JPH0153343B2 - - Google Patents

Info

Publication number
JPH0153343B2
JPH0153343B2 JP59172681A JP17268184A JPH0153343B2 JP H0153343 B2 JPH0153343 B2 JP H0153343B2 JP 59172681 A JP59172681 A JP 59172681A JP 17268184 A JP17268184 A JP 17268184A JP H0153343 B2 JPH0153343 B2 JP H0153343B2
Authority
JP
Japan
Prior art keywords
weight
alloy
binder phase
based alloy
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59172681A
Other languages
Japanese (ja)
Other versions
JPS6152341A (en
Inventor
Taijiro Sugisawa
Hironori Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP17268184A priority Critical patent/JPS6152341A/en
Publication of JPS6152341A publication Critical patent/JPS6152341A/en
Publication of JPH0153343B2 publication Critical patent/JPH0153343B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔差業上の利用分野〕 この発明は、特に高温で耐腐食性に優れ、かつ
耐摩耗性の優れたCo−Cr−Fe−C系の新規な焼
結合金に関するものである。 〔従来の技術〕 Co−Cr−Fe−C系耐熱合金(組成は、Cr:10
〜50重量%、Fe:10〜30重量%、C:0.05〜0.2
重量%、残りがCo及び不可避不純物)は、高Cr
含有合金で耐高温腐食性に優れることから、溶解
法で製造されて、重油燃焼用ノズルなどで一部実
用化されている。 〔発明が解決しようとする問題点〕 しかし、この系の合金はMoやWのような炭化
物形成成分を含んでおらず、またC値を低くおさ
えているため、M23C6、M7C3、M6C、MC等の炭
化物や金属間化合物の析出が少ないので、高温強
度が低く、高温での耐摩耗性が低いという欠点を
有していた。 〔問題点を解決するための手段〕 本発明者らは、Co−Cr−Fe−C系合金の耐高
温腐食性を活かしながら、この合金の欠点である
高温での耐摩耗性及び高温強度を改良すべく種々
研究を行なつた結果、特定の組成を有するCo−
Cr−Fe−C系合金に、特定の割合で元素周期律
表の4a、5a及び6a族金属のうちの1種以上の金
属の炭化物、窒化物若しくは炭窒化物、又は、こ
れらの2種以上を含有させることにより、前記目
的が達成でき、しかも、高温での耐腐食性と耐摩
耗性の両特性を向上させることができることを見
い出した。 この発明は、以上の知見に基いて発明されたも
のであり、 (1) 硬質分散相として、元素周期律表の4a、5a
及び6a族金属のうちの1種以上の金属の炭化
物、窒化物若しくは炭窒化物、又は、これらの
2種以上:3〜30%と、 結合相として、Co基合金:97〜70%とから
なる組成(以上、重量%)を有し、 しかも、前記の結合相としてのCo基合金は、 Cr:20〜40%、 Fe:10〜30%、 C:0.2〜3.0% を含有し、残りがCoおよび不可避不純物から
なる組成(以上、重量%)を有する超耐高温腐
食耐摩耗性焼結合金。 (2) 硬質分散相が窒化チタンであり、結合相とし
てのCo基合金が Cr:20〜35%、 Fe:15〜25%、 C:0.2〜1.0% を含有し、残りがCoおよび不可避不純物から
なる組成(以上、重量%)を有するものであ
り、そして焼結合金が窒化チタン:10〜30%
と、結合相としてのCo基合金:90〜70%とか
らなる組成(以上、重量%)を有する特許請求
の範囲第1項記載の超耐高温腐食耐摩耗焼結合
金。 (3) 硬質分散相が炭窒化チタンであり、結合相と
してのCo基合金が Cr:20〜35%、 Fe:15〜25%、 C:0.5〜2.5% を含有し、残りがCoおよび不可避不純物から
なる組成(以上、重量%)を有するものであ
り、そして焼結合金が炭窒化チタン:10〜30%
と、結合相としてのCo基合金:90〜70%とか
らなる組成(以上、重量%)を有する特許請求
の範囲第1項記載の超耐高温腐食耐摩耗焼結合
金。 (4) 硬質分散相が炭化バナジウムと窒化チタンと
からなり、結合相としてのCo基合金が Cr:20〜35%、 Fe:15〜25%、 C:0.5〜2.5% を含有し、残りがCoおよび不可避不純物から
なる組成(以上、重量%)を有するものであ
り、そして焼結合金が炭化バナジウム:3〜10
%と窒化チタン:5〜20%と、結合相としての
Co基合金:92〜70%とからなる組成(以上、
重量%)を有する特許請求の範囲第1項記載の
超耐高温腐食耐摩耗焼結合金 に特徴を有するものである。 以下、この発明の構成を説明する。 (a) 硬質分散相 (a‐1) 成分 硬質分散相を形成する成分は、元素周期律
表の4a、5a及び6a族金属のうちの1種以上
の金属の炭化物、窒化物若しくは炭窒化物、
又は、これらの2種以上である。元素周期律
表の4a、5a及び6a族金属のうちの1種以上
の金属の炭化物、窒化物若しくは炭窒化物と
は、元素周期律表の4a、5a及び6a族金属の
うちの単独の金属の炭化物、窒化物及び炭窒
化物と、元素周期律表の4a、5a及び6a族金
属のうちの2種以上の金属の複合金属炭化物
(固溶体)、複合金属窒化物(固溶体)及び複
合金属炭窒化物(固溶体)の両方を意味す
る。そして、これらの2種以上とは、前記の
化合物が2種以上混在することを意味する。
これらのなかでも、窒化チタン(以下、
TiNで示す)、炭窒化チタン(以下、TiCN
で示す)及び炭化バナジウム(以下、VCで
示す)とiNの組合せが好ましい。 (a‐2) 平均粒径 硬質分散相の平均粒径は5μm以下が望ま
しい。その平均粒径が5μmを越えると、焼
結合金の強度が低下する傾向があるからであ
る。 (a‐3) 含有率 硬質分散相としての、元素周期律表の4a、
5a及び6a族金属のうちの1種以上の金属の
炭化物、窒化物若しくは炭窒化物は、この発
明の焼結合金の高温での耐摩耗性を著しく向
上させる効果を奏するが、その含有率が3重
量%未満では所望の効果が得られず、一方、
その含有率が30重量%を越えると、焼結合金
の靭性が低下してしまうので、硬質分散相と
しての前記化合物の含有率を3〜30重量%と
定めた。 (b) 結合相 (b‐1) 組織 この発明の結合相としてのCo−Cr−Fe−
C系合金は、Cr23C6及びCr7C3と金属相とか
らなる。 (b‐2) 含有率 結合相としてのCo−Cr−Fe−C系合金
は、この発明の焼結合金の靭性及び耐高温腐
食性を高める効果を奏するが、その含有率が
70重量%未満では、前記所望の効果が得られ
ず、一方、その含有率が97重量%を越える
と、焼結合金の高温における耐摩耗性が低下
してしまうので、結合相としてのCo−Cr−
Fe−C系合金の含有率を97〜70重量%と定
めた。 (b‐3) 組成 (i) Cr Crはこの発明の焼結合金において、高
温での耐腐食性を高める効果を有するが、
結合相としてのCo基合金中のCrの含有量
が20重量%未満では前記所望の効果が得ら
れず、一方、40重量%を越えると、焼結合
金の靭性が低下してしまうし、又、高温腐
食性雰囲気での耐摩耗性が再び低下するの
で、結合相としてのCo基合金中のCrの含
有量を20〜40重量%と定めた。 (ii) Fe Feは、この発明の焼結合金において、
硬質分散相を形成する成分の粒子の分散を
良くし、焼結合金の常温の強度を高める効
果を奏するが、結合相としてのCo基合金
中のFeの含有量が10重量%未満では、前
記所望の効果が得られないし、一方、30重
量%を越えると、焼結合金の高温での硬
さ、ひいては高温での耐摩耗性が低下して
しまうので、結合相としてのCo基合金中
のFeの含有量を10〜30重量%と定めた。 (iii) C Cは、Crと炭化物を形成して、結合相
としてのCo基合金の高温強度及び高温に
おける硬さひいては耐摩耗性を高め、した
がつて焼結合金の高温強度と高温における
耐摩耗性を向上させる作用を有するが、結
合相としてのCo基合金中のCの含有量が
0.2重量%未満では前記所望の効果が得ら
れず、一方、3.0重量%を越えると、結合
相としてのCo基合金の靭性が低下し、焼
結合金全体の靭性も低下してしまうし、
又、高温腐食性雰囲気での耐摩耗性も再び
低下するので、結合相としてのCo基合金
中のCの含有量を0.2〜3.0重量%と定め
た。 〔発明の附帯的事項〕 この発明の超耐高温腐食耐摩耗焼結合金の製造
方法は、まず、結合相形成成分としてのCo基合
金粉末を製造することから始まる。結合相形成成
分としてのCo基合金粉末の調製方法としては、
所定組成の溶融Co基合金をアトマイズして微粉
末を作る方法か、あるいはCoの酸化物、Crの酸
化物、Feの酸化物等の酸化物粉末と炭素粉末の
混合物を水素雰囲気中で加熱して共還元して微粉
末を調整する方法がよい。 次に、この結合相としてのCo基合金粉末に、
元素周期律表の4a、5a及び6a族金属のうちの1
種以上の金属の炭化物、窒化物若しくは炭窒化
物、又は、これらの2種以上を添加して、変性ア
ルコール等の溶剤中で湿式混合し、乾燥した後、
好ましくはプレス圧10〜30Kg/mm2の圧力で機械プ
レスするか静水圧プレスし、次に、好ましくは真
空度10-3〜10-1torrの真空中又は1〜760torrの還
元雰囲気中で、好ましくは1230〜1350℃の温度で
0.5〜3時間焼結する。 更に、必要に応じて、1200〜1300℃の温度、
1000〜2000気圧の不活性ガス圧力で熱間静水圧プ
レスを行なうと、空孔が減少し、焼結合金の強度
が一段と向上する。 〔実施例〕 以下、実施例においてこの発明の焼結合金を具
体的に示す。 実施例 1 Cr2O3:29重量%、Fe3O4:20重量%、
Co3O4:49.5重量%及びC:1.5重量%の混合物を
流量5/分の水素気流中で1230℃の温度で1時
間共還元することによつて、合金組成がCr:28
重量%、Fe:20重量%、C:0.5重量%、残りが
Coからなり、平均粒径が2.0μmの結合相形成成
分としてのCo基合金の粉末を調整した。 この結合相形成成分としてのCo基合金の粉末
85重量%と、硬質分散相形成成分としてTiN粉
末(平均粒径1.0μm)15重量%あるいはTiCN粉
末(平均粒径:1.0μm)15重量%の混合物を、そ
れぞれボールミルにてアルコール中72時間湿式混
合し、乾燥した後、この混合粉末をそれぞれプレ
ス圧力20Kg/mm2の圧力でプレス成形し、次いでい
ずれも10-2torrの真空中で1220℃で1時間焼結し
て、密度比98%の焼結体とした。 更に、この焼結体を1200℃の温度、1000気圧の
Arガス中で1時間熱間静水圧プレスを行ない、
配合組成と実質的に同じ組成を有する密度比100
%の緻密な本発明焼結合金を製造した(以下、硬
質分散相がTiNのものを本発明焼結合金1、硬
質分散相がTiCNのものを本発明焼結合金2とい
う)。 同様な方法によつて、TiNもTiCNも含有しな
い結合相としてのCo基合金のみの焼結体である
比較焼結合金1を製造した。 又、溶解法によつて製造し、本発明焼結合金中
の結合相としてのCo基合金の組成と近似した組
成を有する耐熱合金のUMCo−50(組成は、Cr:
28重量%、Fe:20重量%、C:0.1重量%、残り
がCo;以下、従来合金という)も比較として用
いた。 これらの各種合金から100mm×100mm×10mmの大
きさの角板を作成し、これをSO2を含む雰囲気
(SO2濃度:50%)中で1000℃に加熱して、この
角板にAl2O3粒子の噴射流(噴出圧力:10Kg/
cm2、噴出ノズルと試験体の距離:50mm)を30分間
当てて、角板の重量減少量を測定することによつ
て、高温腐食性雰囲気中での耐摩耗性を評価し
た。 この結果を第1表に示した。 実施例 2 ガスアトマイズ法により製造した平均粒径が
3.5μmで第2表記載の組成を有する結合相形成成
分としてのCo基合金粉末と、平均粒径を1.2μm
に揃えた第2表記載の各種の硬質分散相形成成分
を用意し、第2表記載の配合組成に配合し、第2
表記載の焼結条件及び熱間静水圧プレス条件でそ
れぞれ焼結及び熱間静水圧プレスして、配合組成
と実質的に同じ組成を有する本発明焼結合金3〜
44及び比較焼結合金2〜9を製造した。なお、比
較焼結合金は、本発明焼結合金の組成範囲から
[Differential Field of Application] The present invention relates to a new Co-Cr-Fe-C based sintered alloy that has excellent corrosion resistance and wear resistance, particularly at high temperatures. [Prior art] Co-Cr-Fe-C heat-resistant alloy (composition is Cr: 10
~50% by weight, Fe: 10~30% by weight, C: 0.05~0.2
weight%, the remainder being Co and unavoidable impurities) is high Cr
Because the containing alloy has excellent high-temperature corrosion resistance, it is manufactured by a melting method and is partially put into practical use, such as in heavy oil combustion nozzles. [Problems to be solved by the invention] However, this type of alloy does not contain carbide-forming components such as Mo and W, and the C value is kept low, so M 23 C 6 , M 7 C Since there is little precipitation of carbides and intermetallic compounds such as 3 , M 6 C, and MC, it has the drawbacks of low high-temperature strength and low wear resistance at high temperatures. [Means for solving the problem] The present inventors took advantage of the high-temperature corrosion resistance of the Co-Cr-Fe-C alloy while eliminating the drawbacks of this alloy, such as wear resistance and high-temperature strength. As a result of various studies aimed at improving Co-
Cr-Fe-C based alloy contains carbides, nitrides, or carbonitrides of one or more metals from Groups 4a, 5a, and 6a of the Periodic Table of the Elements, or two or more of these metals, in a specific proportion. It has been found that the above object can be achieved by including the above objects, and both corrosion resistance and wear resistance at high temperatures can be improved. This invention was invented based on the above knowledge. (1) As a hard dispersed phase, 4a and 5a of the periodic table of elements are used.
and carbides, nitrides, or carbonitrides of one or more metals of Group 6a metals, or two or more of these: 3 to 30%, and a Co-based alloy as a binder phase: 97 to 70%. Moreover, the Co-based alloy as the binder phase contains Cr: 20 to 40%, Fe: 10 to 30%, C: 0.2 to 3.0%, and the remainder An ultra-high-temperature corrosion-resistant and wear-resistant sintered alloy with a composition (more than % by weight) consisting of Co and unavoidable impurities. (2) The hard dispersed phase is titanium nitride, and the Co-based alloy as the binder phase contains Cr: 20-35%, Fe: 15-25%, C: 0.2-1.0%, and the rest is Co and inevitable impurities. (by weight), and the sintered alloy is titanium nitride: 10 to 30%
and 90 to 70% Co-based alloy as a binder phase (weight %). (3) The hard dispersed phase is titanium carbonitride, and the Co-based alloy as the binder phase contains Cr: 20-35%, Fe: 15-25%, C: 0.5-2.5%, and the remainder is Co and unavoidable It has a composition (above, weight %) consisting of impurities, and the sintered alloy is titanium carbonitride: 10 to 30%
and 90 to 70% Co-based alloy as a binder phase (weight %). (4) The hard dispersed phase consists of vanadium carbide and titanium nitride, and the Co-based alloy as the binder phase contains Cr: 20-35%, Fe: 15-25%, C: 0.5-2.5%, and the remainder is It has a composition (above, weight %) consisting of Co and inevitable impurities, and the sintered alloy is vanadium carbide: 3 to 10
% and titanium nitride: 5-20% and as a binder phase.
Co-based alloy: Composition consisting of 92 to 70% (more than
% by weight). The configuration of this invention will be explained below. (a) Hard dispersed phase (a-1) Component The component forming the hard dispersed phase is a carbide, nitride, or carbonitride of one or more metals from Groups 4a, 5a, and 6a of the Periodic Table of Elements. ,
Or two or more of these. A carbide, nitride or carbonitride of one or more metals from groups 4a, 5a and 6a of the Periodic Table of the Elements refers to a single metal from groups 4a, 5a and 6a of the Periodic Table of the Elements. carbides, nitrides, and carbonitrides, and composite metal carbides (solid solutions), composite metal nitrides (solid solutions), and composite metal carbons of two or more metals from groups 4a, 5a, and 6a of the periodic table of the elements. It means both nitride (solid solution). The expression "two or more kinds" means that two or more kinds of the above-mentioned compounds are mixed.
Among these, titanium nitride (hereinafter referred to as
TiN), titanium carbonitride (TiCN)
) and a combination of vanadium carbide (hereinafter referred to as VC) and iN are preferred. (a-2) Average particle size The average particle size of the hard dispersed phase is preferably 5 μm or less. This is because if the average particle size exceeds 5 μm, the strength of the sintered alloy tends to decrease. (a-3) Content 4a of the periodic table of elements as a hard dispersed phase,
Carbides, nitrides, or carbonitrides of one or more metals from group 5a and 6a metals have the effect of significantly improving the high-temperature wear resistance of the sintered alloy of the present invention. If it is less than 3% by weight, the desired effect cannot be obtained;
If the content exceeds 30% by weight, the toughness of the sintered alloy decreases, so the content of the compound as a hard dispersed phase was set at 3 to 30% by weight. (b) Bonded phase (b-1) Structure Co−Cr−Fe− as the binder phase of this invention
The C-based alloy consists of Cr 23 C 6 and Cr 7 C 3 and a metal phase. (b-2) Content The Co-Cr-Fe-C alloy as a binder phase has the effect of increasing the toughness and high-temperature corrosion resistance of the sintered alloy of this invention, but the content
If the content is less than 70% by weight, the desired effect cannot be obtained, while if the content exceeds 97% by weight, the wear resistance of the sintered alloy at high temperatures will decrease. Cr−
The content of the Fe-C alloy was determined to be 97 to 70% by weight. (b-3) Composition (i) Cr Cr has the effect of increasing corrosion resistance at high temperatures in the sintered alloy of this invention, but
If the content of Cr in the Co-based alloy as a binder phase is less than 20% by weight, the above-mentioned desired effect cannot be obtained, while if it exceeds 40% by weight, the toughness of the sintered alloy will decrease, and Since the wear resistance in a high-temperature corrosive atmosphere decreases again, the content of Cr in the Co-based alloy as a binder phase was set at 20 to 40% by weight. (ii) Fe Fe is, in the sintered alloy of this invention,
This has the effect of improving the dispersion of the particles of the components forming the hard dispersed phase and increasing the strength of the sintered alloy at room temperature. However, if the Fe content in the Co-based alloy as a binder phase is less than 10% by weight, On the other hand, if the amount exceeds 30% by weight, the hardness of the sintered alloy at high temperatures and the wear resistance at high temperatures will decrease. The content of Fe was determined to be 10 to 30% by weight. (iii) C C forms carbides with Cr to improve the high-temperature strength and hardness at high temperatures of the Co-based alloy as a binder phase, as well as the wear resistance, and therefore improves the high-temperature strength and high-temperature resistance of the sintered alloy. It has the effect of improving wear resistance, but the content of C in the Co-based alloy as a binder phase is
If it is less than 0.2% by weight, the desired effect cannot be obtained, while if it exceeds 3.0% by weight, the toughness of the Co-based alloy as a binder phase will decrease, and the toughness of the sintered alloy as a whole will also decrease.
Furthermore, since the wear resistance in a high-temperature corrosive atmosphere decreases again, the content of C in the Co-based alloy as a binder phase was determined to be 0.2 to 3.0% by weight. [Additional Matters to the Invention] The method for producing an ultra-high-temperature corrosion-resistant, wear-resistant sintered alloy of the present invention begins with producing Co-based alloy powder as a binder phase forming component. The method for preparing Co-based alloy powder as a binder phase forming component is as follows:
Either by atomizing a molten Co-based alloy with a predetermined composition to produce fine powder, or by heating a mixture of oxide powder such as Co oxide, Cr oxide, Fe oxide, etc. and carbon powder in a hydrogen atmosphere. It is better to prepare a fine powder by co-reduction. Next, to this Co-based alloy powder as a binder phase,
One of the metals of groups 4a, 5a and 6a of the periodic table of elements
After adding one or more metal carbides, nitrides, or carbonitrides, or two or more of these, wet-mixing in a solvent such as denatured alcohol, and drying,
Preferably, mechanical pressing or isostatic pressing is carried out at a pressure of 10 to 30 Kg/mm 2 , and then preferably in a vacuum of 10 −3 to 10 −1 torr or in a reducing atmosphere of 1 to 760 torr, Preferably at a temperature of 1230-1350℃
Sinter for 0.5-3 hours. Furthermore, if necessary, the temperature of 1200~1300℃,
Hot isostatic pressing at an inert gas pressure of 1,000 to 2,000 atmospheres reduces pores and further improves the strength of the sintered alloy. [Example] Hereinafter, the sintered alloy of the present invention will be specifically shown in Examples. Example 1 Cr2O3 : 29% by weight , Fe3O4 : 20% by weight,
By co-reducing a mixture of 49.5% by weight of Co 3 O 4 and 1.5% by weight of C in a hydrogen stream at a flow rate of 5/min at a temperature of 1230°C for 1 hour, the alloy composition was reduced to Cr:28.
Weight%, Fe: 20% by weight, C: 0.5% by weight, the rest
A powder of a Co-based alloy as a binder phase-forming component consisting of Co and having an average particle size of 2.0 μm was prepared. Co-based alloy powder as the binder phase forming component
A mixture of 85% by weight and 15% by weight of TiN powder (average particle size: 1.0 μm) or 15% by weight of TiCN powder (average particle size: 1.0 μm) as a hard dispersed phase forming component was wet-processed in alcohol for 72 hours in a ball mill. After mixing and drying, the mixed powders were press-molded at a press pressure of 20 kg/mm 2 , and then sintered at 1220°C for 1 hour in a vacuum of 10 -2 torr to obtain a density ratio of 98%. It was made into a sintered body. Furthermore, this sintered body was heated at a temperature of 1200°C and a pressure of 1000 atm.
Hot isostatic pressing was carried out in Ar gas for 1 hour.
Density ratio 100 with substantially the same composition as the formulation composition
% (hereinafter, the one in which the hard dispersed phase is TiN is referred to as Invention Sintered Alloy 1, and the one in which the hard dispersed phase is TiCN is referred to as Invention Sintered Alloy 2). Comparative sintered alloy 1, which is a sintered body containing only a Co-based alloy as a binder phase containing neither TiN nor TiCN, was produced by a similar method. In addition, UMCo-50, a heat-resistant alloy manufactured by a melting method and having a composition similar to that of the Co-based alloy as the binder phase in the sintered alloy of the present invention (composition is Cr:
28% by weight, Fe: 20% by weight, C: 0.1% by weight, the remainder being Co; hereinafter referred to as conventional alloy) was also used for comparison. Square plates with dimensions of 100 mm x 100 mm x 10 mm are made from these various alloys, heated to 1000°C in an atmosphere containing SO 2 (SO 2 concentration: 50%), and Al 2 is applied to the square plates. Jet flow of O 3 particles (jet pressure: 10Kg/
cm 2 , distance between the jet nozzle and the specimen: 50 mm) for 30 minutes, and the weight loss of the square plate was measured to evaluate the wear resistance in a high-temperature corrosive atmosphere. The results are shown in Table 1. Example 2 The average particle size produced by gas atomization method was
Co-based alloy powder as a binder phase forming component having a composition listed in Table 2 with a diameter of 3.5 μm and an average particle size of 1.2 μm.
Prepare various hard dispersed phase forming components listed in Table 2, and mix them into the composition listed in Table 2.
Sintered alloys 3 to 3 of the present invention having substantially the same composition as the compounded composition obtained by sintering and hot isostatic pressing under the sintering conditions and hot isostatic pressing conditions listed in the table, respectively.
44 and comparative sintered alloys 2 to 9 were produced. The comparative sintered alloy is within the composition range of the sintered alloy of the present invention.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上、実施例1〜2からわかるように、本発明
焼結合金は、元素周期律表の4a、5a及び6a族金
属のうちの1種以上の金属の炭化物、窒化物及び
炭窒化物のいずれも含まない比較焼結合金1、従
来からある溶解冶金法によつて製造したCo基耐
熱合金、並びに組成がこの発明の範囲から外れた
比較焼結合金と比べて、高温腐食性雰囲気におけ
る耐摩耗性が優れており、又、高温強度も優れて
いることから、このような特性が要求される重油
燃焼用ノズルはもちろん一般の耐食耐摩耗部品あ
るいは切削工具としても有用である。
As can be seen from Examples 1 and 2, the sintered alloy of the present invention can be any one of carbides, nitrides, and carbonitrides of one or more metals from Groups 4a, 5a, and 6a of the Periodic Table of the Elements. Wear resistance in a high-temperature corrosive atmosphere compared to Comparative Sintered Alloy 1, which does not contain any of Since it has excellent properties and high-temperature strength, it is useful not only for heavy oil combustion nozzles, which require such properties, but also as general corrosion-resistant and wear-resistant parts or cutting tools.

Claims (1)

【特許請求の範囲】 1 硬質分散相として、元素周期律表の4a、5a
及び6a族金属のうちの1種以上の金属の炭化物、
窒化物若しくは炭窒化物、又は、これらの2種以
上:3〜30%と、 結合相として、Co基合金:97〜70%とからな
る組成(以上、重量%)を有し、 しかも、前記の結合相としてのCo基合金は、 Cr:20〜40%、 Fe:10〜30%、 C:0.2〜3.0% を含有し、残りがCoおよび不可避不純物からな
る組成(以上、重量%)を有することを特徴とす
る超耐高温腐食耐摩耗焼結合金。 2 硬質分散相が窒化チタンであり、結合相とし
てのCo基合金が Cr:20〜35%、 Fe:15〜25%、 C:0.2〜1.0% を含有し、残りがCoおよび不可避不純物からな
る組成(以上、重量%)を有するものであり、そ
して、焼結合金が窒化チタン:10〜30%と、結合
相としてのCo基合金:90〜70%とからなる組成
(以上、重量%)を有する特許請求の範囲第1項
記載の超耐高温腐食耐摩耗焼結合金。 3 硬質分散相が炭窒化チタンであり、結合相と
してのCo基合金が Cr:20〜35%、 Fe:15〜25%、 C:0.5〜2.5% を含有し、残りがCoおよび不可避不純物からな
る組成(以上、重量%)を有するものであり、そ
して、焼結合金が炭窒化チタン:10〜30%と、結
合相としてのCo基合金:90〜70%とからなる組
成(以上、重量%)を有する特許請求の範囲第1
項記載の超耐高温腐食耐摩耗焼結合金。 4 硬質分散相が炭化バナジウムと窒化チタンと
からなり、結合相としてのCo基合金が Cr:20〜35%、 Fe:15〜25%、 C:0.5〜2.5% を含有し、残りがCoおよび不可避不純物からな
る組成(以上、重量%)を有するものであり、そ
して、焼結合金が炭化バナジウム:3〜10%と窒
化チタン:5〜20%と、結合相としてのCo基合
金:92〜70%とからなる組成(以上、重量%)を
有する特許請求の範囲第1項記載の超耐高温腐食
耐摩耗焼結合金。
[Claims] 1. 4a and 5a of the periodic table of elements as the hard dispersed phase
and carbides of one or more metals of group 6a metals,
It has a composition (the above, weight %) consisting of 3 to 30% of nitride or carbonitride, or two or more thereof, and 97 to 70% of Co-based alloy as a binder phase, and the above-mentioned The Co-based alloy as a binder phase contains Cr: 20-40%, Fe: 10-30%, C: 0.2-3.0%, with the remainder consisting of Co and unavoidable impurities (wt%). An ultra-high-temperature corrosion-resistant and wear-resistant sintered alloy. 2 The hard dispersed phase is titanium nitride, and the Co-based alloy as the binder phase contains Cr: 20-35%, Fe: 15-25%, C: 0.2-1.0%, and the remainder consists of Co and inevitable impurities. The sintered alloy has a composition (above, weight %) of 10 to 30% titanium nitride and 90 to 70% Co-based alloy as a binder phase (above, weight %). An ultra-high temperature corrosion resistant, wear resistant sintered alloy according to claim 1. 3 The hard dispersed phase is titanium carbonitride, and the Co-based alloy as the binder phase contains Cr: 20-35%, Fe: 15-25%, C: 0.5-2.5%, and the rest is Co and inevitable impurities. The sintered alloy has a composition (by weight) of 10 to 30% titanium carbonitride and 90 to 70% Co-based alloy as a binder phase. %)
Super high-temperature corrosion-resistant and wear-resistant sintered alloy described in Section 1. 4 The hard dispersed phase consists of vanadium carbide and titanium nitride, and the Co-based alloy as the binder phase contains Cr: 20-35%, Fe: 15-25%, C: 0.5-2.5%, and the remainder is Co and It has a composition (the above, weight %) consisting of unavoidable impurities, and the sintered alloy is vanadium carbide: 3 to 10%, titanium nitride: 5 to 20%, and a Co-based alloy as a binder phase: 92 to 10%. 70% (by weight) of the super high temperature corrosion resistant and wear resistant sintered alloy according to claim 1.
JP17268184A 1984-08-20 1984-08-20 Wear resistant sintered alloy having very high corrosion resistance at high temperature Granted JPS6152341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17268184A JPS6152341A (en) 1984-08-20 1984-08-20 Wear resistant sintered alloy having very high corrosion resistance at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17268184A JPS6152341A (en) 1984-08-20 1984-08-20 Wear resistant sintered alloy having very high corrosion resistance at high temperature

Publications (2)

Publication Number Publication Date
JPS6152341A JPS6152341A (en) 1986-03-15
JPH0153343B2 true JPH0153343B2 (en) 1989-11-14

Family

ID=15946388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17268184A Granted JPS6152341A (en) 1984-08-20 1984-08-20 Wear resistant sintered alloy having very high corrosion resistance at high temperature

Country Status (1)

Country Link
JP (1) JPS6152341A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134039A (en) * 1988-04-11 1992-07-28 Leach & Garner Company Metal articles having a plurality of ultrafine particles dispersed therein

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552456A (en) * 1978-06-22 1980-01-09 Hirata Tounosuke Automatically opening and automatically opening and closing umbrella

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552456A (en) * 1978-06-22 1980-01-09 Hirata Tounosuke Automatically opening and automatically opening and closing umbrella

Also Published As

Publication number Publication date
JPS6152341A (en) 1986-03-15

Similar Documents

Publication Publication Date Title
DE60016634T2 (en) PREPARATION FOR FE-CR-AL ALLOYING AND SUCH ALLOYING
US5063021A (en) Method for preparing powders of nickel alloy and molybdenum for thermal spray coatings
US6066191A (en) Hard molybdenum alloy, wear resistant alloy and method for manufacturing the same
US4270952A (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
US8795448B2 (en) Wear resistant materials
JPS5867842A (en) Hard sintered alloy
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
US4948425A (en) Titanium carbo-nitride and chromium carbide-based ceramics containing metals
CN111690861B (en) Contains TiO2Cermet cutter material and preparation method thereof
KR100796649B1 (en) Ceramic and cermet having the second phase to improve toughness via phase separation from complete solid-solution phase and the method for preparing them
JPH0153343B2 (en)
KR101139745B1 (en) Method of making submicron cemented carbide
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
CN113462944A (en) Boron-doped (Ti, W, Mo, Nb, Ta) (C, N) -Co-Ni powder, cermet and preparation method
JP3232599B2 (en) High hardness cemented carbide
JP2000237903A (en) Cutting tool made of ti base carbon nitride cermet excellent in abration resistance
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JPH0118137B2 (en)
JPH0533098A (en) Cemented carbide
JPH0768600B2 (en) Compound boride sintered body
JP2626863B2 (en) Cemented carbide and its manufacturing method
US4092156A (en) Process for preparing titanium carbide base powder for cemented carbide alloys
JPS60131867A (en) High abrasion resistance superhard material
JPS6335706B2 (en)
JPH0754001A (en) Production of fine composite carbide powder for producing tungsten carbide base cemented carbide