JPH0155413B2 - - Google Patents

Info

Publication number
JPH0155413B2
JPH0155413B2 JP57054017A JP5401782A JPH0155413B2 JP H0155413 B2 JPH0155413 B2 JP H0155413B2 JP 57054017 A JP57054017 A JP 57054017A JP 5401782 A JP5401782 A JP 5401782A JP H0155413 B2 JPH0155413 B2 JP H0155413B2
Authority
JP
Japan
Prior art keywords
hollow shaft
flaw detection
rotating frame
rotating
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57054017A
Other languages
Japanese (ja)
Other versions
JPS58168959A (en
Inventor
Yukio Naito
Eiji Munei
Kazuo Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Sanyo Tokushu Seiko KK
Original Assignee
Mitsubishi Electric Corp
Sanyo Tokushu Seiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Sanyo Tokushu Seiko KK filed Critical Mitsubishi Electric Corp
Priority to JP57054017A priority Critical patent/JPS58168959A/en
Publication of JPS58168959A publication Critical patent/JPS58168959A/en
Publication of JPH0155413B2 publication Critical patent/JPH0155413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 この発明は鋼材等の被探傷材の欠陥を例えばセ
ンサーとして超音波探触子を用いて自動的に検出
する超音波自動探傷装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic ultrasonic flaw detection device that automatically detects defects in a material to be flaw-detected, such as a steel material, by using, for example, an ultrasonic probe as a sensor.

従来この種の装置として第1図に示すものがあ
つた。
A conventional device of this type is shown in FIG.

図において、1は装置全体支持する支持枠、2
はこの支持枠1に取り付けられた軸受支え、3は
この軸受支え2に例えば玉軸受等の軸受4を介し
て嵌合されて回転自在に支承され、内部を被探傷
材5が通過する中空軸であり、中空軸3の両端部
近傍に軸受4が配置されている。6はこの中空軸
3と軸受支え2の間に介在して後述する超音波探
触子9からの探傷信号を外部へ伝達する信号伝達
装置であり、軸受4間の中空軸3外周部に取り付
けられた回転部6aと、この回転部6aと対向す
るよう支持枠1に取り付けられた固定部6bとに
より構成され、回転部6aと固定部6bとは電気
的に共働している。7は中空軸3の一端部に取り
付けられた探傷信号中継体、8はこの探傷信号中
継体7を介して中空軸3に配設され、中空軸3と
相反する軸長手方向に延在し、中空軸3と連動し
て回転する探触子ホルダ、9はこの探触子ホルダ
8に組み込まれた超音波探触子、10は中空軸3
の他端部側の軸受支え2に取り付けられ、中空軸
3、探傷信号中継体7、探触子ホルダ8に形成さ
れた給水路を通じて探傷水を超音波探触子9と被
探傷材5との間に給水する給水装置、11は中空
軸3の他端部の外周に嵌合されたベルトプーリ
ー、12は支持枠1に取り付けられた駆動モータ
ー、13はこの駆動モーター12の回転軸とベル
トプーリー11に掛けられたベルト、14は被探
傷材5の芯合せを行なうピンチローラーである。
In the figure, 1 is a support frame that supports the entire device; 2 is a support frame that supports the entire device;
3 is a bearing support attached to this support frame 1, and 3 is a hollow shaft that is rotatably supported by being fitted to this bearing support 2 via a bearing 4 such as a ball bearing, and through which the inspected material 5 passes. Bearings 4 are arranged near both ends of the hollow shaft 3. Reference numeral 6 denotes a signal transmission device that is interposed between the hollow shaft 3 and the bearing support 2 and transmits a flaw detection signal from an ultrasonic probe 9 to the outside, which will be described later. The rotating part 6a and the fixed part 6b are attached to the support frame 1 so as to face the rotating part 6a, and the rotating part 6a and the fixed part 6b electrically cooperate with each other. 7 is a flaw detection signal relay body attached to one end of the hollow shaft 3; 8 is disposed on the hollow shaft 3 via this flaw detection signal relay body 7, and extends in the longitudinal direction of the shaft opposite to the hollow shaft 3; A probe holder that rotates in conjunction with the hollow shaft 3; 9 is an ultrasonic probe incorporated in the probe holder 8; 10 is the hollow shaft 3;
It is attached to the bearing support 2 on the other end side, and the flaw detection water is supplied to the ultrasonic probe 9 and the material to be tested 5 through the water supply channel formed in the hollow shaft 3, the flaw detection signal relay body 7, and the probe holder 8. 11 is a belt pulley fitted to the outer periphery of the other end of the hollow shaft 3, 12 is a drive motor attached to the support frame 1, and 13 is a rotating shaft of this drive motor 12 and a belt. A belt 14 hung around the pulley 11 is a pinch roller for centering the material 5 to be tested.

上記のように構成された従来装置の動作につい
て説明する。超音波自動探傷装置は鋼材等の被探
傷材5の検査ラインに設置され、被探傷材5が順
次この超音波自動探傷装置を通過するようになつ
ている。まず、駆動モーター12を駆動し、ベル
ト13、ベルトプーリー11を介して中空軸3を
回転させる。この中空軸3の回転に連動して中空
軸3に探傷信号中継体7を介して取り付けられた
探触子ホルダ8とその探触子ホルダ8に組み込ま
れた超音波探触子9が回転する。次いで、検査ラ
インから被探傷材5が搬送され、ピンチローラー
14により被探傷材5に芯合せが行なわれて探触
子ホルダ8の中心を通過する。被探傷材5が探触
子ホルダ8の中心を通過する際、給水装置10か
ら探傷水を給水し超音波探触子9と被探傷材5の
〓間に充満させる。このように回転中の探触子ホ
ルダ8の中心を被探傷材5が通過することにより
探触子ホルダ8に組み込まれた超音波探触子9に
よつて被探傷材5をスパイラル状に探傷する。超
音波探触子9からの探傷信号は探傷信号中継体7
を経て信号伝達装置6の回転部6aから固定部6
bに伝達されて外部に引き出される。
The operation of the conventional device configured as described above will be explained. The automatic ultrasonic flaw detection device is installed on an inspection line for a material 5 to be flaw-detected such as steel, and the material 5 to be flaw-detected passes through this automatic flaw detection device one after another. First, the drive motor 12 is driven to rotate the hollow shaft 3 via the belt 13 and belt pulley 11. In conjunction with the rotation of the hollow shaft 3, the probe holder 8 attached to the hollow shaft 3 via the flaw detection signal relay body 7 and the ultrasonic probe 9 incorporated in the probe holder 8 rotate. . Next, the material 5 to be tested is conveyed from the inspection line, aligned by the pinch roller 14, and passed through the center of the probe holder 8. When the material 5 to be tested passes through the center of the probe holder 8, testing water is supplied from the water supply device 10 to fill the space between the ultrasonic probe 9 and the material 5 to be tested. As the material 5 to be tested passes through the center of the rotating probe holder 8 in this way, the material 5 to be tested is tested in a spiral manner by the ultrasonic probe 9 incorporated in the probe holder 8. do. The flaw detection signal from the ultrasonic probe 9 is sent to the flaw detection signal relay body 7
from the rotating part 6a of the signal transmission device 6 to the fixed part 6 via
b and is drawn out.

しかしながら上述した従来装置では、探触子ホ
ルダ8が中空軸3と相反する軸長手方向に延在、
即ち、装置の外方向へオーバーハング状態に取り
付けられているので装置全長が大となつていた。
従つて、ピンチローラー14の設置間隔も大とな
り、第3図に示すように被探傷材5の終端が探触
子ホルダ8を通り抜ける際、被探傷材5の撓みあ
るいは弓曲りが大きいと探触子ホルダ8に接触し
て探傷不可能となるなどの欠点があつた。
However, in the conventional device described above, the probe holder 8 extends in the longitudinal direction of the axis opposite to the hollow shaft 3.
That is, since it is attached to the outside of the device in an overhanging state, the overall length of the device becomes long.
Therefore, the interval between the pinch rollers 14 is also large, and as shown in FIG. There were drawbacks such as contact with the child holder 8, making flaw detection impossible.

この発明は上記のような従来のものの欠点に鑑
みてなされたものであり、環状の回転枠を支持枠
の内周側に軸受を介して回転自在に支承し、回転
枠の内周側に中空軸を同心状に配置して回転枠に
支持させ、中空軸の内周側に被探傷材の欠陥を探
傷するセンサーが軸方向に複数個配列されたホル
ダを同心材に且つ中空軸内で軸方向に配置してホ
ルダが中空軸と連動して回転するように中空軸に
支持させ、一端部が支持枠に支持された支持体の
他端部を中空軸と回転枠との間に延在させ、支持
体に支持された固定部と中空軸または回転枠に支
持され且つ固定部と電気的に共働する回転部とか
らなる信号伝達装置を中空軸と回転枠との間に位
置させることにより、装置全長を短縮することが
できる自動探傷装置を提供することを目的として
いる。
This invention was made in view of the drawbacks of the conventional ones as described above, and includes an annular rotating frame rotatably supported on the inner circumferential side of the supporting frame via a bearing, and a hollow space provided on the inner circumferential side of the rotating frame. The shafts are arranged concentrically and supported by a rotating frame, and a holder with a plurality of sensors arranged in the axial direction on the inner circumferential side of the hollow shaft for detecting defects in the material to be tested is mounted concentrically and within the hollow shaft. The holder is supported by the hollow shaft so that it rotates in conjunction with the hollow shaft, and one end of the support is supported by the support frame, and the other end of the support extends between the hollow shaft and the rotating frame. and positioning a signal transmission device between the hollow shaft and the rotating frame, comprising a fixed part supported by the support body and a rotating part supported by the hollow shaft or the rotating frame and electrically cooperating with the fixed part. The purpose of this invention is to provide an automatic flaw detection device that can shorten the overall length of the device.

以下、この発明の一実施例を第2図に基づいて
説明する。図において、1は支持枠、4は軸受、
5は被探傷材、7は探傷信号中継体、10は給水
装置、11はベルトプーリー、12は駆動モータ
ー、13はベルト、14はピンチローラー、15
は支持枠1の内周側に軸受4を介して回転自在に
支承された環状の回転枠であり、この回転枠15
の一端の外周にベルトプーリー11が嵌合されて
いる。16はこの回転枠15に探傷信号中継体7
を介して支持され且つ回転枠15の内周側に同心
状に配置された中空軸、17は中空軸16にその
中空軸16と連動して回転するように支持される
と共に中空軸16の内周側に同心状に且つ中空軸
16内で軸方向に配置され内周部を被探傷材5が
軸方向に通過する環状のホルダ、18はこの探触
子ホルダ17に軸方向に複数個配列された被探傷
材5の欠陥を探傷する超音波探触子からなるセン
サー(以下、超音波探触子と記す)、19は中空
軸16と回転枠15との間に位置し、一端部が支
持枠1に支持され他端部が中空軸16と回転枠1
5との間に延在する支持体20の他端部に支持さ
れた固定部19bとこの固定部19bと対向する
よう例えば中空軸16に支持され、固定部19b
と例えば非接触で電気的に共働する回転部19a
とからなり、超音波探触子18からの探傷信号を
外部へ伝達する信号伝達装置である。
Hereinafter, one embodiment of the present invention will be described based on FIG. 2. In the figure, 1 is a support frame, 4 is a bearing,
5 is the material to be tested, 7 is the flaw detection signal relay body, 10 is the water supply device, 11 is the belt pulley, 12 is the drive motor, 13 is the belt, 14 is the pinch roller, 15
is an annular rotating frame that is rotatably supported on the inner peripheral side of the support frame 1 via a bearing 4;
A belt pulley 11 is fitted around the outer periphery of one end of the belt. 16 is a flaw detection signal relay body 7 attached to this rotating frame 15.
A hollow shaft 17 is supported through the hollow shaft 16 and is disposed concentrically on the inner circumferential side of the rotating frame 15. A plurality of annular holders 18 are arranged concentrically on the circumferential side and axially within the hollow shaft 16, and through which the test material 5 passes in the axial direction through the inner periphery. A sensor 19 consisting of an ultrasonic probe (hereinafter referred to as an ultrasonic probe) for detecting defects in the inspected material 5 is located between the hollow shaft 16 and the rotating frame 15, and one end thereof is It is supported by the support frame 1 and the other end is connected to the hollow shaft 16 and the rotating frame 1.
A fixing part 19b supported on the other end of the support body 20 extending between the fixing part 19b and the fixing part 19b is
For example, a rotating part 19a that electrically cooperates with the rotating part 19a in a non-contact manner.
It is a signal transmission device that transmits flaw detection signals from the ultrasonic probe 18 to the outside.

次にこの発明の動作について説明する。まず、
駆動モーター12を駆動し、ベルト13、ベルト
プーリー11を介して回転枠5を回転させる。こ
の回転枠15の回転により中空軸16も回転す
る。この中空軸16の回転に連動して中空軸16
に探傷信号中継体7を介して中空軸16内の軸長
手方向に延在して取り付けられた探触子ホルダ1
7とその探触子ホルダ17に組み込まれた超音波
探触子18が回転する。次いで、検査ラインから
被探傷材5が搬送され、ピンチローラー14によ
り被探傷材5の芯合せが行なわれて探触子ホルダ
17の中心を通過する。被探傷材5が探触子ホル
ダ17の中心を通過する際、給水装置10から探
傷水を給水し超音波探触子18と被探傷材5の〓
間に充満させる。このように回転中の探触子ホル
ダ17の中心を被探傷材5が通過することにより
探触子ホルダ17に組み込まれた超音波探触子1
8によつて被探傷材5をスパイラル状に探傷す
る。超音波探触子18からの探傷信号は探傷信号
中継体7を経て信号伝達装置19の回転部19a
から固定部19bに伝達されて外部に引き出され
る。
Next, the operation of this invention will be explained. first,
The drive motor 12 is driven to rotate the rotating frame 5 via the belt 13 and belt pulley 11. This rotation of the rotating frame 15 also causes the hollow shaft 16 to rotate. In conjunction with the rotation of this hollow shaft 16, the hollow shaft 16
The probe holder 1 is attached to extend in the longitudinal direction of the hollow shaft 16 via the flaw detection signal relay body 7.
7 and the ultrasonic probe 18 incorporated in its probe holder 17 rotate. Next, the material 5 to be tested is transported from the inspection line, aligned by the pinch roller 14, and passed through the center of the probe holder 17. When the material 5 to be tested passes through the center of the probe holder 17, water is supplied from the water supply device 10 to separate the ultrasonic probe 18 and the material 5 to be tested.
fill in between. As the test material 5 passes through the center of the rotating probe holder 17, the ultrasonic probe 1 is assembled into the probe holder 17.
8, the material 5 to be flawed is tested in a spiral manner. The flaw detection signal from the ultrasonic probe 18 passes through the flaw detection signal relay body 7 to the rotating part 19a of the signal transmission device 19.
from there to the fixed part 19b and drawn out.

ところで、支持枠1の内周側に軸受4を介して
回転枠15を配設し、回転枠15の内周側に中空
軸16を配設し、超音波探触子18が組み込まれ
た探触子ホルダ17を中空軸16の内周側の軸長
手方向に延在させて配設し、信号伝達装置19を
中空軸16と回転枠15との間に配設しているの
で、装置全長を短縮することができる。これに伴
い第3図に示すようにピンチローラー14の設置
間隙をl1からl2にすることにより被探傷材5の弓
曲りによる中心ズレ量をδ1からδ2に小さくするこ
とができるので、被探傷材5が探触子ホルダ17
に接触することなく探傷できる。さらに、弓曲り
許容値を大きくした被探傷材5の探傷も行なうこ
とができる。
By the way, a rotating frame 15 is disposed on the inner circumferential side of the support frame 1 via a bearing 4, a hollow shaft 16 is disposed on the inner circumferential side of the rotating frame 15, and an ultrasonic probe 18 is incorporated. Since the tentacle holder 17 is arranged to extend in the longitudinal direction of the inner peripheral side of the hollow shaft 16, and the signal transmission device 19 is arranged between the hollow shaft 16 and the rotating frame 15, the overall length of the device is can be shortened. Accordingly, as shown in FIG. 3, by changing the installation gap of the pinch roller 14 from l 1 to l 2 , the amount of center deviation due to arching of the test material 5 can be reduced from δ 1 to δ 2 . , the material to be tested 5 is the probe holder 17
Flaws can be detected without touching the surface. Furthermore, it is also possible to perform flaw detection on the material 5 to be tested with a large bow bending tolerance.

尚、上記実施例における信号伝達装置19とし
ては回転部19aが回転コイル、固定部19bが
固定コイルからなるトランスにより構成されたも
のでもよく、あるいは回転部19aをスリツプリ
ング、固定部19bをブラシとした構成のもので
もよく、上記実施例と同様の効果を奏する。
The signal transmission device 19 in the above embodiment may be constructed by a transformer in which the rotating part 19a is a rotating coil and the fixed part 19b is a fixed coil, or the rotating part 19a may be a slip ring and the fixed part 19b may be a brush. It may also have a configuration similar to that of the above embodiment.

ところで上記実施例では超音波探傷による自動
探傷装置について述べたが、これに限らず磁気探
傷による自動探傷装置、電気的探傷による自動探
傷装置、光学的探傷による自動探傷装置等につい
てもこの発明を適用し得ることができる。
By the way, in the above embodiment, an automatic flaw detection device using ultrasonic flaw detection was described, but the present invention is not limited to this, but can also be applied to an automatic flaw detection device using magnetic flaw detection, an automatic flaw detection device using electrical flaw detection, an automatic flaw detection device using optical flaw detection, etc. can be done.

この発明は以上説明した通り、環状の回転枠を
支持枠の内周側に軸受を介して回転自在に支承
し、回転枠の内周側に中空軸を同心状に配置して
回転枠に支持させ、中空軸の内周側に被探傷材の
欠陥を探傷するセンサーが軸方向に複数個配列さ
れたホルダを同心材に且つ中空軸内で軸長手方向
に配置してホルダが中空軸と連動して回転するよ
うに中空軸に支持させ、一端部が支持枠に支持さ
れた支持体の他端部を中空軸と回転枠との間に延
在させ、支持体に支持された固定部と中空軸また
は回転枠に支持され且つ固定部と電気的に共働す
る回転部とからなる信号伝達装置を中空軸と回転
枠との間に位置させたことにより、装置全長を短
縮することができる自動探傷装置を得ることがで
きる。
As explained above, this invention includes an annular rotating frame rotatably supported on the inner circumferential side of the supporting frame via a bearing, and a hollow shaft arranged concentrically on the inner circumferential side of the rotating frame and supported by the rotating frame. A holder in which multiple sensors for detecting defects in the material to be detected are arranged in the axial direction on the inner peripheral side of the hollow shaft is arranged concentrically and in the longitudinal direction of the shaft within the hollow shaft, and the holder interlocks with the hollow shaft. The other end of the support is supported by the support frame, and the other end of the support is extended between the hollow shaft and the rotating frame, and the fixed part supported by the support is The overall length of the device can be shortened by locating the signal transmission device between the hollow shaft and the rotating frame, which is supported by the hollow shaft or the rotating frame and consists of a rotating part that electrically cooperates with the fixed part. Automatic flaw detection equipment can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の自動探傷装置を示す断面側面
図、第2図はこの発明の一実施例による自動探傷
装置を示す断面側面図、第3図は被探傷材の曲り
を示す側面図である。 図において、1は支持枠、4は軸受、5は被探
傷材、15は回転枠、16は中空軸、17はホル
ダ、18はセンサー、19は信号伝達装置、20
は支持体である。尚、図中同一符号は同一または
相当部分を示す。
FIG. 1 is a cross-sectional side view showing a conventional automatic flaw detection device, FIG. 2 is a cross-sectional side view showing an automatic flaw detection device according to an embodiment of the present invention, and FIG. 3 is a side view showing the bending of a material to be tested. . In the figure, 1 is a support frame, 4 is a bearing, 5 is a material to be tested, 15 is a rotating frame, 16 is a hollow shaft, 17 is a holder, 18 is a sensor, 19 is a signal transmission device, 20
is the support. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 支持枠の内周側に軸受を介して回転自在に支
承された環状の回転枠、この回転枠に支持され且
つ上記回転枠の内周側に同心状に配置された中空
軸、この中空軸に連動して回転するように支持さ
れると共に上記中空軸の内周側に同心状に且つ上
記中空軸内で軸方向に配置され内周部を被探傷材
が通過する環状のホルダ、このホルダ内に軸方向
に複数個配列された上記被探傷材の欠陥を探傷す
るセンサー、一端部が上記支持枠に支持され他端
部が上記中空軸と上記回転枠との間に延在する支
持体、上記中空軸と上記回転枠との間に位置し、
上記支持体に支持された固定部と上記中空軸また
は上記回転枠に支持され且つ上記固定部と電気的
に共働する回転部とからなり、上記センサーから
の探傷信号を外部へ伝達する信号伝達装置を備え
たことを特徴とする自動探傷装置。 2 信号伝達装置は回転部が回転コイル、固定部
が固定コイルからなるトランスにより構成された
ことを特徴とする特許請求の範囲第1項記載の自
動探傷装置。 3 センサーは超音波探触子を用いたことを特徴
とする特許請求の範囲第1項または第2項記載の
自動探傷装置。
[Scope of Claims] 1. An annular rotating frame that is rotatably supported on the inner circumferential side of the support frame via a bearing, and an annular rotating frame that is supported by the rotating frame and arranged concentrically on the inner circumferential side of the rotating frame. a hollow shaft, supported so as to rotate in conjunction with the hollow shaft, and disposed concentrically on the inner peripheral side of the hollow shaft and axially within the hollow shaft, through which the material to be tested passes through the inner peripheral portion; an annular holder, a plurality of sensors arranged in the axial direction in the holder to detect defects in the material to be detected, one end supported by the support frame and the other end between the hollow shaft and the rotating frame; a support extending between the hollow shaft and the rotating frame;
A signal transmission device comprising a fixed part supported by the support body and a rotating part supported by the hollow shaft or the rotating frame and electrically cooperating with the fixed part, and transmits the flaw detection signal from the sensor to the outside. An automatic flaw detection device characterized by being equipped with a device. 2. The automatic flaw detection device according to claim 1, wherein the signal transmission device is constituted by a transformer in which the rotating part is a rotating coil and the fixed part is a fixed coil. 3. The automatic flaw detection device according to claim 1 or 2, wherein the sensor uses an ultrasonic probe.
JP57054017A 1982-03-30 1982-03-30 Automatic flaw detecting device Granted JPS58168959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57054017A JPS58168959A (en) 1982-03-30 1982-03-30 Automatic flaw detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57054017A JPS58168959A (en) 1982-03-30 1982-03-30 Automatic flaw detecting device

Publications (2)

Publication Number Publication Date
JPS58168959A JPS58168959A (en) 1983-10-05
JPH0155413B2 true JPH0155413B2 (en) 1989-11-24

Family

ID=12958809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57054017A Granted JPS58168959A (en) 1982-03-30 1982-03-30 Automatic flaw detecting device

Country Status (1)

Country Link
JP (1) JPS58168959A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660893B2 (en) * 1988-12-26 1994-08-10 日本ニユクリア・フユエル株式会社 Ultrasonic inspection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253485A (en) * 1975-10-28 1977-04-30 Toshiba Corp Ultrasonic flow detection apparatus
JPS58161861A (en) * 1982-03-19 1983-09-26 Mitsubishi Electric Corp Automatic flaw detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253485A (en) * 1975-10-28 1977-04-30 Toshiba Corp Ultrasonic flow detection apparatus
JPS58161861A (en) * 1982-03-19 1983-09-26 Mitsubishi Electric Corp Automatic flaw detector

Also Published As

Publication number Publication date
JPS58168959A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
JP2503000Y2 (en) Rotating probe ultrasonic flaw detector
US4969361A (en) Ultrasonic flaw detecting method and apparatus for structural balls
US4562738A (en) Automatic flaw detection device
JPH0155412B2 (en)
CN106226396A (en) Gas cylinder ultrasonic thickness measuring defectoscope
US2998566A (en) Apparatus for electro-magnetic inspection
JPH0155413B2 (en)
JPH11183441A (en) Rotary eddy current flaw detector
JPH03115970A (en) Automatic ultrasonic flaw inspecting device for ball
US4409549A (en) Carriage mounted apparatus for detecting surface defects in flat surfaced metallic objects
JPS5999307A (en) Apparatus for detecting configuration of end of steel pipe
JPH02218953A (en) Apparatus for inspecting leak magnetic flux of pipe inner surface
JPH0429411Y2 (en)
JPH07191001A (en) Ultrasonic flow detector
JP2015004530A (en) Ultrasonic wave inspection method and device for round-bar steel
JPS5888652A (en) Ultrasonic flaw detector
JPH02173563A (en) Ultrasonic inspection detector
JPS6255100B2 (en)
JPS6113968Y2 (en)
SU1326982A1 (en) Scanning device for flaw detection of internal surfaces of tubes
JPH1048187A (en) Inspection apparatus for pipe
JPS635007Y2 (en)
JPH0429410Y2 (en)
JPH02216451A (en) Flaw detecting device
JPH0342629B2 (en)