JPH0152547B2 - - Google Patents

Info

Publication number
JPH0152547B2
JPH0152547B2 JP19179582A JP19179582A JPH0152547B2 JP H0152547 B2 JPH0152547 B2 JP H0152547B2 JP 19179582 A JP19179582 A JP 19179582A JP 19179582 A JP19179582 A JP 19179582A JP H0152547 B2 JPH0152547 B2 JP H0152547B2
Authority
JP
Japan
Prior art keywords
outer tank
tank
equatorial
support
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19179582A
Other languages
Japanese (ja)
Other versions
JPS5985076A (en
Inventor
Takao Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishii Iron Works Co Ltd
Original Assignee
Ishii Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishii Iron Works Co Ltd filed Critical Ishii Iron Works Co Ltd
Priority to JP19179582A priority Critical patent/JPS5985076A/en
Publication of JPS5985076A publication Critical patent/JPS5985076A/en
Publication of JPH0152547B2 publication Critical patent/JPH0152547B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 本発明は二重殻構造の低温液化ガス貯蔵用球形
タンクの組立方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for assembling a double-shelled spherical tank for storing low temperature liquefied gas.

従来の二重殻構造の球形タンクの一般的な組立
方法を第1図の完成図に従つて説明する。
A general method of assembling a conventional double-shelled spherical tank will be explained with reference to the completed diagram in FIG.

すなわち従来の組立方法では、基礎6上に外槽
支柱1を立設し、まずその上部に外槽2の赤道部
及び外槽下部温帯部を構築し、次に内槽3を組み
上げ、外槽内壁に突設したブラケツト4に係合し
た複数の懸吊用ロツド5あるいはワイヤーロープ
などを介して内槽外面底部においてこの内槽3を
吊架していた。
In other words, in the conventional assembly method, the outer tank support 1 is erected on the foundation 6, the equatorial part of the outer tank 2 and the lower temperate zone of the outer tank are built on top of it, then the inner tank 3 is assembled, and the outer tank The inner tank 3 was suspended at the bottom of the outer surface of the inner tank via a plurality of suspension rods 5 or wire ropes engaged with brackets 4 protruding from the inner wall.

この従来法の構造においては、内槽3は外槽2
から吊架して保持する構造のため、内槽3の組立
てに先立ち、内槽3の架構となる外槽2を予め組
み立てておく必要があつた。その場合、内槽3を
組立てる際、外槽2との間隔が600mmないし700mm
と非常に狭いため、その間隙に作業員が入つて作
業を行う際には多くの困難が伴つた。球形タンク
のように特に危険度の高い圧力容器では、部材の
内外両面から溶接後検査を充分行つて継手効率を
高め、容器の安全性を確保することが大きな要件
とされている。従つて、溶接、検査などの作業を
行う作業空間が狭いことは組立作業の能率はもと
より容器自体の品質管理の上からも大きな問題で
あつた。
In this conventional structure, the inner tank 3 is the outer tank 2.
Because of the structure of suspending and holding the tank, it was necessary to assemble the outer tank 2, which serves as the frame for the inner tank 3, in advance before assembling the inner tank 3. In that case, when assembling the inner tank 3, the distance between it and the outer tank 2 is 600mm to 700mm.
Because the space was so narrow, it was difficult for workers to get into the space and carry out work. For pressure vessels that are particularly dangerous, such as spherical tanks, it is a major requirement to thoroughly inspect both the interior and exterior of the members after welding to increase joint efficiency and ensure the safety of the vessel. Therefore, the narrow working space for welding, inspection, etc. has been a major problem not only in terms of assembly work efficiency but also in terms of quality control of the container itself.

また従来法の場合、外槽2が内槽3を保持する
架構としての機能を必要とするため、外槽2は剛
性を保持するため強固な構造としなければなら
ず、従つて所要板厚も大であり、溶接施工、検査
なども充分に行う必要があつた。
In addition, in the case of the conventional method, the outer tank 2 needs to function as a frame to hold the inner tank 3, so the outer tank 2 must have a strong structure to maintain its rigidity, and the required plate thickness also increases. The size of the project required sufficient welding work and inspection.

また、前記の作業空間を確保するために600mm
ないし700mm程度内槽3より離して構築する必要
があり、従つて内槽3の実容量より大幅に径の大
きな外槽を用意することになるため、部材重量が
膨大になる欠点を有していた。さらに、この従前
の方法では、内槽3及び懸吊用ロツド5などの内
装品の熱膨張、熱収縮や地震による振動運動を許
容するために複雑な支持構造をとらざるを得ず、
懸吊用ロツド5の数も多数になる欠点があつた。
In addition, in order to secure the work space mentioned above, 600mm
It is necessary to construct the tank at a distance of about 700 mm from the inner tank 3, and as a result, an outer tank with a diameter significantly larger than the actual capacity of the inner tank 3 has to be prepared, which has the disadvantage that the weight of the components becomes enormous. Ta. Furthermore, this conventional method requires a complicated support structure to accommodate the thermal expansion and contraction of internal components such as the inner tank 3 and suspension rods 5, as well as vibrational movements caused by earthquakes.
There was also a drawback that the number of suspension rods 5 was large.

また、内槽3の荷重をうける外槽2には補強環
7も必要であり、さらに、外槽2から支柱1へ荷
重を伝達するための補強リブも多数設ける必要も
なり、支持構造が複雑化していた。
In addition, a reinforcing ring 7 is also required for the outer tank 2 that receives the load of the inner tank 3, and it is also necessary to provide a large number of reinforcing ribs to transmit the load from the outer tank 2 to the struts 1, making the support structure complicated. It had become

また、内槽3は単に外槽壁から伸びるロツド5
等で上下方向で懸吊される構造であり、水平方向
の拘束機能を有していないため、地震時には内槽
3が大きく揺動する危険性が高く、従つてタンク
全体が不安定になるという重大な欠陥もあつた。
In addition, the inner tank 3 is simply a rod 5 extending from the outer tank wall.
Because the structure is suspended vertically by means such as, and does not have a horizontal restraint function, there is a high risk that the inner tank 3 will shake significantly in the event of an earthquake, making the entire tank unstable. There were also serious flaws.

本発明はこのような実情に鑑みなされたもので
あり、従来工法の欠点を除去し、組立精度が高
く、組立作業性に優れ、さらに地震時などにおけ
る内槽の挙動の不安定さをなくし安定した二重殻
構造の球形タンクを構築する工法を与えるもので
ある。
The present invention was developed in view of the above circumstances, and eliminates the drawbacks of conventional construction methods, provides high assembly accuracy and excellent assembly workability, and also eliminates the instability of the behavior of the inner tank during earthquakes, etc., making it stable. This provides a construction method for constructing a spherical tank with a double shell structure.

その要旨とするところは、内槽用支柱の外側に
同心状に外槽用支柱を同一にベースプレートに固
着して配設し、さらにその外側に外槽赤道板を支
持する筒状のアツパーコラムを、予め支柱に上下
動自在に嵌挿しておき、その複合支柱を基礎上に
立設して、まず内槽を全て組み上げ、溶接し、引
き続いて溶接検査、耐圧検査などの諸検査を全て
完了した後に、支柱基部に降下しておいたアツパ
ーコラムを所定位置まで吊り上げ固定し、次に、
予め内槽用支柱の貫通部分を切欠き、かつ支柱を
境界にして上下部分に2分割された外槽支柱部赤
道板を該コラムの頂部にはさみ込むようにして接
合し、以下同様にして外槽支柱部赤道板を組み上
げ、次に支柱間の外槽赤道板を組み込んで一体的
な外槽赤道部を形成し、しかる後に上下温帯板お
よび極板を組みつける二重殻構造の球形タンクの
組立方法である。
The gist of this is that an outer tank support is fixed to the base plate concentrically outside the inner tank support, and a cylindrical upper column that supports the outer tank equatorial plate is installed on the outside of the outer tank support. is inserted into the support column in advance so that it can move up and down, and the composite support structure is erected on the foundation.The inner tank is first assembled and welded, and then all inspections such as welding inspection and pressure resistance inspection are completed. After that, lift and fix the upper column that had been lowered to the base of the column to the specified position, and then
The penetrating part of the inner tank column is cut out in advance, and the outer tank column equatorial plate, which is divided into upper and lower parts with the column as the boundary, is inserted and joined to the top of the column, and the outer tank column is assembled in the same manner. A method for assembling a spherical tank with a double shell structure, in which the outer tank equatorial plate is assembled between the outer tank equatorial plates, the outer tank equatorial plate is assembled between the supports, and the upper and lower temperate zone plates and the polar plates are assembled. It is.

次に図面に従つて本発明の実施例の詳細を説明
する。
Next, details of embodiments of the present invention will be described in accordance with the drawings.

第2図は本発明工法によつて組み立てられた二
重殻式の球形タンクの一部を破断して示した完成
図である。
FIG. 2 is a partially cutaway view of a completed double-shelled spherical tank assembled using the construction method of the present invention.

本発明工法による組立手順を第2図および第3
図以降の図面に従つて説明する。
The assembly procedure using the method of the present invention is shown in Figures 2 and 3.
This will be explained with reference to the drawings that follow.

第3図は支柱の組立時の状況を示す図であり、
内槽用支柱31の外側に同心状に外槽用支柱32
を共通のベースプレート33に固着して、さらに
その同心外側に外槽赤道板34,35を支持する
筒状のアツパーコラム36を、予め支柱に上下動
自在になるように嵌挿しておき、その3個の筒体
が組み合わさつた複合支柱39を基礎39上に立
設して、まず内槽38を全て組み上げる。
Figure 3 is a diagram showing the situation when assembling the pillars.
An outer tank support 32 is placed concentrically on the outside of the inner tank support 31.
is fixed to a common base plate 33, and a cylindrical upper column 36 that supports the outer tank equatorial plates 34 and 35 is fitted on the support column in advance so that it can move up and down. A composite support column 39 made up of three cylindrical bodies is erected on a foundation 39, and the inner tank 38 is first assembled entirely.

なお、上記複合支柱39を加工設備の整つた工
場にて行えばより精度の高い製作が可能である。
支柱の上部および下部には、補強材であるブレー
シングロツド40を取付けるための上部ガセツト
プレート41、および下部ガセツトプレート42
を予め固着しておく。
It should be noted that if the composite strut 39 is manufactured at a factory equipped with processing equipment, it is possible to manufacture the composite support 39 with higher precision.
An upper gusset plate 41 and a lower gusset plate 42 are provided at the upper and lower parts of the column for attaching bracing rods 40, which are reinforcing members.
Fix it in advance.

内槽38の組立手順は従来の一重殻球形タンク
の組立法と同様であり、まず赤道板、上下温帯
板、上下極板を仮組みし、各部の寸法、継手部の
目違いなどを測定し、許容値内におさまつている
ことを確認した後に内外面から溶接後さらに各種
の溶接検査、耐圧検査まで完了させる。
The assembly procedure for the inner tank 38 is the same as that for conventional single-shell spherical tanks.First, the equatorial plate, upper and lower temperate plates, and upper and lower polar plates are temporarily assembled, and the dimensions of each part and the misalignment of the joints are measured. After confirming that everything is within tolerance, weld the inside and outside surfaces, and then complete various welding inspections and pressure tests.

この内槽の組立て段階では、外槽板は全く取り
つかないため、溶接、検査などの諸作業は内槽全
面に渡つて内外面双方から進めることが可能であ
り、作業性が優れている。
At this stage of assembling the inner tank, the outer tank plate is not attached at all, so various operations such as welding and inspection can be carried out over the entire inner tank from both the inside and outside, resulting in excellent workability.

次に外槽の組立準備に入る。 Next, prepare to assemble the outer tank.

第4図は、外槽の支柱部赤道板34,35を受
けるアツパーコラム36を所定高さまで吊り上げ
て固定した状態を表す図である。
FIG. 4 is a diagram showing a state in which the upper column 36, which receives the equatorial plates 34, 35 of the support portions of the outer tank, is lifted up to a predetermined height and fixed.

すなわち、第3図において外槽用支柱32の下
部に降下させておいてアツパーコラム36を所定
の高さまで吊り上げ、該コラムの下端を円錐状に
成形したコーンシエル43を介して外槽用支柱3
2の上端部に接合した状態を示すのが第4図であ
る。コーンシエル43は、予め2つ割りに分割し
たものを支柱に抱き合わせて接合する。
That is, in FIG. 3, the upper column 36 is lowered to the lower part of the outer tank support 32 and lifted up to a predetermined height, and the lower end of the column is connected to the outer tank support via a cone shell 43 formed into a conical shape. 3
FIG. 4 shows the state in which it is joined to the upper end portion of No. 2. The cone shell 43 is divided into two parts in advance and then joined to the support pillars.

なお、アツパーコラム36の側部には軸方向に
案内溝44が設けてあり、ここに上部ガセツトプ
レート41が嵌合し、所定の位置にコラムを正確
に案内する機構を有している。
A guide groove 44 is provided in the axial direction on the side of the upper column 36, into which the upper gusset plate 41 is fitted, providing a mechanism for accurately guiding the column to a predetermined position. .

以下同様にして支柱の全数を組立てる。 Assemble all the pillars in the same manner.

次に外槽支柱部の赤道板の組立を行う。 Next, assemble the equatorial plate for the outer tank support.

外槽支柱部赤道板35,34を取付ける作業状
況を示すのが第5図、第6図である。
FIGS. 5 and 6 show the working conditions for attaching the outer tank support equatorial plates 35 and 34.

外槽支柱部赤道板は、内槽用支柱31の貫通部
分を切欠き、かつ支柱を中心にして上下部分に2
分割され、それぞれ外槽支柱部上側赤道板35、
外槽支柱部下側赤道板34から構成される。
The outer tank support equatorial plate has a notch in the penetrating part of the inner tank support 31, and two holes in the upper and lower parts around the support.
divided into outer tank support upper equatorial plates 35,
It is composed of an equatorial plate 34 on the lower side of the outer tank support.

まず第5図に示すように、下側赤道板34を、
支柱群の内側下方より吊り上げアツパーコラム3
6の上縁開口部に接合する。次に第6図に示すよ
うに、上側赤道板35を支柱39の外側上方より
吊り下げ、アツパーコラム36に頂部をはさみ込
むように組み込み両赤道板素材34,35を接合
し、一体的な外槽支柱部赤道板を構築する。同様
にして、各外槽支柱部赤道板を形成した後に、各
支柱間の赤道板45を順次吊り込み全周に渡つて
寸法検査を行つた上で溶接し、一体的な外槽赤道
部を構築する。支柱間の赤道板45が2枚以上の
素材から構成されている場合は、予め地上にて何
枚かの素材を接合してもよい。
First, as shown in FIG. 5, the lower equatorial plate 34 is
Lift up the upper column 3 from the inside of the column group.
6 to the upper edge opening. Next, as shown in FIG. 6, the upper equatorial plate 35 is suspended from above the outer side of the support column 39, and the upper column 36 is inserted so that the top part is sandwiched between the two equatorial plate materials 34 and 35. Construct the equatorial plate of the outer tank support. In the same way, after forming the equatorial plates for each outer tank support, the equatorial plates 45 between each support are sequentially suspended, inspected for dimensions over the entire circumference, and then welded to form an integral outer tank equatorial part. To construct. If the equatorial plate 45 between the supports is made of two or more materials, several materials may be joined together on the ground in advance.

次に外槽の上部温帯板46および外槽下部温帯
板47を組み付け、しかる後に外槽上部極板51
および外槽下部極板49を組みつけ、内外槽全体
を完成させる工法である。(第2図)本工法によ
れば、外槽48と内槽38はそれぞれ外槽用支柱
32と内槽用支柱31に別個に支持されていて、
その相互が直接に接していない構造であるため、
内槽38の熱膨張、熱収縮による応力が外槽48
に直接伝わることが少ない。すなわち共通のベー
スプレート33から上方に立設した内外槽支柱3
1,32は自由端構造となつており、内槽38が
熱膨張、熱収縮した時に支柱に曲げモーメントが
作用しても、内槽用支柱31は独立して変位する
だけで外槽用支柱32は変位しない。すなわち支
柱の変形抵抗が少く運転上安全である。
Next, the upper temperate zone plate 46 and the lower temperate zone plate 47 of the outer tank are assembled, and then the outer tank upper polar plate 51 is assembled.
In this construction method, the outer tank lower electrode plate 49 is assembled to complete the entire inner and outer tanks. (Fig. 2) According to this construction method, the outer tank 48 and the inner tank 38 are supported separately by the outer tank support 32 and the inner tank support 31, respectively.
Because the structure is such that they are not in direct contact with each other,
Stress due to thermal expansion and thermal contraction of the inner tank 38 is applied to the outer tank 48.
is rarely communicated directly. In other words, the inner and outer tank supports 3 are erected upward from a common base plate 33.
1 and 32 have a free end structure, so that even if a bending moment is applied to the struts when the inner tank 38 thermally expands or contracts, the inner tank struts 31 are only displaced independently and the outer tank struts are 32 is not displaced. In other words, the deformation resistance of the struts is small and driving is safe.

また、内槽支持部に直近して外槽部が接続して
いないので、内槽から外槽への冷熱の移動量が少
ない利点がある。
Moreover, since the outer tank part is not connected immediately to the inner tank support part, there is an advantage that the amount of cold heat transferred from the inner tank to the outer tank is small.

さらに本構造によれば内槽38を直接強固な支
柱で支持する構造であるため、地震時における内
槽38の揺動が確実に拘束できるので安全性が向
上する。
Furthermore, according to this structure, since the inner tank 38 is directly supported by strong columns, the swinging of the inner tank 38 during an earthquake can be reliably restrained, thereby improving safety.

また外槽48は内槽38を剛的に吊架する機能
を持つ必要はなく単に防熱層50を支える外装材
として役割を果すものであるため、強度上の要求
はかなり低減でき、従つて外装材は普通鋼の比較
的薄い鋼板とされ、部材重量が節減できる。さら
に本法による複合支柱39は予め工場にて一体的
にコンパクトに組み上げることになり、加工精度
を高くできると共に、工場から建設現場への資材
の運搬費を低減できる利点も有する。
Furthermore, since the outer tank 48 does not need to have the function of rigidly suspending the inner tank 38 and merely serves as an exterior material that supports the heat insulating layer 50, the requirements for strength can be considerably reduced, and therefore the exterior The material is a relatively thin sheet of ordinary steel, which reduces the weight of the components. Furthermore, the composite strut 39 produced by this method can be pre-assembled in a factory in an integrated and compact manner, which has the advantage of increasing processing accuracy and reducing the cost of transporting materials from the factory to the construction site.

以上の説明から明らかなように本発明によれ
ば、二重殻球形タンクの組立作業が平易になると
ともに、支柱材に作用する応力が最も苛酷となる
低温液化ガス充填時、及び解放時、または地震時
においても作用応力が緩和でき、さらに外槽の部
材節減も可能となり建設費の低減、操業の安全化
に大きく寄与できるものである。
As is clear from the above description, according to the present invention, the work of assembling a double shell spherical tank is simplified, and the stress acting on the support material is the most severe during filling with low-temperature liquefied gas, during release, or Even during an earthquake, the applied stress can be alleviated, and the number of parts used in the outer tank can be reduced, which can greatly contribute to lower construction costs and safer operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の組立工法によつて建設された
二重殻球形タンクの一部を破断して示した完成図
である。第2図は本発明の組立工法によつて建設
された二重殻球形タンクの一部を破断して示した
完成図である。第3図ないし第6図は本発明工法
の実施例を示す図である。第3図は支柱の組立時
の状況を示す斜視図であり、第4図は外槽支柱部
赤道板34,35を受けるアツパーコラム36を
所定高さまで吊り上げて固定した状態を表わす斜
視図であり、第5図は、外槽支柱部下側赤道板3
4をアツパーコラム36の上縁開口部に組み込む
状況を示す斜視図であり、第6図は同様に外槽支
柱部上側赤道板35を吊り上げ、アツパーコラム
36の頂部に吊り込む状況を示す斜視図である。 1……外槽支柱、2……外槽、3……内槽、4
……ブラケツト、5……懸吊用ロツド、6……基
礎、7……補強環、31……内槽用支柱、32…
…外槽用支柱、33……ベースプレート、34…
…外槽支柱部下側赤道板、35……外槽支柱部上
側赤道板、36……アツパーコラム、37……基
礎、38……内槽、39……複合支柱、40……
ブレーシングロツド、41……上部ガセツトプレ
ート、42……下部ガセツトプレート、43……
コーンシエル、44……案内溝、45……支柱間
赤道板、46……外槽上部温帯板、47……外槽
下部温帯板、48……外槽、49……外槽下部極
板、50……防熱層、51……外槽上部極板。
FIG. 1 is a partially cut away view of a completed double-shelled spherical tank constructed using a conventional assembly method. FIG. 2 is a partially cut away completed view of a double shell spherical tank constructed by the assembly method of the present invention. FIGS. 3 to 6 are diagrams showing examples of the construction method of the present invention. FIG. 3 is a perspective view showing the state when the struts are assembled, and FIG. 4 is a perspective view showing the upper column 36, which receives the equatorial plates 34, 35 of the outer tank support section, lifted to a predetermined height and fixed. Yes, Figure 5 shows the lower equatorial plate 3 of the outer tank support.
4 is a perspective view showing a situation in which the upper equatorial plate 35 of the outer tank support section is assembled into the upper edge opening of the upper column 36, and FIG. FIG. 1...Outer tank support, 2...Outer tank, 3...Inner tank, 4
... Bracket, 5 ... Suspension rod, 6 ... Foundation, 7 ... Reinforcement ring, 31 ... Support for inner tank, 32 ...
...Strut for outer tank, 33...Base plate, 34...
...Equatorial plate on the lower side of the outer tank support, 35... Upper equatorial plate on the outer tank support, 36... Upper column, 37... Foundation, 38... Inner tank, 39... Composite support, 40...
Bracing rod, 41... Upper gusset plate, 42... Lower gusset plate, 43...
Cone shell, 44...Guide groove, 45...Equatorial plate between columns, 46...Outer tank upper temperate zone plate, 47...Outer tank lower temperate zone plate, 48...Outer tank, 49...Outer tank lower polar plate, 50...Heat insulation layer, 51...Outer tank upper electrode plate.

Claims (1)

【特許請求の範囲】[Claims] 1 内槽用支柱の外側に同心状に外槽用支柱を同
一のベースプレートに固着して配設し、さらにそ
の外側に同心状に外槽赤道板を支持する筒状のア
ツパーコラムを予め、前記支柱に対して上下動自
在に嵌挿しておき、その複合支柱を基礎上に立設
して、まず内槽を全て組み上げ溶接し、引き続い
て溶接検査、耐圧検査を行つた後に、支柱基部に
降下しておいたアツパーコラムを所定位置まで吊
り上げ固定した後に、予め内槽用支柱の貫通部分
を切欠き、かつ支柱部を境界にして上下部分に2
分割しておいた外槽支柱部赤道板をアツパーコラ
ムの頂部にはさみこむようにして接合固定し、以
下同様にして各々の外槽支柱部赤道板を組み上
げ、次に支柱間の外槽赤道板を組み込んで一体的
な外槽赤道部を形成し、しかる後に外槽上下温帯
板および外槽極板を組みつけることを特徴とする
二重殻球形タンクの組立方法。
1. An outer tank support is fixed to the same base plate concentrically on the outside of the inner tank support, and a cylindrical upper column that supports the outer tank equatorial plate concentrically is installed in advance on the outside of the outer tank support. The composite strut is inserted into the above-mentioned strut so that it can move up and down, and the composite strut is erected on the foundation. First, all the inner tanks are assembled and welded, and then a welding inspection and a pressure resistance test are performed, and then the composite strut is installed at the base of the strut. After hoisting and fixing the lowered upper column to a predetermined position, cut out the penetrating part of the inner tank column in advance, and cut out two holes in the upper and lower parts with the column as the boundary.
The outer tank support equatorial plate that has been separated is inserted into the top of the upper column and fixed together, and then the respective outer tank support equatorial plates are assembled in the same manner. Next, the outer tank equatorial plate between the supports is assembled. A method for assembling a double-shelled spherical tank, characterized by assembling the outer tank to form an integral outer tank equatorial section, and then assembling upper and lower outer tank temperate zone plates and outer tank polar plates.
JP19179582A 1982-11-02 1982-11-02 Assembling of double shelled spherical tank Granted JPS5985076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19179582A JPS5985076A (en) 1982-11-02 1982-11-02 Assembling of double shelled spherical tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19179582A JPS5985076A (en) 1982-11-02 1982-11-02 Assembling of double shelled spherical tank

Publications (2)

Publication Number Publication Date
JPS5985076A JPS5985076A (en) 1984-05-16
JPH0152547B2 true JPH0152547B2 (en) 1989-11-09

Family

ID=16280661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19179582A Granted JPS5985076A (en) 1982-11-02 1982-11-02 Assembling of double shelled spherical tank

Country Status (1)

Country Link
JP (1) JPS5985076A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335210B (en) * 2013-06-17 2016-01-20 武汉一冶钢结构有限责任公司 A kind of Double-layer Spherical and lifting method thereof
CN103343875B (en) * 2013-06-17 2015-09-30 武汉一冶钢结构有限责任公司 A kind of Double-layer Spherical and lifting method thereof
CN104110576B (en) * 2014-06-27 2016-04-06 合肥通用机械研究院 Spherical tank supporting structure
CN106425052B (en) * 2016-10-31 2018-08-10 北京石油化工学院 A kind of realization arc welding all positon one side welding with back formation method
CN112555680A (en) * 2020-12-09 2021-03-26 菏泽花王压力容器股份有限公司 Double-layer low-temperature spherical tank
WO2024069747A1 (en) * 2022-09-27 2024-04-04 川崎重工業株式会社 Heat-blocking structure of tank, and multi-shell tank

Also Published As

Publication number Publication date
JPS5985076A (en) 1984-05-16

Similar Documents

Publication Publication Date Title
KR890002270B1 (en) Freight container
US6626319B2 (en) Integrated tank erection and support carriage for a semi-membrane LNG tank
RU2307973C2 (en) Reservoir for storing cryogenic fluid medium and method of manufacture of hermetically sealed reservoir
JPH0152547B2 (en)
JP2015048621A (en) Low temperature storage tank and construction method thereof
JP5161613B2 (en) Beam-column joint structure
JPS58178100A (en) Ultra low temperature double shell spherical tank
CN111677292A (en) Construction method of high-altitude spherical reticulated shell
EP0138120A2 (en) A truss supporting structure for a toroidal tank
KR102678225B1 (en) Top Stiffener Ring Structure of Inner Tank in Cryogenic Storage Tank
US4534140A (en) Annular slab for closing the vessel of a fast neutron nuclear reactor
US4587081A (en) Slab for closing the vessel of a fast neutron nuclear reactor
JP4352071B2 (en) Construction method of reactor containment vessel
JP4264646B2 (en) Reactor containment vessel, reactor containment facility having the reactor containment vessel, and methods of construction thereof
JPS6015040B2 (en) It's fuel storage.
WO2024024092A1 (en) Liquefied gas tank
JP2575921B2 (en) Method for constructing top slab of containment vessel and containment vessel
JP2001296381A (en) Reactor containment and its construction method
WO2024062623A1 (en) Multi-shell tank
JP2019070293A (en) Construction method of tank, and tank
JPS6140716Y2 (en)
RU2151718C1 (en) Launch vehicle propellant tank unit
JP2675545B2 (en) Reactor containment vessel having vent pipe and method for assembling the same
JPS596495A (en) Support base for turbine
JP2727337B2 (en) Construction method of multi-shell storage tank