JPH0153164B2 - - Google Patents

Info

Publication number
JPH0153164B2
JPH0153164B2 JP57067545A JP6754582A JPH0153164B2 JP H0153164 B2 JPH0153164 B2 JP H0153164B2 JP 57067545 A JP57067545 A JP 57067545A JP 6754582 A JP6754582 A JP 6754582A JP H0153164 B2 JPH0153164 B2 JP H0153164B2
Authority
JP
Japan
Prior art keywords
weight
parts
particle size
glass fibers
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57067545A
Other languages
Japanese (ja)
Other versions
JPS58183230A (en
Inventor
Ikuo Tsutsumi
Sadao Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP6754582A priority Critical patent/JPS58183230A/en
Publication of JPS58183230A publication Critical patent/JPS58183230A/en
Publication of JPH0153164B2 publication Critical patent/JPH0153164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/40Mixtures based upon bitumen or asphalt containing functional additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は、一様に揃つた粒径のプロピレン重合
体樹脂パウダーにガラス繊維と特定の添加剤を配
合して混合し、直接射出成形することによつて、
樹脂の劣化、可塑化時間の点で改良される外、樹
脂中へのガラス繊維の分散が著しく改善されて製
品重量のバラツキが著しく減少した成形体が得ら
れる、射出成形体の製造方法に関する。 プロピレン重合体樹脂は、軽く、機械的強度や
外観に優れ、成形も容易で入手し易いので各種の
分野で広く用いられている。 特に、自動車部品分野や建築部材分野あるいは
機械部品分野等においては、軽量化、コスト低減
化あるいは美観等の理由で部品のプラスチツク化
が進められており、強度の特に要求される部品に
ついては、ガラス繊維で補強された樹脂が一般に
用いられている。 プロピレン重合体樹脂をガラス繊維で補強した
射出成形体を製造する方法としては、一般には樹
脂のペレツト又はパウダーにガラス繊維を配合し
て溶融混練し、一旦1〜3mm程度の粒径のガラス
繊維を含有したペレツトにし、次いでそれを射出
成形する方法が採られている。 しかしながら、この方法では成形体を得るまで
に最低二度も熱履歴を受けるので、熱劣化による
機械的強度の低下や外観不良等を起こす上、製造
工程も複雑となつてしまう欠点を有している。 この欠点の改良のため、安定剤、ガラス繊維の
長さや集束剤等の改良検討が為されているが、十
分満足なものに至つていない。 また、一部にプロピレン重合体樹脂パウダーを
ガラス繊維と共に直接射出成形する方法も行なわ
れているが、従来の樹脂パウダーは、粒径が数μ
〜1500μと広くて、成形機のホツパーからスクリ
ユーへの喰い込みが悪く、押込機(例えばスクリ
ユー型)を必要とするものである上に、成形体の
製品重量のバラツキが大きいと言つた欠点があつ
た。 本発明は、これらの欠点を解消することを目的
にして為されたものであり、パウダーの直接射出
成形の長所を生かし、かつその欠点である製品重
量のバラツキの原因が、ガラス繊維の樹脂中の分
散不良に起因するとの考えに基づいて、鋭意検討
の結果到達したものである。 すなわち本発明は、(a)粒径が実質的に50〜
800μで、かつその70重量%の部分が200〜500μで
あるプロピレン重合体樹脂パウダー100重量部に、
(b)ガラス繊維5〜100重量部および(c)炭素数8〜
30の脂肪酸ないしはその誘導体0.01〜1重量部を
配合して該パウダーの未溶融状態で混合し、次い
で射出成形することを特徴とする射出成形体の製
造方法である。 本発明の方法によれば、上記の欠点を解消する
ばかりでなく、樹脂パウダーの可塑化時間が短く
なると言つた以外な効果も発現され、非常に合理
的に品質の良い成形体を得ることができる。 本発明で用いる上記(a)成分であるプロピレン重
合体樹脂パウダーは、粒径が実質的に50〜800μ
で、かつその70重量%の部分が200〜500μのもの
であり、プロピレンの単独重合体、過半重量のプ
ロピレンと他のα―オレフイン(エチレン、ブテ
ン―1、ヘキセン―1,4―メチルペンテン―1
等)との共重合体、あるいはこれらの重合体を不
飽和芳香族単量体、不飽和有機酸又はその誘導
体、不飽和ハロゲン化単量体等でグラフト変性し
たもの、ないしはこれら重合体の併用混合物等が
適当である。中でも、平均粒径が300〜400μのも
のが好ましい。 この様な樹脂パウダーは、一様に揃つた粒径の
ものなので、成形機のホツパーからスクリユーへ
の喰い込みが良好であり、押込機を不要とするも
のである。 また、本発明で用いる上記(b)成分であるガラス
繊維は、通常市販のものを適宜使用できるが、長
さは、1〜10mm程度のものが適当であり、特に5
〜7mm程度に揃つたものが良い。 更に、本発明で用いる上記(c)成分である脂肪酸
ないしはその誘導体は、炭素数8〜30のものであ
り、具体的には、カプリン酸、ラウリル酸、ミリ
スチン酸、パルミチン酸、ステアリン酸、ベヘン
酸、セロチン酸の脂肪酸あるいはこれらのエステ
ル、金属塩、アミド等である。中でも1〜3価の
金属の塩は好ましい。 これら三成分の配合割合は、(a)成分100重量部
に対して、(b)成分5〜100重量部、好ましくは10
〜50重量部および(c)成分0.01〜1重量部、好まし
くは0.05〜0.5重量部である。 本発明では、これらの成分の外に接着性成分
や、安定剤、着色剤、無機充填剤等を配合するこ
ともできる。特に、接着性成分としては、グリシ
ジル基やカルボニル基、シラノール基等の極性基
を含有する重合体を若干配合することにより、成
形体の機械的強度を著しく改良することができ
る。 次に、このような各成分を配合し、(a)成分が未
溶融の状態で、例えばVブレンダー、タンブラー
等の既存の方法で混合するが、各成分の配合順序
は特に限定されない。例えば、(a)成分と(b)成分を
混合してる際中に(c)成分を添加配合してもよい。 この後、これを射出成形する。成形条件は特に
限定されないが、好ましくは、スクリユー背圧を
上げ、成形温度も高めが良い。 実施例 ポリプロピレンパウダーとして、三菱油化社製
BC4Q(実質的な粒径が50〜800μ、かつその70重
量%の部分が200〜500μ、平均粒径350μ、メルト
フローレート5.5g/10分)と、同じくBC4P(実質
的な粒径が1〜1500μ、かつその70重量%の部分
が70〜1000μ、平均粒径500μ、メルトフローレー
ト5.5g/10分)の二種類の樹脂のそれぞれ100重
量部にガラス繊維(長さ6mm、集束数1000本、旭
フアイバーグラス社製MA411)を各25重量部ず
つ配合し、Vタンブラーで5分間混合した。この
混合の際、ステアリン酸カルシウムを0.25重量部
配合および配合せずに混合した。 この混合物を、日本製鋼所社製のインラインス
クリユー射出成形機(N100B)を用い、成形
温度260℃、射出圧力500Kg/cm2、射出時間15秒、
冷却時間20秒、スクリユー背圧50Kg/cm2にて射出
成形し、肉厚2mmで縦×横が125×35各mmのテス
トピースを成形した。 この成形において、射出前の樹脂可塑化の際に
可塑化に伴なつて射出樹脂量に見合う量(50g)
だけスクリユーが後退するようにリミツトスイツ
チをセツトしてあるが、可塑化前の位置からこの
リミツトスイツチまでスクリユーが後退するのに
要する時間を計測し、これを可塑化時間として評
価した。ただし、スクリユー回転数は70r・p.m
である。 可塑化時間が短い程、次の射出工程に早く移行
できる効果がある。 また、上記で用いたポリプロピレンパウダーの
一方である、BC4Pとガラス繊維およびステアリ
ン酸カルシウムを上記のものと同量配合して、
100mm径の単軸押出機で240℃にて造粒して得たペ
レツトについても同様に射出成形した。 このようにして得たテストピースについて次の
項目の評価を行なつた。 (1) ガラス繊維の分散状態 テストピースの表裏両表面を見て、ガラス繊維
の分散状態を目視にて判定した。判定基準は、集
束されたガラス繊維がほぐれずにはつきり白色で
残つている状態のものの数をかぞえて、次の4ラ
ンクとした。 優 : 0個 良 :1個 可 :2〜3個 不可:4個以上 (2) 成形品の重量バラツキ 上記により、テストピースを各試料毎に20個ず
つ成形し、それらの重量の標準偏差を求めた。 (3) メルトフローレート(MFR) JIS―K7210に準拠して、230℃、荷重2.16Kgで
測定。 これらの結果を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention involves mixing propylene polymer resin powder with a uniform particle size with glass fibers and specific additives, and directly injection molding the mixture.
This invention relates to a method for producing an injection molded article, which provides improvements in terms of resin deterioration and plasticization time, as well as significantly improved dispersion of glass fibers in the resin, resulting in a significantly reduced variation in product weight. Propylene polymer resins are widely used in various fields because they are light, have excellent mechanical strength and appearance, are easily molded, and are readily available. Particularly in the fields of automobile parts, building materials, and mechanical parts, parts are increasingly being made of plastic for reasons such as weight reduction, cost reduction, and aesthetics. Fiber-reinforced resins are commonly used. In general, the method for manufacturing injection molded articles made of propylene polymer resin reinforced with glass fibers is to blend glass fibers into resin pellets or powder, melt-knead them, and then add glass fibers with a particle size of about 1 to 3 mm. A method has been adopted in which the pellets are made into pellets and then injection molded. However, this method has the disadvantage that it undergoes thermal history at least twice before obtaining a molded product, which causes a decrease in mechanical strength and poor appearance due to thermal deterioration, and also complicates the manufacturing process. There is. In order to improve this drawback, studies have been made to improve the stabilizer, the length of the glass fibers, the sizing agent, etc., but this has not resulted in a fully satisfactory result. In addition, some methods involve direct injection molding of propylene polymer resin powder together with glass fiber, but conventional resin powder has a particle size of several micrometers.
It is wide at ~1500μ, has poor biting from the molding machine's hopper to the screw, requires a pushing machine (for example, a screw type), and has the disadvantages of large variations in the weight of the molded product. It was hot. The present invention has been made with the aim of eliminating these drawbacks, and takes advantage of the advantages of direct injection molding of powder, and also solves the problem of the dispersion in product weight caused by the inconsistency in the resin of glass fibers. This was reached as a result of extensive research, based on the idea that this is due to poor dispersion. That is, in the present invention, (a) the particle size is substantially 50~
100 parts by weight of a propylene polymer resin powder having a particle size of 800 μ and 70% by weight of the powder is from 200 to 500 μ;
(b) 5 to 100 parts by weight of glass fiber and (c) carbon number of 8 to 100 parts by weight
This is a method for producing an injection molded article, which comprises blending 0.01 to 1 part by weight of a fatty acid or a derivative thereof, mixing the powder in an unmolten state, and then injection molding. According to the method of the present invention, not only the above-mentioned drawbacks are solved, but also other effects such as shortening the plasticization time of the resin powder are achieved, and it is possible to obtain a molded article of high quality in a very rational manner. can. The propylene polymer resin powder, which is the component (a) used in the present invention, has a particle size of substantially 50 to 800 μm.
, and 70% by weight of it is from 200 to 500μ, consisting of propylene homopolymer, majority of the weight propylene and other α-olefins (ethylene, butene-1, hexene-1,4-methylpentene- 1
etc.), or these polymers are graft-modified with unsaturated aromatic monomers, unsaturated organic acids or their derivatives, unsaturated halogenated monomers, etc., or combinations of these polymers. A mixture etc. is suitable. Among these, those having an average particle size of 300 to 400 μ are preferable. Since such resin powder has a uniform particle size, it can be easily bited into the screw from the hopper of the molding machine, making a pusher unnecessary. In addition, as the glass fiber used in the present invention as the component (b), commercially available products can be used as appropriate, but the length is suitably about 1 to 10 mm, especially 5 mm.
It is best to have a uniform diameter of ~7mm. Furthermore, the fatty acid or derivative thereof which is the component (c) used in the present invention has 8 to 30 carbon atoms, and specifically includes capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and behenic acid. Acids, fatty acids of cerotic acid, or their esters, metal salts, amides, etc. Among these, mono- to trivalent metal salts are preferred. The blending ratio of these three components is 5 to 100 parts by weight, preferably 10 parts by weight of component (b) to 100 parts by weight of component (a).
~50 parts by weight and component (c) 0.01 to 1 part by weight, preferably 0.05 to 0.5 part by weight. In the present invention, adhesive components, stabilizers, colorants, inorganic fillers, etc. can also be blended in addition to these components. In particular, the mechanical strength of the molded article can be significantly improved by incorporating a small amount of a polymer containing a polar group such as a glycidyl group, a carbonyl group, or a silanol group as an adhesive component. Next, these components are blended, and while the component (a) is not melted, they are mixed using an existing method such as a V-blender or tumbler, but the order in which the components are blended is not particularly limited. For example, component (c) may be added while mixing components (a) and (b). This is then injection molded. Molding conditions are not particularly limited, but preferably the screw back pressure is increased and the molding temperature is also raised. Example: As polypropylene powder, manufactured by Mitsubishi Yuka Co., Ltd.
BC4Q (substantive particle size 50-800μ, 70% by weight of 200-500μ, average particle size 350μ, melt flow rate 5.5g/10 min) and BC4P (substantive particle size 1 ~1500μ, and 70% by weight of it is 70~1000μ, average particle size 500μ, melt flow rate 5.5g/10 min). Glass fiber (length 6mm, number of bundles 1000) is added to 100 parts by weight of each of two types of resin. 25 parts by weight of each of MA411 (manufactured by Asahi Fiber Glass Co., Ltd.) were added and mixed for 5 minutes in a V-tumbler. During this mixing, 0.25 parts by weight of calcium stearate was added and mixed without being added. This mixture was molded using an inline screw injection molding machine (N100B) manufactured by Japan Steel Works, at a molding temperature of 260°C, an injection pressure of 500 kg/cm 2 , and an injection time of 15 seconds.
Injection molding was performed with a cooling time of 20 seconds and a screw back pressure of 50 kg/cm 2 to form test pieces with a wall thickness of 2 mm and a length x width of 125 x 35 mm. In this molding, when plasticizing the resin before injection, an amount corresponding to the amount of injected resin (50g) is
The limit switch was set so that the screw would move back by a certain amount, and the time required for the screw to move back from the position before plasticization to this limit switch was measured and evaluated as the plasticization time. However, the screw rotation speed is 70rpm
It is. The shorter the plasticization time, the faster the next injection process can be carried out. In addition, BC4P, which is one of the polypropylene powders used above, is mixed with glass fiber and calcium stearate in the same amount as above,
Pellets obtained by granulation at 240°C using a 100 mm diameter single screw extruder were also injection molded in the same manner. The test piece thus obtained was evaluated in the following items. (1) Dispersion state of glass fibers The state of dispersion of glass fibers was visually determined by looking at both the front and back surfaces of the test piece. The criteria for evaluation was to count the number of cases in which the bundled glass fibers remained completely white without unraveling, and the following four ranks were determined. Excellent: 0 pieces Good: 1 piece acceptable: 2 to 3 pieces Impossible: 4 pieces or more (2) Weight variation of molded products As described above, 20 test pieces were molded for each sample, and the standard deviation of their weights was calculated. I asked for it. (3) Melt flow rate (MFR) Measured at 230℃ and a load of 2.16Kg in accordance with JIS-K7210. These results are shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1における未溶融状態での混
合物中のガラス繊維の表面状態を示す写真による
図面であり、第2図および第3図は、それぞれ比
較例3および比較例2における同様の写真による
図面でありいずれも倍率は10倍である。
FIG. 1 is a photographic drawing showing the surface state of glass fibers in the mixture in an unmolten state in Example 1, and FIGS. 2 and 3 are similar photographs in Comparative Example 3 and Comparative Example 2, respectively. The drawings are photographs, and the magnification is 10x.

Claims (1)

【特許請求の範囲】[Claims] 1 (a)粒径が実質的に50〜800μで、かつその70
重量%の部分が200〜500μであるプロピレン重合
体樹脂パウダー100重量部に、(b)ガラス繊維5〜
100重量部および(c)炭素数8〜30の脂肪酸ないし
はその誘導体0.01〜1重量部を配合して該パウダ
ーの未溶融状態で混合し、次いで射出成形するこ
とを特徴とする射出成形体の製造方法。
1 (a) The particle size is substantially 50 to 800μ, and 70μ
To 100 parts by weight of propylene polymer resin powder whose weight percentage is 200 to 500μ, (b) 5 to 50% of glass fiber is added.
100 parts by weight and (c) 0.01 to 1 part by weight of a fatty acid having 8 to 30 carbon atoms or a derivative thereof are mixed in an unmolten state of the powder, and then injection molded. Method.
JP6754582A 1982-04-21 1982-04-21 Manufacture of injection shape Granted JPS58183230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6754582A JPS58183230A (en) 1982-04-21 1982-04-21 Manufacture of injection shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6754582A JPS58183230A (en) 1982-04-21 1982-04-21 Manufacture of injection shape

Publications (2)

Publication Number Publication Date
JPS58183230A JPS58183230A (en) 1983-10-26
JPH0153164B2 true JPH0153164B2 (en) 1989-11-13

Family

ID=13348034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6754582A Granted JPS58183230A (en) 1982-04-21 1982-04-21 Manufacture of injection shape

Country Status (1)

Country Link
JP (1) JPS58183230A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196181A (en) * 2008-02-20 2009-09-03 Seiko Epson Corp Injection molding method and injection molding machine
BRPI0913018A2 (en) * 2008-05-15 2015-10-13 Saudi Basic Ind Corp scratch resistant molded article made from a loaded polypropylene composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142039A (en) * 1979-04-23 1980-11-06 Tokuyama Soda Co Ltd Polypropylene composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142039A (en) * 1979-04-23 1980-11-06 Tokuyama Soda Co Ltd Polypropylene composition

Also Published As

Publication number Publication date
JPS58183230A (en) 1983-10-26

Similar Documents

Publication Publication Date Title
US3639331A (en) Glass fiber reinforced resins containing dispersion aid
US3702356A (en) Process for production of glass-filled thermoplastic pellets suitable for blending with thermoplastic
KR100251785B1 (en) Polyolefin compositions and process for their preparation
US3405198A (en) Process for making impact resistant injection molded polyethylene terephthalate products
JPS5820976B2 (en) Melt-kneaded resin composition
JPS5941246A (en) Fiber reinforced composite material
US3472916A (en) Copolymers of ethylene and alkyl acrylates as plasticizers in polycarbonamide resins
CN108285625B (en) Method for preparing polylactic acid stereocomplex through 3D printing
CN107974025B (en) Non-filling low-shrinkage polypropylene composite material and preparation method thereof
JPS5911357A (en) Polyphenylene sulfide resin molding material
EP1924647A2 (en) Thermoplastic composites containing lignocellulosic materials and methods of making the same
CN110144092A (en) A kind of environmental protection hard PVC modified material and preparation method thereof
EP0322043B1 (en) Polyketone polymer composition
US4524160A (en) Directly moldable resin compositions for composite plastics
CN113045819B (en) Glass microsphere filled polypropylene composition and preparation method thereof
JPH0153164B2 (en)
JPS59172533A (en) Production of reinforced resin composition
JP3415346B2 (en) Injection molding method
JPH01218825A (en) Direct molding method for polypropylene powder and glass fiber
JP3995795B2 (en) Manufacturing method of glass fiber reinforced polypropylene resin injection molded body
JPS59227936A (en) Compositely reinforced polypropylene resin
US3576782A (en) Reinforcing fiber-containing injection moldable, thermoplastic resinous dry blend composition and process of preparing
JPS60199045A (en) Fluororesin composition
JP2001002858A (en) Glass fiber-reinforced polypropylene resin composition and preparation of molded product using the same
JPS60262854A (en) Resin composition