically welding the negative electrode active material to the negative electrode.
JP17111181A 1981-10-26 1981-10-26 Manufacture of nonaqueous electrolyte battery Granted JPS5873966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17111181A JPS5873966A (en) 1981-10-26 1981-10-26 Manufacture of nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17111181A JPS5873966A (en) 1981-10-26 1981-10-26 Manufacture of nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS5873966A JPS5873966A (en) 1983-05-04
JPH0155546B2 true JPH0155546B2 (en) 1989-11-24

Family

ID=15917169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17111181A Granted JPS5873966A (en) 1981-10-26 1981-10-26 Manufacture of nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS5873966A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581733B2 (en) * 1988-02-22 1997-02-12 株式会社日立製作所 Monolithic integrated circuit, tuner circuit device, and receiver
EP2605313A1 (en) * 2011-12-15 2013-06-19 Oxis Energy Limited Connecting contact leads to lithium-based electrodes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427530U (en) * 1977-07-27 1979-02-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427530U (en) * 1977-07-27 1979-02-22

Also Published As

Publication number Publication date
JPS5873966A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
JP3334683B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4446205B2 (en) Battery and manufacturing method thereof
US4554226A (en) Flat cell battery connector seal
JP2001038475A (en) Jointing method of laminating material, and battery
US5279623A (en) Method of fabricating flat type electrochemical device
US4929518A (en) Sealed lead-acid storage battery
JP4375690B2 (en) Electrode bonding method for storage element
JP3751782B2 (en) Cylindrical alkaline storage battery and manufacturing method thereof
JP3825706B2 (en) Secondary battery
JP2001006746A (en) Nonaqueous electrolyte battery
JPH0155546B2 (en)
JP4056147B2 (en) battery
JP2020102320A (en) Manufacturing method of secondary battery
JP4191433B2 (en) Battery and manufacturing method thereof
JPH0556622B2 (en)
JP2002175787A (en) Battery and manufacturing method of the same
JPS5831321Y2 (en) flat battery
JPH0516138B2 (en)
JPS58129745A (en) Thin enclosed battery
JPH11339737A (en) Rectangular battery
JPH01167963A (en) Sealed lead-acid battery
JPS5645567A (en) Manufacture of battery with spiral electrode-body
JPH031439A (en) Square cell
JPH0821425B2 (en) Method for manufacturing flat lithium secondary battery
JPS6174255A (en) Manufacture of flat battery