JPH0152475B2 - - Google Patents

Info

Publication number
JPH0152475B2
JPH0152475B2 JP14560481A JP14560481A JPH0152475B2 JP H0152475 B2 JPH0152475 B2 JP H0152475B2 JP 14560481 A JP14560481 A JP 14560481A JP 14560481 A JP14560481 A JP 14560481A JP H0152475 B2 JPH0152475 B2 JP H0152475B2
Authority
JP
Japan
Prior art keywords
wear
sintered alloy
ceramic particles
sintered
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14560481A
Other languages
Japanese (ja)
Other versions
JPS5847139A (en
Inventor
Shigeru Urano
Kyoshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP14560481A priority Critical patent/JPS5847139A/en
Publication of JPS5847139A publication Critical patent/JPS5847139A/en
Publication of JPH0152475B2 publication Critical patent/JPH0152475B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/02Surface coverings of combustion-gas-swept parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関用の耐摩耗性部材の製造方法
に係り、具体的にはすべり摩耗を受け易いピスト
ンリング、シリンダライナやピツチングを発生し
易いカムシヤフト、タペツト、ロツカアーム、あ
るいはたたかれ摩耗の生じ易いバルブ、バルブシ
ート等に用いられるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing wear-resistant members for internal combustion engines, and specifically relates to piston rings and cylinder liners that are susceptible to sliding wear, camshafts, tappets, rocker arms that are prone to pitting, Alternatively, it is used for valves, valve seats, etc. that are prone to wear due to knocking.

これら耐摩耗性の要求される部材はすべり条
件、温度、衝撃、荷重、腐食性雰囲気などさまざ
まな条件が加わり、条件に応じた材料の選択が必
要であるが、耐摩耗性を付与する要件の一つとし
て摩耗を受ける面の硬度を高くすることがあげら
れる。
These parts that require wear resistance are subject to various conditions such as sliding conditions, temperature, impact, load, and corrosive atmosphere, and it is necessary to select materials according to the conditions. One way is to increase the hardness of the surface that is subject to wear.

その理由として硬質物が表面に介在することに
よつて面と面の塑性変形に伴う実質的接触面積を
小さくし、摩耗量を低減することがあげられる。
一方、高硬度の材料はその強度も通常は高いもの
であつて疲労し難く、ピツチングやたたかれに対
しても耐摩耗性に優れる。
The reason for this is that the presence of a hard material on the surface reduces the substantial contact area associated with plastic deformation between the surfaces, thereby reducing the amount of wear.
On the other hand, materials with high hardness usually have high strength and are resistant to fatigue, and have excellent wear resistance against pitting and knocking.

しかしながら、かかる高硬度材料を用いた場合
にも潤滑条件が満たされなければスカツフイング
等の異常摩耗を発生するものであり、潤滑条件を
付加するための手段、例えば黒鉛等の自己潤滑性
粒子を含む材料の採用や、表面仕上げとして微小
の凹凸を付与することがなされるものである。従
つて必然的に加工性の良否や基本的な材料の限定
があり、さらには摩耗の対象となる相手材料との
相性が加わるため、一般的に鋳鉄、焼結合金が用
いられ、これにクロムメツキ、溶射を代表とする
表面被覆や軟窒化、焼入れを代表とする熱処理が
なされる。
However, even when such high-hardness materials are used, abnormal wear such as scuffing will occur if the lubrication conditions are not met, and means for adding lubrication conditions, such as self-lubricating particles such as graphite, may be used. This involves the use of materials and the provision of minute irregularities as a surface finish. Therefore, there are inevitably limitations on workability and basic materials, as well as compatibility with the mating material that is subject to wear, so generally cast iron and sintered alloys are used, and chrome plating is used. Surface coating, typically thermal spraying, and heat treatment, typically nitrocarburizing and hardening.

しかしながら鋳鉄、焼結合金は鋼に比較して強
度に劣り、さらに高硬度を得ようとした場合にも
製造上の限界がある。一方、表面被覆はメツキ、
溶射の密着強度に限界があり、熱処理による方法
は割れ発生等の理由により限界を生ずる。
However, cast iron and sintered alloys are inferior in strength to steel, and there are manufacturing limitations when attempting to obtain even higher hardness. On the other hand, the surface coating is matte,
There is a limit to the adhesion strength of thermal spraying, and methods using heat treatment have limitations due to cracking and other reasons.

特に溶射被覆は高硬度の粒子、例えば酸化クロ
ムや炭化クロム、炭化タングテン、アルミナなど
を鉄やその他金属と混合して被覆を形成すること
が可能で、ピストンリングの如き著しいすべり摩
耗にさらされるものに対しては相当の成果を上げ
るものであるが、酸化物や炭化物粒子及び空孔の
存在によつて被覆の強度は低いものであり、高い
面圧を受けるカム、カムフオロワや衝撃を受ける
バルブ、バルブシートでは容易に炭化物、酸化物
粒子が脱落するばかりでなく、母材から被覆が剥
離し使用に耐えない。
In particular, thermal spray coatings can be formed by mixing highly hard particles such as chromium oxide, chromium carbide, tungsten carbide, alumina, etc. with iron or other metals to form coatings that are exposed to significant sliding wear such as piston rings. However, the strength of the coating is low due to the presence of oxide and carbide particles and pores, and the coating strength is low for cams and cam followers that are subject to high surface pressure, valves that are subject to impact, etc. Not only do carbide and oxide particles easily fall off the valve seat, but the coating peels off from the base material, making it unusable.

これに対して例えばバルブ、バルブシートにお
いてはステライトを盛金又は溶接する方法(例え
ば実開昭55−59110号)がとられており、高硬度
の表面が得られているがステライト自体が高価で
あるばかりでなく、肉盛むらや溶接割れの発生が
あり、かつ相手材料であるバルブシートに対して
相対的な硬度が高すぎ、又表面が一様な材料であ
るために潤滑性にも劣る。一方ここに焼結合金を
配したもの(例えば実開昭52−137208号、特開昭
55−8497号)があるが、この方法によるピストン
リング、バルブでは前記した如くシリンダライ
ナ、バルブシートに対しての相対的硬度差を充分
とりえないのみならず、焼結合金では面圧強度及
び母材との結合強度に不足するものである。また
他の方法として特開昭52−44706号の如く焼結合
金母材上に粉末を噴き付けこれを溶融結合するも
のもあるが、これによつては厚い肉盛層が得られ
ないばかりか、溶射するものと同様に肉盛層の形
状が制御しにくい。
On the other hand, for example, for valves and valve seats, a method of overlaying or welding stellite (for example, Utility Model Application Publication No. 55-59110) has been used, and although a highly hard surface is obtained, the stellite itself is expensive. Not only that, but also uneven build-up and weld cracks occur, the hardness is too high relative to the other material, the valve seat, and the material has a uniform surface, so it has poor lubricity. . On the other hand, those in which a sintered alloy is arranged here (for example, Utility Model Publication No. 52-137208, Japanese Patent Application Publication No. 137208,
55-8497), but piston rings and valves made using this method not only cannot sufficiently compensate for the relative hardness difference with respect to the cylinder liner and valve seat, but also have poor surface pressure strength and The bonding strength with the base material is insufficient. Another method, as in JP-A No. 52-44706, involves spraying powder onto the sintered alloy base material and melting it, but this method not only does not provide a thick build-up layer, but also , the shape of the build-up layer is difficult to control, similar to those that are thermally sprayed.

このようにピストンリング、シリンダライナ、
カムシヤフト、タペツト、ロツカアーム、バル
ブ、バルブシートの如き相対的な摩耗を考慮する
材料では現状としてすべてに満足されるものはな
い。
In this way, piston rings, cylinder liners,
At present, there is no material that takes into account relative wear such as camshafts, tappets, rocker arms, valves, and valve seats that are completely satisfactory.

本発明は上記に鑑みなされたものであり、高い
硬度と製品安定性、生産性及び潤滑性を備え、か
つ相手材料に対しての調整を可能とする内燃機関
用耐摩耗性部材の製造方法である。即ち鉄系粉末
に対して、セラミツクス粉末を5〜40容積%混合
して、該混合粉末を所望の形状に圧粉成形し、し
かる後鉄系粉末の焼結温度にて焼結して、焼結合
金となし、次に鋼又は、鋳鉄の母材の表面に前記
焼結合金を置き、該焼結合金の表面から高密度の
熱源を当てて加熱し、焼結合金を再溶融させると
同時に、母材の表面に耐摩耗性層を得ることを特
徴とする内燃機関用耐摩耗性部材の製造方法であ
る。
The present invention has been made in view of the above, and provides a method for manufacturing a wear-resistant member for internal combustion engines, which has high hardness, product stability, productivity, and lubricity, and allows adjustment to the mating material. be. That is, 5 to 40% by volume of ceramic powder is mixed with iron-based powder, the mixed powder is compacted into a desired shape, and then sintered at the sintering temperature of iron-based powder. Next, the sintered alloy is placed on the surface of a base material of steel or cast iron, and a high-density heat source is applied from the surface of the sintered alloy to heat it, and the sintered alloy is remelted at the same time. , a method for manufacturing a wear-resistant member for an internal combustion engine, characterized in that a wear-resistant layer is formed on the surface of a base material.

この本発明で用いる焼結合金は高融点セラミツ
クス粒子を含む理由によつて上記製造工程の再溶
融時にあつても高融点セラミツクス粒子のみは溶
融することはなく再溶融冷却後も単独の粒子とし
て残在する。従つて高融点セラミツクス粒子が摺
動面表面に介在し摺動面でのベアリング効果を発
揮する。そのためには高融点セラミツクス粒子は
焼結合金に含まれている時から均一に分散された
ものである必要があるが、さらに容積%で5〜40
%を占めるものである必要がある。その理由とし
て5容積%未満であると摺動面に介在する高融点
セラミツクス粒子量が過少となり、ベアリング効
果が発揮されず、逆に高融点セラミツクス粒子以
外の基地部分で摺動面を形成するために摩耗の進
行に伴つて高融点セラミツクス粒子が脱落し、ア
ブレージヨン摩耗を発生させる。一方40容量%を
超えた場合には、まずかかる高融点セラミツクス
粒子を多く含む焼結合金が例えば熱間静水圧プレ
ス法などの特殊な方法でしか得られず極めて成形
性が悪いことがあり、さらに高融点セラミツクス
粒子は前記した如く焼結合金を再溶融した後も単
独で残在しているため多量であるとそれだけ強度
が弱く、容易に割れや剥離を発生することによつ
て40容量%以下で選択されねばならない。
Because the sintered alloy used in the present invention contains high-melting point ceramic particles, the high-melting point ceramic particles alone do not melt even during remelting in the above manufacturing process, and remain as individual particles even after remelting and cooling. Exists. Therefore, the high melting point ceramic particles are interposed on the surface of the sliding surface and exert a bearing effect on the sliding surface. To achieve this, the high melting point ceramic particles need to be uniformly dispersed from the time they are included in the sintered alloy, but they must also be dispersed in a volume percentage of 5 to 40%.
%. The reason for this is that if the amount is less than 5% by volume, the amount of high melting point ceramic particles interposed on the sliding surface will be too small, and the bearing effect will not be exhibited, and conversely, the sliding surface will be formed by base parts other than the high melting point ceramic particles. As wear progresses, high melting point ceramic particles fall off, causing abrasion wear. On the other hand, if it exceeds 40% by volume, a sintered alloy containing many high-melting point ceramic particles can only be obtained by a special method such as hot isostatic pressing, and the formability may be extremely poor. Furthermore, as mentioned above, the high melting point ceramic particles remain alone even after the sintered alloy is remelted, so the larger the amount, the weaker the strength, and easily cracks and peels. The following must be selected.

さらにこの高融点セラミツクス粒子は摺動面の
ベアリング効果をはたす一方で周囲の基地により
支承されねばならないため、その大きさも5〜
50μの範囲である必要がある。即ち5μ未満である
と摺動面間にあつて基地が相手部材との面圧によ
り変形を受けた場合に容易に高融点セラミツクス
粒子が脱落してしまうものであり、逆に50μを超
える粗大な粒子があつた場合には不可避的な初期
摩耗の時点でアブレツシブ摩耗を発生させるばか
りでなく、粗大粒子が組織中に分散することによ
る強度の低下が著しいものであり、高融点セラミ
ツクス粒子の大きさは平均粒径で5〜50μを必要
とする。
Furthermore, while these high melting point ceramic particles have a bearing effect on the sliding surface, they must also be supported by the surrounding base, so their size is also 5 to 5.
Must be in the range of 50μ. In other words, if the diameter is less than 5μ, the high melting point ceramic particles will easily fall off when the base is deformed due to the contact pressure with the mating member between the sliding surfaces. If the particles get hot, not only will abrasive wear occur at the inevitable initial wear stage, but the strength will drop significantly due to coarse particles dispersing in the structure, and the size of the high melting point ceramic particles requires an average particle size of 5 to 50μ.

かかる高融点セラミツクスとしては再溶融温度
にても分解しない粒子であり、かつ周囲の鉄系母
金との結合性及び摺動特性によつて選ばれ、1400
℃以上の融点である。酸化物、炭化物、窒化物、
珪化物、硼化物から選ばれるものである。一方再
溶融熱源として用いられるレーザ、電子ビーム、
プラズマはいずれも1.5〜10K.W.程度の出力を有
し、かつエネルギービーム径が0.1〜2mm程度の
範囲で選択されるため、焼結合金の厚さと母材の
冷却能率に応じて再溶融層での最高温度がセラミ
ツクス粒子の溶融分解温度を超えないようにエネ
ルギービームの走査速度を調整することが可能で
ある。ただし再溶融する焼結合金と母材の容積
が、母材容積の5分の1以上である場合には熱源
に大出力のものが要求されるため、母材の方を強
制冷却する必要がある。さらに母材の強制冷却に
も限度があるため、再溶融すべき焼結合金は母材
に対して容積比で4分の1以下でなければならな
い。
Such high melting point ceramics are particles that do not decompose even at remelting temperatures, and are selected based on their bonding properties with the surrounding iron base metal and their sliding properties.
The melting point is above ℃. oxides, carbides, nitrides,
It is selected from silicides and borides. On the other hand, lasers, electron beams, and
Each plasma has an output of about 1.5 to 10 K.W., and the energy beam diameter is selected in the range of about 0.1 to 2 mm, so remelting can be done according to the thickness of the sintered alloy and the cooling efficiency of the base metal. It is possible to adjust the scanning speed of the energy beam so that the maximum temperature in the layer does not exceed the melting and decomposition temperature of the ceramic particles. However, if the volume of the sintered alloy to be remelted and the base metal is one-fifth or more of the base metal volume, a high output heat source is required, so it is necessary to forcefully cool the base metal. be. Furthermore, since there is a limit to the forced cooling of the base material, the volume of the sintered alloy to be remelted must be one-fourth or less of the base material.

この焼結合金はセラミツクス粒子に対しての結
合性と、母材との結合性に優れる必要があるが、
さらに再溶融された後に摺動面の一部を形成する
ためにある程度の耐摩耗性と、セラミツクス粒子
を支承する強度が必要である。そのためにFeを
主成分とする鉄系合金の粉末が選ばれる。即ち母
材である鋼又は鋳鉄に対しては同種材料である理
由により再溶融によつて合金化され易く結合度も
高い一方で、一般に炭化物や酸化物であるセラミ
ツクス粒子に対しても親和性があり粒界界面に欠
陥が生じ難いものである。
This sintered alloy needs to have excellent bonding properties to ceramic particles and to the base material,
Furthermore, since it forms a part of the sliding surface after being remelted, it must have a certain degree of wear resistance and strength to support the ceramic particles. For this purpose, an iron-based alloy powder containing Fe as the main component is selected. In other words, because they are similar materials to the base material steel or cast iron, they are easily alloyed by remelting and have a high degree of bonding, but they also generally have no affinity for ceramic particles, which are carbides and oxides. Defects are less likely to occur at grain boundaries.

この鉄系合金の粉末としては少なくとも重量%
にてC0.2〜3.0%を含むことが必要である。その
理由として鉄系合金が再溶融された後に摺動面を
形成した場合に、C0.2%未満であると基地のフエ
ライト量が多く硬度が得られないばかりか、セラ
ミツクス粒子を支承する剛性にも欠けるものであ
り、C3.0%を超えた場合に基地のレデブライト化
が進行し脆化するため強度及び被削性が劣化する
ためC0.2〜3.0%で選択されることが好ましい。
さらにデイーゼル機関や、排気バルブ、バルブシ
ートの如き高温条件で使用されるものにあつて
は、Cr,Mo,Niのうち一種又は二種以上を合計
で3〜12%添加し耐熱性及び耐食性を向上させる
ことがなされる一方、C量を多くしレデブライト
組織の発生による耐食性の効果を得ることも可能
である。
At least % by weight of this iron-based alloy powder
It is necessary to contain 0.2 to 3.0% of C. The reason for this is that when a sliding surface is formed after the iron-based alloy is remelted, if the C content is less than 0.2%, the amount of ferrite in the base will be large and hardness will not be obtained, and the rigidity to support the ceramic particles will not be obtained. If the C content exceeds 3.0%, ledebrite formation of the matrix progresses and becomes brittle, resulting in deterioration of strength and machinability, so it is preferable to select a C content of 0.2 to 3.0%.
Furthermore, for items used in high-temperature conditions such as diesel engines, exhaust valves, and valve seats, a total of 3 to 12% of one or more of Cr, Mo, and Ni is added to improve heat resistance and corrosion resistance. On the other hand, it is also possible to increase the amount of C and obtain the effect of corrosion resistance due to the generation of ledebrite structure.

これに対してセラミツクス粒子とFeを主成分
とする粉末を混合し焼結したものでは、まずセラ
ミツクス粒子が一様に分散されるものであり、か
つ焼結されることによつて各粒子が緊密に結合さ
れているためエネルギービームの照射によつても
粒子の飛散がない。さらに焼結合金中の空孔も再
溶融に伴い放出され空孔の存在による強度低下も
ない。又焼結合金は形状の成形性に優れるため母
材の要所に嵌合される如く焼結合金を形成し、こ
れを再溶融させることのみによつて耐摩耗性部材
が完成され生産性に優れるばかりでなく、焼結合
金は肉厚を大きくとることが可能であつて数mmの
厚い層を得ることが容易である。
On the other hand, in the case of mixing and sintering ceramic particles and powder mainly composed of Fe, the ceramic particles are uniformly dispersed, and the sintering brings each particle tightly together. Since the particles are coupled to the energy beam, there is no scattering of particles even when irradiated with an energy beam. Furthermore, the vacancies in the sintered alloy are also released upon remelting, so there is no decrease in strength due to the presence of vacancies. In addition, since sintered alloys have excellent formability, wear-resistant parts can be completed by simply forming sintered alloys that fit into key points of the base material and remelting them, increasing productivity. In addition to being superior, sintered alloys can have a large wall thickness, and it is easy to obtain a thick layer of several millimeters.

母材については通常の鋼、鋳鉄から選ばれる
が、より好ましくは鋼が用いられる。これは再溶
融に伴い鋳鉄中の黒鉛がCo2等のガス発生の原因
となることやMn,Siを多量に含む鋳鉄では焼結
合金との結合層でこれらMn,Siが基地の脆化を
起こす可能性を持つためである。尚この母材の鋼
についても特に耐熱性を要するバルブ、バルブシ
ートについては耐熱鋼を用い、強度の要求される
シリンダライナ、カムフオロワについては焼入れ
用鋼が適し、耐食性の要求されるピストンリング
等にあつては高Cr鋼やステンレス鋼が適する。
The base material is selected from ordinary steel and cast iron, and steel is more preferably used. This is because graphite in cast iron causes the generation of gases such as Co 2 when remelted, and in cast iron that contains large amounts of Mn and Si, these Mn and Si can cause embrittlement of the matrix in the bonding layer with the sintered alloy. This is because there is a possibility that it may occur. Regarding the steel base material, heat-resistant steel is used for valves and valve seats that require particular heat resistance, hardened steel is suitable for cylinder liners and cam followers that require strength, and piston rings that require corrosion resistance are used. In other cases, high Cr steel or stainless steel is suitable.

又この母材には再溶融に伴う熱影響層が形成さ
れるが、これは通常の焼入れ組織以上の硬度が得
られるものであり、再溶融急冷されて相対的に脆
化した再溶融層と母材間にあつて、特に再溶融層
の薄いものではこれを支承する効果を有する。
In addition, a heat-affected layer is formed in this base metal due to remelting, but this has a hardness higher than that of a normal quenched structure, and is similar to a remelted layer that has become relatively brittle due to remelting and rapid cooling. It has the effect of supporting the base materials, especially when the remelted layer is thin.

このように本発明では主としてセラミツクス粒
子のベアリング効果により耐摩耗性が発揮される
ため、相手材料に対してセラミツクス粒子の量、
大きさを選択することにより相対的摺動部材が達
成されるものであり材料選択性が広いものであ
る。
In this way, in the present invention, wear resistance is mainly achieved by the bearing effect of ceramic particles, so the amount of ceramic particles relative to the mating material is
A relative sliding member is achieved by selecting the size, and material selection is wide.

尚本発明において焼結合金を再溶融する場合に
焼結合金中の空孔が多いと再溶融合金層に気泡が
残るため、予め焼結合金に溶浸、含浸の封孔処理
を施し再溶融することが望ましい。特に本発明の
如く比較的に粒径の大きなセラミツクス粒子を混
合した粉末は圧縮性が劣り高密度の焼結体が得難
いものであるため再溶融に際して真空中で再溶融
するか、あるいは封孔処理することが望ましいも
のである。
In the present invention, when the sintered alloy is remelted, if there are many pores in the sintered alloy, air bubbles will remain in the remelted alloy layer. It is desirable to do so. In particular, powder mixed with ceramic particles having a relatively large particle size as in the present invention has poor compressibility and is difficult to obtain a high-density sintered body, so it is necessary to remelt it in a vacuum or undergo a sealing process. It is desirable to do so.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄系粉末に対して、セラミツクス粉末を5〜
40容積%混合して、該混合粉末を所望の形状に圧
粉成形し、しかる後鉄系粉末の焼結温度にて焼結
して、焼結合金となし、次に鋼又は、鋳鉄の母材
の表面に前記焼結合金を置き、該焼結合金の表面
から高密度の熱源を当てて加熱し、焼結合金を再
溶融させると同時に、母材の一部をも再溶融させ
ることによつて、母材の表面に耐摩耗性層を得る
ことを特徴とする内燃機関用耐摩耗性部材の製造
方法。
1. Ceramic powder is added to 5 to 10% of iron-based powder.
40% by volume is mixed, the mixed powder is compacted into a desired shape, and then sintered at the sintering temperature of iron-based powder to form a sintered alloy. The sintered alloy is placed on the surface of the material, and a high-density heat source is applied from the surface of the sintered alloy to heat it, remelting the sintered alloy and at the same time remelting a part of the base material. Therefore, a method for producing a wear-resistant member for an internal combustion engine is provided, which comprises obtaining a wear-resistant layer on the surface of a base material.
JP14560481A 1981-09-17 1981-09-17 Wear-resisting member for internal combustion engine Granted JPS5847139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14560481A JPS5847139A (en) 1981-09-17 1981-09-17 Wear-resisting member for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14560481A JPS5847139A (en) 1981-09-17 1981-09-17 Wear-resisting member for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5847139A JPS5847139A (en) 1983-03-18
JPH0152475B2 true JPH0152475B2 (en) 1989-11-08

Family

ID=15388885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14560481A Granted JPS5847139A (en) 1981-09-17 1981-09-17 Wear-resisting member for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5847139A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154793A (en) * 1984-08-24 1986-03-19 Victor Co Of Japan Ltd Variable directivity microphone
JP6322938B2 (en) * 2013-09-27 2018-05-16 日立化成株式会社 Dust core, method for producing powder for core, mold and mold device for producing dust core, and lubricating liquid for mold for producing dust core

Also Published As

Publication number Publication date
JPS5847139A (en) 1983-03-18

Similar Documents

Publication Publication Date Title
EP0266149B1 (en) High wear-resistant member, method of producing the same, and valve gear using the same for use in internal combustion engine
KR101245069B1 (en) A powder metal engine composition
US5993978A (en) Engine tappet of high abrasion resistance and method for manufacturing the same
Rastegar et al. Alternative to chrome: HVOF cermet coatings for high horse power diesel engines
KR101129406B1 (en) A movable wall member in form of an exhaust valve spindle or a piston for an internal combustion engine, and a method of manufacturing such a member
KR100220791B1 (en) Internal combustion valve having an iron based hard-facing alloy contact face
US3779720A (en) Plasma sprayed titanium carbide tool steel coating
JPWO2004035852A1 (en) Piston ring, thermal spray coating used therefor, and manufacturing method
JPS62243905A (en) Rocker arm for internal combustion engine
JP7041407B2 (en) Sliding member
EP2318668B1 (en) Cylinder head with valve seat and method for the production thereof
JPH0152475B2 (en)
MX2015005436A (en) Engine valve.
JP3434527B2 (en) Sintered alloy for valve seat
KR19990009039A (en) Engine tappet with excellent wear resistance and its manufacturing method
JP2641424B2 (en) Method for manufacturing internal combustion engine valve train
JPS62177184A (en) Cast iron cylinder head for internal combustion engine and its production
JP3547583B2 (en) Cylinder liner
KR950008687B1 (en) Making method of sintering tappet for diesel and gasoline engine and tip composite
JPS59100263A (en) Plasma-sprayed piston ring
JPH01197067A (en) Manufacture of ti base alloy engine valve
JPS60222513A (en) Rocker arm
WO2022224046A1 (en) Fe-al-si-x-based alloy and its use
JP2000073151A (en) Hard particle dispersion type iron-base sintered alloy and its production
Stephenson Surface Engineering by HIP