JPH0152886B2 - - Google Patents

Info

Publication number
JPH0152886B2
JPH0152886B2 JP54132130A JP13213079A JPH0152886B2 JP H0152886 B2 JPH0152886 B2 JP H0152886B2 JP 54132130 A JP54132130 A JP 54132130A JP 13213079 A JP13213079 A JP 13213079A JP H0152886 B2 JPH0152886 B2 JP H0152886B2
Authority
JP
Japan
Prior art keywords
pressure
magnetic material
magnetic
treatment
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54132130A
Other languages
Japanese (ja)
Other versions
JPS5656604A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP13213079A priority Critical patent/JPS5656604A/en
Priority to US06/195,928 priority patent/US4437908A/en
Priority to DE198484115516T priority patent/DE151759T1/en
Priority to EP80303572A priority patent/EP0027362B1/en
Priority to EP84115516A priority patent/EP0151759B1/en
Priority to DE8484115516T priority patent/DE3072170D1/en
Priority to DE8080303572T priority patent/DE3072148D1/en
Publication of JPS5656604A publication Critical patent/JPS5656604A/en
Publication of JPH0152886B2 publication Critical patent/JPH0152886B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 本発明は圧延鍛造、鋳造、焼結等によつて成形
した磁性材の磁気特性向上処理に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment for improving the magnetic properties of a magnetic material formed by rolling forging, casting, sintering, or the like.

従来、磁性材の磁気特性向上処理に冷間加工
(スウエージング)を施すことによつて大きな異
方性が生じ、磁気特性を向上することが提案され
ている。これは加工方向に磁化容易軸が揃う結
果、減磁曲線の角形性が改良されるものと考えら
れている。しかしながら前記スウエージング等の
加工処理は静的なものであつてそれによる磁気特
性向上効果は比較的小さく、加圧には所要の処理
を行なうために通常トン/cm2オーダの超高圧を必
要とし、高圧発生装置、及び加圧処理装置等が大
型化する欠点があつた。
Conventionally, it has been proposed that cold working (swaging) is performed to improve the magnetic properties of a magnetic material, thereby producing large anisotropy and improving the magnetic properties. This is thought to be due to the alignment of the axis of easy magnetization in the processing direction, which improves the squareness of the demagnetization curve. However, processing such as swaging is static and its effect on improving magnetic properties is relatively small, and pressurization usually requires ultra-high pressure on the order of tons/cm 2 to carry out the required processing. , the high pressure generator, the pressure treatment equipment, etc. had the disadvantage of increasing in size.

本発明は、上記欠点を解消して大型の加圧処理
装置等を要することなく能率良く磁気特性向上処
理を行ない得るようにすることを目的とするもの
であり、鋳造、焼結或いは更に鍛造により成形し
た磁性材料を磁界中で加圧処理するに当り、前記
磁性材料に静的加圧をする装置と、該加圧装置と
同軸に音波乃至超音波振動装置を設け、前記磁性
材料に静圧と振動圧とを同軸状に重畳作用させる
ことを特徴とするものである。
The object of the present invention is to solve the above-mentioned drawbacks and to efficiently perform a treatment for improving magnetic properties without requiring a large-sized pressure treatment device. When pressurizing the molded magnetic material in a magnetic field, a device for applying static pressure to the magnetic material and a sonic or ultrasonic vibration device are provided coaxially with the pressurizing device to apply static pressure to the magnetic material. This feature is characterized in that the vibration pressure and vibration pressure are applied in a coaxial manner in a superimposed manner.

以下図面の一実施例により説明すると、1は処
理容器を構成する枠体、2は処理容器内に挿入し
た磁性材で、この上下に加圧部材3,4を介在し
て上下方向から加圧する。5は加圧パンチで、こ
れに振動子6の発生する超音波振動をホーン7を
通して伝播作用させる。9は振動子6に静的加圧
を作用する油圧シリンダ、10は下方の固定パン
チで、この上下パンチ5,10間に磁性材2は挾
持され振動加圧される。11及12は加圧と直角
に磁界を作用する磁極で、透磁性部材13,14
を通して内部磁性材2に有効に発生磁束が作用す
るよう考慮されている。
Explaining the following with reference to an embodiment of the drawings, 1 is a frame constituting a processing container, 2 is a magnetic material inserted into the processing container, and pressurized from above and below with pressure members 3 and 4 interposed above and below. . Reference numeral 5 denotes a pressure punch to which ultrasonic vibrations generated by a vibrator 6 are propagated through a horn 7. Numeral 9 is a hydraulic cylinder that applies static pressure to the vibrator 6, and 10 is a lower fixed punch. The magnetic material 2 is held between the upper and lower punches 5 and 10 and is vibrated and pressurized. 11 and 12 are magnetic poles that apply a magnetic field at right angles to pressurization, and magnetically permeable members 13 and 14
It is considered that the generated magnetic flux can effectively act on the internal magnetic material 2 through the inner magnetic material 2.

処理される容器1内の磁性材2は圧延鍛造、鋳
造、または焼結等によつて成形されたもので、こ
れが磁極11,12によつて形成される磁界中で
加圧処理される。加圧はシリンダ9によつてパン
チ5を駆動し、上下パンチ5,10間に加圧部材
3,4を介して被処理磁性材2を挾持して低圧の
静加圧を加える。この状態において振動子6が発
振器8により励起され、音波、超音波等の高周波
振動を発生し、ホーン7を伝播してパンチ5より
磁性材2に作用する。したがつて磁性材2には静
的加圧に超音波振動が重畳して作用するから超音
波振動の作用効果は顕著となり、超音波出力を小
さくして超高圧振動を作用させることができる。
この超音波振動による加圧処理によつて、磁性材
2は圧縮開放の振動加圧され、より効果的に体積
収縮、歪の発生等を起し、同時に作用する磁気力
との相互効果により磁化容易軸の整揃えを振動加
圧により徐々に容易に高能率に行なわせ、磁気特
性を向上させるようになる。
The magnetic material 2 in the container 1 to be processed is formed by rolling forging, casting, sintering, etc., and is subjected to pressure processing in a magnetic field formed by magnetic poles 11 and 12. For pressurization, the punch 5 is driven by the cylinder 9, and the magnetic material 2 to be processed is held between the upper and lower punches 5, 10 via the pressurizing members 3, 4, and low static pressure is applied. In this state, the vibrator 6 is excited by the oscillator 8 and generates high frequency vibrations such as sonic waves and ultrasonic waves, which propagate through the horn 7 and act on the magnetic material 2 from the punch 5 . Therefore, since static pressure and ultrasonic vibration are superimposed on the magnetic material 2, the effect of the ultrasonic vibration becomes remarkable, and ultra-high pressure vibration can be applied by reducing the ultrasonic output.
Through this pressure treatment using ultrasonic vibration, the magnetic material 2 is subjected to compression-release vibration pressure, which more effectively causes volumetric contraction and generation of strain, and magnetizes due to the mutual effect with the magnetic force acting at the same time. The alignment of the easy axes can be gradually and easily performed with high efficiency by vibration pressure, and the magnetic properties can be improved.

従来冷間において、短時間に衝撃的に高加圧処
理をするとき、磁化軸の整揃が充分行なわれない
内に圧縮プレスされてしまい、磁気特性の向上が
充分に達し得ない欠点があつたが、超音波の振動
加圧によつてはスピンの配向整揃えが徐々に行な
われ極めて有効に高効率に行なえるから磁気特性
の向上処理効果が極めて高い。
Conventionally, when subjected to high-pressure shock treatment in a short period of time in cold processing, compression pressing occurs before the magnetization axes are sufficiently aligned, which has the disadvantage that magnetic properties cannot be sufficiently improved. However, by applying ultrasonic vibration pressure, the orientation of the spins is gradually aligned, and this can be done very effectively and with high efficiency, so that the effect of improving the magnetic properties is extremely high.

例えばFe−6%Co−18%Cr材の処理におい
て、溶体化処理後に多段時効処理を400℃迄に止
めて超音波振動による加圧処理をした。振動は振
巾6〜10μ、振動数20〜25KHzの振動を約1〜3
Kg/mm2の静加圧のもとに行ない、波高値約100Kg/
mm2程度の振動加圧ができるようにして行ない、加
圧に直角に10KOeの磁界を加えて処理した。こ
の磁気特性向上処理により着磁した磁石の最大エ
ネルギ積は約4.6MGOe.(B・H)maxを得るこ
とができた。これに対し、前記同一材料で溶体化
処理後に多段の時効処理を行なつたものは(B・
H)maxが約3.8MGOeであり、本発明の優れた
効果が確められた。なおこの多段時効処理に要し
た時間は約6時間であり、これに対して本発明が
約13分の処理であつて極く短時間に能率よく磁気
特性向上処理ができる効果が得られた。なお前記
実施例では時効処理の途中の400℃の加熱状態で
超音波振動による加圧処理を行つたが、全く冷間
で、即ち常温で加圧処理しても高い効果が得られ
るものである。
For example, in the treatment of Fe-6%Co-18%Cr material, after solution treatment, multi-stage aging treatment was stopped at 400°C and pressure treatment using ultrasonic vibration was performed. The vibration is approximately 1 to 3 vibrations with a width of 6 to 10μ and a frequency of 20 to 25KHz.
Performed under static pressure of Kg/mm 2 , wave height approximately 100Kg/
The treatment was carried out in such a manner that vibrating pressure of approximately mm 2 could be applied, and a magnetic field of 10 KOe was applied perpendicular to the pressure. Through this magnetic property improvement treatment, the maximum energy product of the magnetized magnet was approximately 4.6 MGOe.(B.H)max. On the other hand, the same material was subjected to multi-stage aging treatment after solution treatment (B.
H) max was approximately 3.8 MGOe, confirming the excellent effects of the present invention. The time required for this multi-stage aging treatment was about 6 hours, whereas the present invention required a treatment of about 13 minutes, which was effective in efficiently improving magnetic properties in a very short period of time. In the above example, the pressure treatment using ultrasonic vibration was performed in a heated state of 400°C during the aging treatment, but a high effect can be obtained even if the pressure treatment is completely cold, that is, at room temperature. .

本発明は以上のように鋳造、焼結或いは更に鍛
造により成形した磁性材料を磁界中で加圧処理す
るに当り、前記磁性材料に静圧と振動圧とを同軸
状に重畳作用させるようにしたことにより、極め
て容易に高能率に処理でき、大型の超高圧発生装
置を使用することなく比較的簡単な装置により目
的とする磁気特性向上処理が容易に得られる。振
動は超音波に限らず、数100Hz程度から音波、超
音波領域、更に数100KHzの高周波振動を利用で
きる。そしてこの振動加圧による処理時間は従来
の時効処理等が数時間もの長時間を要したのに比
べて極く短時間に能率良く処理できるものである
から実用的に極めて効果が大きい。
In the present invention, when a magnetic material formed by casting, sintering, or further forging is subjected to pressure treatment in a magnetic field, static pressure and vibration pressure are coaxially superimposed on the magnetic material. As a result, processing can be carried out extremely easily and with high efficiency, and the intended treatment for improving magnetic properties can be easily obtained using a relatively simple device without using a large ultra-high pressure generator. Vibrations are not limited to ultrasonic waves, but can also use sound waves and ultrasonic waves from around several 100 Hz, as well as high frequency vibrations of several 100 KHz. The treatment time by this vibration pressurization is much shorter and more efficient than the conventional aging treatment, which takes several hours, so it is extremely effective in practice.

なお加圧処理は磁性材の一方から低加圧を他方
から超音波振動加圧をしてもよく、作用磁界は加
圧方向と同一方向に加えて処理してもよい。作用
磁界をパルス又は交播磁界としてもよい。加圧処
理中、炉中、通電、高周波等の熱処理を重畳して
もよい。
Note that the pressure treatment may be performed by applying low pressure to one side of the magnetic material and applying ultrasonic vibration pressure to the other side, and the applied magnetic field may be applied in the same direction as the pressure direction. The working magnetic field may be a pulsed or alternating magnetic field. During the pressure treatment, heat treatment such as in a furnace, energization, high frequency, etc. may be superimposed.

被処理体は圧延鍛造、鋳造、焼結等によつて成
形された磁性材の処理ができるが、磁石材料に限
らず、珪素鋼板の如き鉄心材料等の全ての磁性材
に本発明を適用することができる。また磁性材を
基材の上に適宜の方法で被覆した磁性層でも同様
に処理できるものである。
The object to be processed can be a magnetic material formed by rolling forging, casting, sintering, etc., but the present invention is applicable not only to magnet materials but also to all magnetic materials such as iron core materials such as silicon steel plates. be able to. Furthermore, a magnetic layer obtained by coating a base material with a magnetic material by an appropriate method can also be treated in the same manner.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法を説明する一実施例装置の
構成図である。 2は磁性材料、3,4は加圧部材、5,10は
加圧パンチ、6は振動子、7はホーン、8は発振
器、9は加圧シリンダ、11,12は磁界形成磁
極である。
The drawing is a configuration diagram of an embodiment of an apparatus for explaining the method of the present invention. 2 is a magnetic material, 3 and 4 are pressure members, 5 and 10 are pressure punches, 6 is a vibrator, 7 is a horn, 8 is an oscillator, 9 is a pressure cylinder, and 11 and 12 are magnetic field forming magnetic poles.

Claims (1)

【特許請求の範囲】 1 鋳造、焼結或いは更に鍛造により成形した磁
性材料を磁界中で加圧処理するに当り、前記磁性
材料に静的加圧をする装置と、該加圧装置と同軸
に音波乃至超音波振動装置を設け、前記磁性材料
に静圧と振動圧とを同軸状に重畳作用させること
を特徴とする磁性材処理方法。 2 静圧及び振動圧が磁界と直角方向に加えられ
るものである特許請求の範囲第1項に記載の磁性
材処理方法。 3 静圧及び振動圧が磁界と同一方向に加えられ
るものである特許請求の範囲第1項に記載の磁性
材処理方法。
[Claims] 1. When pressurizing a magnetic material formed by casting, sintering, or further forging in a magnetic field, a device for statically pressurizing the magnetic material, and a device coaxially with the pressurizing device are provided. A method for processing a magnetic material, characterized in that a sonic or ultrasonic vibration device is provided to apply static pressure and vibration pressure to the magnetic material coaxially and in a superimposed manner. 2. The magnetic material processing method according to claim 1, wherein the static pressure and the vibration pressure are applied in a direction perpendicular to the magnetic field. 3. The magnetic material processing method according to claim 1, wherein the static pressure and the vibration pressure are applied in the same direction as the magnetic field.
JP13213079A 1979-10-13 1979-10-13 Treatment of magnetic material Granted JPS5656604A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP13213079A JPS5656604A (en) 1979-10-13 1979-10-13 Treatment of magnetic material
US06/195,928 US4437908A (en) 1979-10-13 1980-10-10 Method of treating a magnetic material
DE198484115516T DE151759T1 (en) 1979-10-13 1980-10-10 METHOD FOR TREATING MAGNETIC ACTIVE SUBSTANCES AND DEVICE THEREFOR.
EP80303572A EP0027362B1 (en) 1979-10-13 1980-10-10 Magnetic material treatment method and apparatus
EP84115516A EP0151759B1 (en) 1979-10-13 1980-10-10 Magnetic material treatment method and apparatus
DE8484115516T DE3072170D1 (en) 1979-10-13 1980-10-10 METHOD FOR TREATING MAGNETIC ACTIVE SUBSTANCES AND DEVICE THEREFOR.
DE8080303572T DE3072148D1 (en) 1979-10-13 1980-10-10 Magnetic material treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13213079A JPS5656604A (en) 1979-10-13 1979-10-13 Treatment of magnetic material

Publications (2)

Publication Number Publication Date
JPS5656604A JPS5656604A (en) 1981-05-18
JPH0152886B2 true JPH0152886B2 (en) 1989-11-10

Family

ID=15074084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13213079A Granted JPS5656604A (en) 1979-10-13 1979-10-13 Treatment of magnetic material

Country Status (1)

Country Link
JP (1) JPS5656604A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3612315A1 (en) * 1986-04-11 1987-10-22 Kropp Werner SUBSTRATE AND METHOD AND DEVICE FOR ITS PRODUCTION

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179297A (en) * 1974-12-28 1976-07-10 Sumitomo Spec Metals Kidorui co jishakunoseizoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179297A (en) * 1974-12-28 1976-07-10 Sumitomo Spec Metals Kidorui co jishakunoseizoho

Also Published As

Publication number Publication date
JPS5656604A (en) 1981-05-18

Similar Documents

Publication Publication Date Title
US5529747A (en) Formable composite magnetic flux concentrator and method of making the concentrator
US3212311A (en) Method and apparatus for electromagnetic shaping of metallic bodies
JPWO2007069454A1 (en) Manufacturing method of radial anisotropic magnet
JP2017071860A (en) Method and system, which locally control residual stress of metallic component
US4437908A (en) Method of treating a magnetic material
JPH0152886B2 (en)
RU2430975C1 (en) Procedure for thermo-magnetic treatment of soft magnetic material
CN210045990U (en) Isostatic pressing electromagnetism vibrations formula charging devices
US2798832A (en) Method of hardening ferrous metals
GB944335A (en) Improvements in or relating to a method for subjecting a molten mass of metal to vibrations and device for practising the same
CN106128746B (en) A kind of curing method reducing amorphous iron core internal stress
RU2037387C1 (en) Method of vibratory treatment of construction for changing strained and structural state of construction
JPH07153640A (en) Method and device for manufacturing permanent magnet
JPS5941840B2 (en) Magnetic field press device
WO2002022294A1 (en) Method of producing sintered magnet-use green compact and device therefor
JP2814779B2 (en) Disc brake pad back metal and surface treatment method thereof
RU2003126206A (en) METHOD OF PLASTIC DEFORMATION OF METALS AND DEVICE FOR ITS IMPLEMENTATION
JPS61147997A (en) Dry process cold hot hydrostatic magnetic field press device
JP2952914B2 (en) Manufacturing method of anisotropic bonded magnet
CN213846477U (en) Device for removing amorphous motor iron core stress
JPS63229707A (en) Manufacture of plastic permanent magnet
JPH0417736B2 (en)
JP2003272942A (en) Method of manufacturing permanent magnet
SU1412914A1 (en) Method of diffusion welding of hardening hard-magnetic materials with steels
JPS61120406A (en) Manufacture of permanent magnet