JPH0152420B2 - - Google Patents

Info

Publication number
JPH0152420B2
JPH0152420B2 JP6041681A JP6041681A JPH0152420B2 JP H0152420 B2 JPH0152420 B2 JP H0152420B2 JP 6041681 A JP6041681 A JP 6041681A JP 6041681 A JP6041681 A JP 6041681A JP H0152420 B2 JPH0152420 B2 JP H0152420B2
Authority
JP
Japan
Prior art keywords
cyanate ester
bis
resin composition
acrylonitrile
maleimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6041681A
Other languages
Japanese (ja)
Other versions
JPS57174346A (en
Inventor
Nobuyuki Ikeguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP6041681A priority Critical patent/JPS57174346A/en
Publication of JPS57174346A publication Critical patent/JPS57174346A/en
Publication of JPH0152420B2 publication Critical patent/JPH0152420B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、屈曲性、密着性等に富み、耐熱性、
耐薬品性、電気的特性等にもすぐれた暹脂組成物
に関する。 倚官胜性シアン酞゚ステル類を必須成分ずし、
適宜倚官胜性マレむミド類、さらににぱポキシ
暹脂を含有させおなる硬化性暹脂組成物
は、特公昭41−1928号公報成分、同46−
41112の組成物、同54−30440の
組成物同52−31279号公報の組成
物、その他により公知であり、耐熱性、機械的
匷床、耐薬品性、耐湿性等皮々の物性にすぐれた
ものであるが、屈曲性、可撓性等の面では、䜿甚
するいわゆるモノマヌ類に脂肪族長鎖有機基を導
入する方法である皋床の改善はなされるが尚䞍十
分であ぀た。たた接着性、粘着性等の芁求される
甚途においおは䜿甚が困難な面もあ぀た。 本発明者は、䞊蚘のような欠点の改善に぀いお
研究した結果、改質剀ずしお䞍飜和酞無氎物をそ
の䞍飜和炭玠−炭玠結合郚で付加させおなる䞍飜
和酞無氎物付加アクリロニトリル−ブタゞ゚ン共
重合䜓を甚いるこずにより、屈曲性、可撓
性等が倧巟に改善され、さらに粘着性を付䞎でき
るこず、たた、逆に前蚘䞍飜和酞無氎物付加アク
リロニトリル−ブタゞ゚ン共重合䜓の耐熱性、耐
薬品性等の改質剀ずしお倚官胜性シアン酞゚ステ
ル類を必須成分ずし、適宜倚官胜性マレむミド
類、さらに゚ポキシ暹脂を含有させおなる暹脂組
成物がきわめお有効であるこずも芋い出し、本発
明を完成させた。 すなわち、本発明はa.倚官胜性シアン酞゚ステ
ル、該シアン酞゚ステルプレポリマヌ或いは該シ
アン酞゚ステルずアミンずのプレポリマヌ、たた
は前蚘ずb.倚官胜性マレむミド、該マレむミド
プレポリマヌ或いは該マレむミドずアミンずのプ
レポリマヌたたはc.゚ポキシ暹脂ずからなるシア
ン酞゚ステル系の硬化性暹脂組成物におい
お、䞍飜和酞無氎物をその䞍飜和結合郚で付加さ
せおなるアクリロニトリル−ブタゞ゚ン共重合䜓
を配合しおなる硬化可胜な暹脂組成物であ
り、奜たしくは該組成物䞭の成分が〜95
重量、成分が95〜重量の範囲から遞
択され、屈曲性、密着性、耐熱性、電気的特性、
耐薬品性等にすぐれた硬化物を埗るこずができる
ものである。 以䞋に、本発明の構成に぀いお説明する。 たず、本発明のシアン酞゚ステル系硬化性暹脂
組成物ずは、分子䞭にシアナヌト基−
−≡を個、奜たしくは個以䞊有する化
合物又はそのプレポリマヌ単独あるいはこれら成
分を必須成分ずしお含有する暹脂組成物である。
必須成分である倚官胜性シアン酞゚ステルずは
個以䞊のシアン酞゚ステル基を有する有機化合物
であり、奜適なシアン酞゚ステルは䞋蚘䞀般匏 R1−−≡ 

(1) 〔匏䞭のは通垞以䞊以䞋の敎数であり、
R1は芳銙族性の有機基であ぀お、䞊蚘シアナト
基は該有機基R1の芳銙環に結合しおいるもの〕 で衚わされる化合物である。具䜓的に䟋瀺すれ
ば、−たたは−ゞシアナトベンれ
ン、−トリシアナトベンれン、
−、−、−、−、−た
たは−ゞシアナトナフタレン、
−トリシアナトナフタレン、4′−ゞシアナト
ビプニル、ビス−シアナトプニルメタ
ン、−ビス−シアナトプニルプロ
パン、−ビス−ゞクロロ−−シ
アナトプニルプロパン、−ビス
−ゞブロモ−−シアナトプニルプロパ
ン、ビス−シアナトプニル゚ヌテル、ビ
ス−シアナトプニルチオ゚ヌテル、ビス
−シアナトプニルスルホン、トリス
−シアナトプニルホスフアむト、トリス
−シアナトプニルホスフアむト、およびノボ
ラツクずハロゲン化シアンずの反応により埗られ
るシアン酞゚ステルなどである。これらの他に特
公昭41−1928、特公昭44−4791、特公昭45−
11712、特公昭46−41112および特開昭51−63149
などに蚘茉のシアン酞゚ステルも甚いうる。 又、䞊述した倚官胜性シアン酞゚ステルを、鉱
酞、ルむス酞、炭酞ナトリりム或いは塩化リチり
ム等の塩類、トリブチルホスフむン等のリン酞゚
ステル類等の觊媒の存圚䞋に重合させお埗られる
プレポリマヌずしお甚いるこずができる。これら
のプレポリマヌは、前蚘シアン酞゚ステル䞭のシ
アン基が䞉量化するこずによ぀お圢成されるsym
−トリアゞン環を、䞀般に分子䞭に有しおいる。
本発明においおは、平均分子量400〜6000の前蚘
プレポリマヌを甚いるのが奜たしい。 次に、䞊蚘シアン酞゚ステル類ず組合せおシア
ン酞゚ステル系暹脂組成物を構成する成分に぀い
お説明する。 奜適に甚いられるマレむミドずは、曎に耐熱
性、耐湿性などにすぐれた暹脂組成物ずするもの
であり、マレむミド基を個、奜たしくは個以
䞊有する化合物類である。本発明に奜適に䜿甚さ
れる倚官胜性マレむミドは䞋蚘䞀般匏 〔匏䞭、R2は䟡以䞊、通垞䟡以䞋の芳銙族
又は脂環族性有機基であり、X1、X2は氎玠、ハ
ロゲン、たたはアルキル基であり、は以䞊、
以䞋の敎数である。〕 で衚わされる化合物である。䞊匏で衚わされるマ
レむミド類は無氎マレむン酞類ず以䞊、通垞
個以䞋のアミノ基を有するアミン類ずを反応させ
おマレアミド酞を調補し、次いでマレアミド酞を
脱氎環化させるそれ自䜓公知の方法で補造するこ
ずができる。甚いる倚䟡アミン類は芳銙族アミン
であるこずが最終暹脂の耐熱性等の点で奜たしい
が、暹脂の可撓性や柔軟性が望たしい堎合には、
脂環族アミンを単独或いは組合せお䜿甚しおもよ
い。たた、倚䟡アミン類は第玚アミンであるこ
ずが反応性の点で特に望たしいが、第玚アミン
も䜿甚できる。奜適なアミン類ずしおは、メタた
たはパラプニレンゞアミン、メタたたはパラキ
シリレンゞアミン、−たたは−シク
ロヘキサンゞアミン、ヘキサヒドロキシリレンゞ
アミン、4′−ゞアミノビプニル、ビス
−アミンプニルメタン、ビス−アミノフ
゚ニル゚ヌテル、ビス−アミノプニル
スルホン、ビス−アミノ−−メチルプニ
ルメタン、ビス−アミノ−−ゞメチ
ルプニルメタン、ビス−アミノプニ
ルシクロヘキサン、−ビス−アミノ
プニルプロパン、−ビス−アミノ
−−メチルプニルプロパン、ビス−ア
ミノ−−クロロプニルメタン、−ビ
ス−ゞブロモ−−アミノプニルプ
ロパン、ビス−アミノプニルプニルメ
タン、−ゞアミノプニル−4′−アミノフ
゚ニルメタン、−ビス−アミノプニ
ル−−プニル゚タン、および−トリアゞ
ン環をも぀たメラミン、アニリンずホルマリンず
を反応させおベンれン環をメチレン結合で結んだ
ポリアミンなどが瀺される。 本発明においおは、䞊述した倚官胜性マレむミ
ドは、所謂モノマヌの圢で䜿甚する代りにプレポ
リマヌの圢で甚いるこずもできる。 又、゚ポキシ暹脂ずは、接着力の向䞊、粘床の
調敎などのために必芁に応じお䜿甚されるもので
あり、分子䞭に゚ポキシ基を個以䞊有する化合
物およびそのプレポリマヌである。䟋瀺すれば、
ポリオヌル、ポリヒドロキシベンれン、ビスプ
ノヌル、䜎分子量のノボラツク型プノヌル暹
脂、氎酞基含有シリコン暹脂、アニリン、
−ゞアミノプノヌルなどず゚ピハロヒドリンず
の反応によ぀お埗られるポリグリシゞル化合物
類、ブタゞ゚ン、ペンタゞ゚ン、ビニルシクロヘ
キサン、ゞシクロペンチル゚ヌテルなどの二重結
合を゚ポキシ化したポリ゚ポキシ化合物類などで
ある。 曎に、その他の成分ずしおは、メタアクリ
ル酞の゚ステル、メタアクリル酞の゚ポキシ
゚ステル、メタアクリル酞のアルケニル゚ス
テルなどのメタアクリル酞の゚ステル及びそ
れらのプレポリマヌゞアリルフタレヌト、ゞビ
ニルベンれン、ゞアリルベンれン、トリアルケニ
ルむ゜シアヌレヌトなどのポリアルケニル化合物
及びそのプレポリマヌゞシクロペンタゞ゚ン及
びそのプレポリマヌプノヌル暹脂ポリビニ
ルホルマヌル、ポリビニルアセタヌル、ポリビニ
ルブチラヌルなどのポリビニルアセタヌル暹脂
CH基もしくはCOOH基をも぀たアクリル暹脂、
シリコン暹脂、アルキツド暹脂ポリブタゞ゚
ン、ブタゞ゚ン−アクリロニトリル共重合䜓、ポ
リクロロプレン、ブタゞ゚ン−スチレン共重合
䜓、ポリむ゜プレン、ブチルゎム、倩然ゎムなど
の液状−clasticなゎム類、ポリむミド重合䜓等
が挙げられるものである。 次に本発明のアクリロニトリル−ブタゞ゚ン共
重合䜓に䞍飜和酞無氎物をその䞍飜和結合郚で付
加させおなる䞍飜和酞無氎物付加アクリロニトリ
ル−ブタゞ゚ン共重合䜓以䞋、䞍飜和酞
無氎物付加アクリロニトリル−ブタゞ゚ン共重合
䜓ず蚘すずは、いわゆるアクリロニトリル−ブ
タゞ゚ン共重合䜓に䞍飜和酞無氎物をその䞍飜和
炭玠−炭玠結合郚で付加させたものである。 䜿甚原料であるアクリロニトリル−ブタゞ゚ン
共重合䜓ずしおは、数平均分子量900〜100000、
奜たしくは1000〜5000のアクリロニトリル−ブタ
ゞ゚ン共重合䜓であり、これは䞀般に公知の方法
で補造される。補造に際しおは、偎鎖に䞍
飜和結合の倚く生成する觊媒系や条件を遞択する
のが奜たしい。 䞍飜和酞無氎物ずは、分子内にオレフむン性䞍
飜和結合ず酞無氎物基ずを有する化合物であり、
奜適なものを䟋瀺すれば次匏のものが挙げられ
る。 䞍飜和酞無氎物倉性アクリロニトリル−ブタゞ
゚ン共重合䜓は、前蚘アクリロニトリル−ブタゞ
゚ン共重合䜓100gに察し、䞍飜和酞無氎物0.1〜
3.0モル、奜たしくは0.2〜2.0モルを付加するこず
による。付加反応条件は、埓来公知の方法が甚い
られる。すなわち、䞍飜和酞無氎物ずアクリロニ
トリル−ブタゞ゚ン共重合䜓の可溶な溶剀䞭ある
いは熔融状態で50〜300℃、奜たしくは100〜250
℃にお必芁に応じおプニレンゞアミン、ピロガ
ロヌルあるいはナフトヌルなどのゲル化防止剀を
少量添加し、反応を行なう。 以䞊の本発明の硬化性暹脂組成物の暹脂成分の
䜿甚量比は特に限定されるものではないが、耐熱
性の暹脂ずしお甚いる堎合には、シアン酞゚ステ
ル系暹脂組成分を構成する奜適成分であるシアン
酞゚ステル類およびたたはマレむミド類を䞻成
分ずするシアン酞゚ステル系暹脂組成物を50〜
95wt、酞無氎物付加アクリロニトリル−ブタ
ゞ゚ン共重合䜓を〜50wt、より奜たしくは
10〜45wt甚いるのがよく、逆に埌者の耐熱性
等の改良の為には前者のシアン酞゚ステル系暹脂
組成物を〜50wtの範囲で甚いるのがよい。 本発明の暹脂組成物はそれ自䜓加熱により結合
し網状化しお耐熱性暹脂ずなる性質を有しおいる
が、架橋網状化を促進する目的で、通垞は觊媒を
含有させお䜿甚する。このような觊媒ずしおは、
−メチルむミダゟヌル、−りンデシルむミダ
ゟヌル、−ヘプタデシルむミダゟヌル、−フ
゚ニルむミダゟヌル、−゚チル−−メチルむ
ミダゟヌル、−ベンゞル−メチルむミダゟヌ
ル、−プロピル−−メチルむミダゟヌル、
−シアノ゚チル−−メチルむミダゟヌル、−
シアノ゚チル−゚チル−メチルむミダゟヌ
ル、−シアノ゚チル−−りンデシルむミダゟ
ヌル、−シアノ゚チル−−プニルむミダゟ
ヌル、−グアナミノ゚チル−メチルむミダゟ
ヌルで䟋瀺されるむミダゟヌル類、さらには、こ
れらのむミダゟヌル類のトリメリト酞付加䜓な
ど−ゞメチルベンゞルアミン、−
ゞメチルアニリン、−ゞメチルトルむゞ
ン、−ゞメチル−−アニシゞン、−ハ
ロゲノ−−ゞメチルアニリン、−−゚
チルアニリノ゚タノヌル、トリ−−ブチルアミ
ン、ピリゞン、キノリン、−メチルモルホリ
ン、トリ゚タノヌルアミン、トリ゚チレンゞアミ
ン、N′N′−テトラメチルブタンゞア
ミン、−メチルピペリゞンなどの第玚アミン
類プノヌル、クレゟヌル、キシレノヌル、レ
ゟルシン、フロログルシン等のプノヌル類ナ
フテン酞鉛、ステアリン酞鉛、ナフテン酞亜鉛、
オクチル酞亜鉛、オレむン酞スズ、ゞブチル錫マ
レ゚ヌト、ナフテン酞マンガン、ナフテン酞コバ
ルト、アセチルアセトン鉄などの有機金属塩
SnCl4、ZnCl2、AlCl2などの無機金属塩過酞化
ベンゟむル、ラりロむルパヌオキサむド、カプリ
リルパヌオキサむド、アセチルパヌオキサむド、
パラクロロベンゟむルパヌオキネむド、ゞヌタヌ
シダリヌブチルゞヌパヌフタレヌトなどの過酞化
物さらにはアゟビスニトリル類が挙げられる。そ
の他に䞀般に゚ポキシ暹脂の硬化剀又は觊媒ずし
お知られおいるもの、䟋えば、無氎ピロメリツト
酞、無氎フタル酞などの酞無氎物類も䜵甚でき
る。たたゎムの架流剀ずしお甚いられおいるもの
も䜵甚できる。 本発明の組成物には、組成物本来の特性が損な
われない範囲で、所望に応じお皮々の添加物を配
合する事ができる。これらの添加物ずしおは、本
発明の組成物に新たな性質を付䞎するための倩然
たたは合成の暹脂類繊維質補匷材充填剀染
顔料カツプリング剀増粘剀滑剀難燃剀
ゎムの老化防止剀等公知の各皮添加剀が含たれ、
所望に応じお適宜組合せお甚いられる。 本発明の暹脂組成物を硬化させるための枩床
は、硬化剀や觊媒の有無、組成成分の皮類などに
よ぀おも倉化するが、通垞90〜350℃、奜たしは
100〜300℃の範囲で遞ばれればよい。積局品、接
着構造物等の補造に甚いられる堎合には、加熱硬
化に際しお圧力を加えるこずが奜たしく、䞀般的
に蚀぀お0.1〜200Kgcm2の範囲内で適宜遞ばれ
る。たた硬化に際し、玫倖線、攟射線等も䜿甚で
きる。 以䞊詳现に述べた本発明の暹脂組成物を硬化さ
せるこずにより埗た硬化暹脂は、屈曲性乃至は可
撓性、密着性、耐熱性及び電気特性等の各皮特性
の望たしい組合せを有しおいるず共に耐薬品性等
にも優れおいるものである。 以䞊詳现に説明した本発明の暹脂組成物の架橋
網状化反応機構に぀いおは、蚌明されたものはな
いものであるが、倚官胜性シアン酞゚ステル類の
シアナト基の反応および倚官胜性マレむミド類の
マレむミド基の反応は䞋蚘の劂く掚定される。 又、゚ポキシ暹脂の゚ポキシ基に぀いおは、氎
酞基、カルボキシル基、アミノ基、酞無氎物基な
どずの反応機構は知られおいる。 (1) 倚官胜性シアン酞゚ステルの反応 (2) 倚官胜性マレむミドの反応 以䞊から本発明の組成物䞭においおは、公知で
ある倚官胜性シアン酞゚ステル類ず倚官胜性マレ
むミド類、曎に゚ポキシ暹脂からなる組成物䞭で
起こ぀おいるず掚定される反応の他に、新たに成
分ずしお加えた䞍飜和酞無氎物付加アクリロニト
リル−ブタゞ゚ン共重合䜓䞭の酞無氎物基
ずシアナト基やマレむミド基ずの反応が起こるも
のず掚察され、たたアクリロニトリル−ブタゞ゚
ン共重合䜓の䞍飜和二重結合ずの反応も起こるも
のず掚定される。 しかし、各成分が党お䞊蚘で掚枬した反応機構
に基づいお官胜基の量に比䟋しお反応するこずは
考えられない。異なる官胜基は、反応の枩床、速
床、遞択率、觊媒の皮類などそれぞれ異なるもの
であるこずから、䞊蚘した各成分䞭の官胜基間の
盞互の反応は、䞻にそれぞれ異なる成分間の芪和
性盞溶性の改良に寄䞎し、より埮现な分散状
態を実珟する点にあるずも掚察される。 以䞋、実斜䟋、比范䟋により具䜓的に説明す
る。なお郚は重量郚を衚わす。 実斜䟋  ブタゞ゚ン−アクリロニトリル共重合䜓アク
リロニトリル成分15.4、平均分子量2000、ブタ
ゞ゚ンの−結合141000g、無氎マレむ
ン酞200g、アンチゲン3Cゲル化防止剀、䜏友化
孊工業瀟補2g、およびキシレン10gを還流冷华
噚を備えたのセパラブルフラスコに入れ、系
内を窒玠眮換した埌、198℃で時間マレむン化
反応を行な぀た。反応終了埌、溶媒および未反応
物を枛圧䞋に留去し、マレむン化ブタゞ゚ン−ア
クリロニトリル共重合䜓を埗た。 このマレむン化ブタゞ゚ン−アクリロニトリル
共重合䜓200郚に、−ビス−シアナト
プニルプロパン500郚を150℃で450分間予備
反応させたものを入れ、さらに䞡者を150℃で20
分間予備反応させた。これにオクチル酞亜鉛0.1
郚、トリ゚チレンゞアミン0.1郚を加え、これら
をメチル゚チルケトンず−ゞメチルホルム
アミドの混合溶剀に溶解させた。この溶液をカヌ
ボン繊維織垃に含浞、也燥させお−stageのプ
リプレグを䜜成し、これを枚重ね合わせ䞊䞋に
35Όの電解銅箔を入れお175℃、40Kgcm2で140分
間プレス成圢した。この銅匵積局板の性胜を第
衚に瀺した。 実斜䟋  −ビス−シアナトプニルプロパ
ン900郚ずビス−マレむミドプニルメタ
ン100郚を140℃で150分間予備反応させたものに
゚ポキシ暹脂ECN−1273、チバガむギヌ瀟補
200郚、実斜䟋で埗られたマレむン化アクリロ
ニトリル−ブタゞ゚ン共重合䜓400郚、觊媒ずし
おオクチル酞亜鉛0.1郚、−ゞメチルベン
ゞルアミン5.0郚、ゞヌタヌシダリヌブチルパヌ
オキサむド2.0郚を入れ、これらをメチル゚チル
ケトンに溶解させた。この溶液をガラス織垃に含
浞、也燥させ−stageのプリプレグを䜜぀た。
これを枚䜿甚し、䞊䞋に35Ό電解銅箔を入れお
175℃、40Kgcm2で120分間プレス成圢しお良奜な
銅匵積局板を埗た。この板の性胜を第衚に瀺し
た。 比范䟋 、 実斜䟋、においお、マレむン化アクリロニ
トリル−ブタゞ゚ン共重合䜓を䜿甚しない以倖は
同様にしお銅匵積局板を䜜成した。この板の特性
を第衚に瀺した。
The present invention has excellent flexibility, adhesion, etc., and has heat resistance and
This invention relates to a resin composition with excellent chemical resistance, electrical properties, etc. Polyfunctional cyanate esters are an essential component,
A curable resin composition containing an appropriate polyfunctional maleimide and further an epoxy resin ()
is published in Japanese Patent Publication No. 41-1928 (component a), No. 46-
41112 (composition of a + c), No. 54-30440 (composition of a + b), No. 52-31279 (composition of a + b + c), and others, and has excellent heat resistance, mechanical strength, chemical resistance, and moisture resistance. However, in terms of flexibility and flexibility, although some improvement has been made by introducing aliphatic long-chain organic groups into the monomers used, it is still insufficient. Ta. In addition, it was difficult to use in applications that required adhesiveness and tackiness. As a result of research on improving the above-mentioned drawbacks, the present inventors have developed an unsaturated acid anhydride-added acrylonitrile-butadiene copolymer obtained by adding an unsaturated acid anhydride at its unsaturated carbon-carbon bond as a modifier. By using the polymer (), bendability, flexibility, etc. can be greatly improved, and tackiness can be further imparted, and conversely, the heat resistance of the unsaturated acid anhydride-added acrylonitrile-butadiene copolymer can be improved. We also discovered that a resin composition containing polyfunctional cyanate esters as an essential component and optionally polyfunctional maleimide and further epoxy resin is extremely effective as a modifier for chemical resistance, etc., and we have published this book. Completed the invention. That is, the present invention provides a. a. a polyfunctional cyanate ester, a prepolymer of the cyanate ester, or a prepolymer of the cyanate ester and an amine, or a. and b. a polyfunctional maleimide, the maleimide prepolymer, or the maleimide. An acrylonitrile-butadiene copolymer obtained by adding an unsaturated acid anhydride at the unsaturated bond in a cyanate ester-based curable resin composition () consisting of a prepolymer of and an amine or c. an epoxy resin. A curable resin composition containing (), preferably containing 5 to 95% of the component () in the composition.
Weight%, component () is selected from the range of 95 to 5% by weight, flexibility, adhesion, heat resistance, electrical properties,
It is possible to obtain a cured product with excellent chemical resistance. The configuration of the present invention will be explained below. First, the cyanate ester-based curable resin composition () of the present invention has a cyanate group (-O
-C≡N), preferably two or more, or a prepolymer thereof alone, or a resin composition containing these components as essential components.
What is polyfunctional cyanate ester, which is an essential component?2
It is an organic compound having at least 1 cyanate ester group, and a suitable cyanate ester has the following general formula R 1 (-O-C≡N)m...(1) [m in the formula is usually 2 or more and 5 or less is an integer of
R 1 is an aromatic organic group, and the cyanato group is bonded to the aromatic ring of the organic group R 1 . Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3
-, 1,4-, 1,6-, 1,8-, 2,6- or 2,7-dicyanatonaphthalene, 1,3,6
-tricyanatonaphthalene, 4,4'-dicyanatobiphenyl, bis(4-cyanatophenyl)methane, 2,2-bis(4-cyanatophenyl)propane, 2,2-bis(3,5-dichloro-4-cyanatophenyl) ) propane, 2,2-bis(3,
5-dibromo-4-cyanatophenyl)propane, bis(4-cyanatophenyl) ether, bis(4-cyanatophenyl)thioether, bis(4-cyanatophenyl)sulfone, tris(4-cyanatophenyl)
-cyanatophenyl) phosphite, tris(4
-cyanatophenyl) phosphites, and cyanic acid esters obtained by the reaction of novolacs with cyanogen halides. In addition to these, Tokuko Sho 41-1928, Tokko Sho 44-4791, Tokko Sho 45-
11712, JP 46-41112 and JP 51-63149
Cyanic acid esters described in et al. may also be used. Further, a prepolymer obtained by polymerizing the above-mentioned polyfunctional cyanate ester in the presence of a catalyst such as a mineral acid, a Lewis acid, a salt such as sodium carbonate or lithium chloride, or a phosphate ester such as tributylphosphine. It can be used as These prepolymers are symylamines formed by trimerization of the cyanide groups in the cyanate ester.
- Generally has a triazine ring in the molecule.
In the present invention, it is preferable to use the prepolymer having an average molecular weight of 400 to 6,000. Next, the components constituting the cyanate ester resin composition in combination with the above cyanate esters will be explained. The maleimide preferably used is a compound having one maleimide group, preferably two or more maleimide groups, which is used to form a resin composition with excellent heat resistance and moisture resistance. The polyfunctional maleimide suitably used in the present invention has the following general formula: [In the formula, R 2 is an aromatic or alicyclic organic group having a valence of 2 or more and usually 5 or less, X 1 and X 2 are hydrogen, halogen, or an alkyl group, and n is 2 or more,
It is an integer less than or equal to 5. ] It is a compound represented by The maleimides represented by the above formula are mixed with maleic anhydride and 2 or more, usually 5
It can be produced by a method known per se in which maleamic acid is prepared by reacting it with an amine having up to 10 amino groups, and then the maleamic acid is cyclodehydrated. It is preferable that the polyvalent amines used are aromatic amines in terms of the heat resistance of the final resin, but if flexibility and flexibility of the resin are desired,
Alicyclic amines may be used alone or in combination. Furthermore, it is particularly desirable that the polyvalent amines be primary amines in terms of reactivity, but secondary amines can also be used. Suitable amines include meta- or paraphenylenediamine, meta- or paraxylylenediamine, 1,4- or 1,3-cyclohexanediamine, hexahydroxylylenediamine, 4,4'-diaminobiphenyl, bis( 4
-Aminophenyl)methane, bis(4-aminophenyl) ether, bis(4-aminophenyl)
Sulfone, bis(4-amino-3-methylphenyl)methane, bis(4-amino-3,5-dimethylphenyl)methane, bis(4-aminophenyl)cyclohexane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(4-amino-3-methylphenyl)propane, bis(4-amino-3-chlorophenyl)methane, 2,2-bis(3,5-dibromo-4-aminophenyl)propane, bis(4- Aminophenyl) phenylmethane, 3,4-diaminophenyl-4'-aminophenylmethane, 1,1-bis(4-aminophenyl)-1-phenylethane, and melamine having an s-triazine ring, aniline and formalin. Examples include polyamines in which benzene rings are linked with methylene bonds through reaction. In the present invention, the above-mentioned polyfunctional maleimide can also be used in the form of a prepolymer instead of in the form of a so-called monomer. The epoxy resin is used as necessary to improve adhesive strength, adjust viscosity, etc., and is a compound having two or more epoxy groups in the molecule and a prepolymer thereof. For example,
Polyol, polyhydroxybenzene, bisphenol, low molecular weight novolak type phenolic resin, hydroxyl group-containing silicone resin, aniline, 3,5
These include polyglycidyl compounds obtained by the reaction of -diaminophenol etc. with epihalohydrin, and polyepoxy compounds in which the double bond of butadiene, pentadiene, vinylcyclohexane, dicyclopentyl ether is epoxidized. Furthermore, other components include esters of (meth)acrylic acid such as esters of (meth)acrylic acid, epoxy esters of (meth)acrylic acid, alkenyl esters of (meth)acrylic acid, and prepolymers thereof; diallyl phthalate. , polyalkenyl compounds such as divinylbenzene, diallylbenzene, and trialkenyl isocyanurate, and their prepolymers; dicyclopentadiene and their prepolymers; phenolic resins; polyvinyl acetal resins, such as polyvinyl formal, polyvinyl acetal, and polyvinyl butyral;
Acrylic resin with CH group or COOH group,
Silicone resin, alkyd resin; liquid-clastic rubbers such as polybutadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer, polyisoprene, butyl rubber, natural rubber, polyimide polymers, etc. be. Next, an unsaturated acid anhydride-added acrylonitrile-butadiene copolymer () (hereinafter, unsaturated acid anhydride The term "addition acrylonitrile-butadiene copolymer" refers to a so-called acrylonitrile-butadiene copolymer to which an unsaturated acid anhydride is added at its unsaturated carbon-carbon bond. The raw material used, acrylonitrile-butadiene copolymer, has a number average molecular weight of 900 to 100,000,
Preferred is an acrylonitrile-butadiene copolymer of 1,000 to 5,000, which is produced by a generally known method. During production, it is preferable to select a catalyst system and conditions that produce many C═C unsaturated bonds in the side chains. An unsaturated acid anhydride is a compound having an olefinic unsaturated bond and an acid anhydride group in the molecule,
Preferred examples include those of the following formula. The unsaturated acid anhydride-modified acrylonitrile-butadiene copolymer contains 0.1 to 100 g of the unsaturated acid anhydride per 100 g of the acrylonitrile-butadiene copolymer.
By adding 3.0 mol, preferably 0.2-2.0 mol. As the addition reaction conditions, conventionally known methods are used. That is, in a solvent in which the unsaturated acid anhydride and the acrylonitrile-butadiene copolymer are soluble or in a molten state, the temperature is 50 to 300°C, preferably 100 to 250°C.
The reaction is carried out at ℃ by adding a small amount of anti-gelling agent such as phenylene diamine, pyrogallol or naphthol as necessary. The usage ratio of the resin components of the above-mentioned curable resin composition of the present invention is not particularly limited, but when used as a heat-resistant resin, it is a suitable component constituting the cyanate ester resin composition. A cyanate ester resin composition containing a certain cyanate ester and/or maleimide as a main component
95 wt%, 5 to 50 wt% of acid anhydride-added acrylonitrile-butadiene copolymer, more preferably
It is preferable to use the cyanate ester resin composition in an amount of 10 to 45 wt%, and conversely, to improve the heat resistance of the latter, it is preferable to use the former cyanate ester resin composition in an amount of 5 to 50 wt%. The resin composition of the present invention itself has the property of becoming a heat-resistant resin by being bonded and reticulated by heating, but in order to promote crosslinking and reticulation, it is usually used in the form of a catalyst. Such a catalyst is
2-Methylimidazole, 2-undecylimidazole, 2-heptadecyl imidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-propyl-2-methylimidazole, 1
-cyanoethyl-2-methylimidazole, 1-
Imidazoles exemplified by cyanoethyl-2ethyl-4methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-guanaminoethyl-2-methylimidazole, and further, these imidazoles such as trimellitic acid adducts; N,N-dimethylbenzylamine, N,N-
Dimethylaniline, N,N-dimethyltoluidine, N,N-dimethyl-p-anisidine, p-halogeno-N,N-dimethylaniline, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline, Tertiary amines such as N-methylmorpholine, triethanolamine, triethylenediamine, N,N,N',N'-tetramethylbutanediamine, N-methylpiperidine; phenol, cresol, xylenol, resorcin, phloroglucin, etc. Phenols: lead naphthenate, lead stearate, zinc naphthenate,
Organic metal salts such as zinc octylate, tin oleate, dibutyltin maleate, manganese naphthenate, cobalt naphthenate, iron acetylacetonate;
Inorganic metal salts such as SnCl 4 , ZnCl 2 , AlCl 2 ; benzoyl peroxide, lauroyl peroxide, caprylyl peroxide, acetyl peroxide,
Examples include peroxides such as parachlorobenzoyl peroxide and di-tertiary butyl di-perphthalate, as well as azobisnitriles. In addition, those generally known as curing agents or catalysts for epoxy resins, such as acid anhydrides such as pyromellitic anhydride and phthalic anhydride, can also be used in combination. Moreover, those used as cross-flowing agents for rubber can also be used in combination. The composition of the present invention may contain various additives as desired, as long as the original properties of the composition are not impaired. These additives include natural or synthetic resins for imparting new properties to the composition of the present invention; fibrous reinforcing materials; fillers; dyes and pigments; coupling agents; thickeners; lubricants; flame retardants. ;
Contains various known additives such as rubber anti-aging agents,
They may be used in appropriate combinations as desired. The temperature for curing the resin composition of the present invention varies depending on the presence or absence of a curing agent and catalyst, the types of composition components, etc., but is usually 90 to 350°C, preferably
It may be selected within the range of 100 to 300°C. When used in the production of laminates, adhesive structures, etc., it is preferable to apply pressure during heat curing, and generally speaking, the pressure is appropriately selected within the range of 0.1 to 200 kg/cm 2 . Moreover, ultraviolet rays, radiation, etc. can also be used for curing. The cured resin obtained by curing the resin composition of the present invention described in detail above has a desirable combination of various properties such as flexibility, adhesion, heat resistance, and electrical properties. It also has excellent chemical resistance. Although the crosslinking and reticulation reaction mechanism of the resin composition of the present invention described in detail above has not been proven, it is possible that the reaction of the cyanato groups of polyfunctional cyanate esters and the reaction of polyfunctional maleimides. The reaction of the maleimide group is estimated as follows. Furthermore, the reaction mechanisms of epoxy groups in epoxy resins with hydroxyl groups, carboxyl groups, amino groups, acid anhydride groups, etc. are known. (1) Reaction of polyfunctional cyanate ester. (2) Reaction of polyfunctional maleimide. From the above, in the composition of the present invention, in addition to the reactions that are presumed to occur in the composition consisting of the known polyfunctional cyanate esters and polyfunctional maleimides, as well as the epoxy resin, there is a new reaction. It is presumed that a reaction occurs between the acid anhydride group in the unsaturated acid anhydride-added acrylonitrile-butadiene copolymer () added as a component and the cyanato group or maleimide group. It is presumed that reactions with saturated double bonds also occur. However, it is inconceivable that all the components react in proportion to the amount of functional groups based on the reaction mechanism inferred above. Different functional groups have different reaction temperatures, rates, selectivities, catalyst types, etc., so the mutual reactions between the functional groups in each component described above are mainly due to the affinity between the different components. It is also inferred that this contributes to the improvement of (compatibility) and realizes a finer dispersion state. This will be explained in detail below using Examples and Comparative Examples. Note that parts represent parts by weight. Example 1 Butadiene-acrylonitrile copolymer (acrylonitrile component 15.4%, average molecular weight 2000, butadiene 1,2-bond 14%) 1000g, maleic anhydride 200g, Antigen 3C (gelling inhibitor, manufactured by Sumitomo Chemical Industries, Ltd.) 2 g and 10 g of xylene were placed in a separable flask (No. 3) equipped with a reflux condenser, and after purging the system with nitrogen, a maleation reaction was carried out at 198° C. for 4 hours. After the reaction was completed, the solvent and unreacted substances were distilled off under reduced pressure to obtain a maleated butadiene-acrylonitrile copolymer. To 200 parts of this maleated butadiene-acrylonitrile copolymer, 500 parts of 2,2-bis(4-cyanatophenyl)propane pre-reacted at 150°C for 450 minutes was added, and both were further reacted at 150°C for 20 minutes.
Pre-react for 1 minute. This contains 0.1 zinc octylate.
1 part and 0.1 part of triethylenediamine were added, and these were dissolved in a mixed solvent of methyl ethyl ketone and N,N-dimethylformamide. This solution is impregnated into a carbon fiber woven fabric and dried to create a B-stage prepreg, which is layered one on top of the other.
A 35Ό electrolytic copper foil was inserted and press molded at 175°C and 40Kg/cm 2 for 140 minutes. The performance of this copper-clad laminate is
Shown in the table. Example 2 900 parts of 2,2-bis(4-cyanatophenyl)propane and 100 parts of bis(4-maleimidophenyl)methane were pre-reacted at 140°C for 150 minutes, and then an epoxy resin (ECN-1273, manufactured by Ciba Geigy) was added. )
200 parts, 400 parts of the maleated acrylonitrile-butadiene copolymer obtained in Example 1, 0.1 part of zinc octylate, 5.0 parts of N,N-dimethylbenzylamine, and 2.0 parts of di-tertiary butyl peroxide as catalysts, These were dissolved in methyl ethyl ketone. A glass woven fabric was impregnated with this solution and dried to produce a B-stage prepreg.
Use one sheet of this and put 35Ό electrolytic copper foil on the top and bottom.
A good copper-clad laminate was obtained by press molding at 175° C. and 40 kg/cm 2 for 120 minutes. The performance of this board is shown in Table 1. Comparative Examples 1 and 2 Copper-clad laminates were produced in the same manner as in Examples 1 and 2, except that the maleated acrylonitrile-butadiene copolymer was not used. The properties of this plate are shown in Table 1.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  a.倚官胜性シアン酞゚ステル、該シアン酞゚
ステルプレポリマヌ或いは該シアン酞゚ステルず
アミンずのプレポリマヌ、たたは前蚘ずb.倚官
胜性マレむミド、該マレむミドプレポリマヌ或い
は該マレむミドずアミンずのプレポリマヌたたは
c.゚ポキシ暹脂ずからなるシアン酞゚ステル系の
硬化性暹脂組成物においお、䞍飜和酞無氎
物をその䞍飜和結合郚で付加させおなるアクリロ
ニトリル−ブタゞ゚ン共重合䜓を配合しお
なる硬化可胜な暹脂組成物。  該組成物䞭の成分が〜95重量、成
分が95〜重量である特蚱請求の範囲第
項蚘茉の硬化可胜な暹脂組成物。
[Claims] 1 a. A polyfunctional cyanate ester, a prepolymer of the cyanate ester, or a prepolymer of the cyanate ester and an amine, or a and b. A polyfunctional maleimide, the maleimide prepolymer, or A prepolymer of the maleimide and an amine or
c. A cyanate ester-based curable resin composition () consisting of an epoxy resin is blended with an acrylonitrile-butadiene copolymer () obtained by adding an unsaturated acid anhydride at its unsaturated bond. Curable resin composition. 2. The curable resin composition according to claim 1, wherein the component () in the composition is 5 to 95% by weight, and the component () is 95 to 5% by weight.
JP6041681A 1981-04-21 1981-04-21 Curable resin composition Granted JPS57174346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6041681A JPS57174346A (en) 1981-04-21 1981-04-21 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6041681A JPS57174346A (en) 1981-04-21 1981-04-21 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS57174346A JPS57174346A (en) 1982-10-27
JPH0152420B2 true JPH0152420B2 (en) 1989-11-08

Family

ID=13141561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6041681A Granted JPS57174346A (en) 1981-04-21 1981-04-21 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS57174346A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8416024D0 (en) * 1984-06-22 1984-07-25 Secr Defence Thermosetting imide resin composition
JPH0796629B2 (en) * 1987-06-29 1995-10-18 日本れオン株匏䌚瀟 Rubber composition
US4894414A (en) * 1987-07-30 1990-01-16 The Dow Chemical Company Rubber-modified cyanate ester resins and polytriazines derived therefrom
US5079294A (en) * 1987-07-30 1992-01-07 The Dow Chemical Company Rubber-modified cyanate ester resins and polytriazines derived therefrom
US20070004844A1 (en) * 2005-06-30 2007-01-04 Clough Robert S Dielectric material

Also Published As

Publication number Publication date
JPS57174346A (en) 1982-10-27

Similar Documents

Publication Publication Date Title
US4393195A (en) Curable cyanate ester/acrylic epoxy ester composition
US4371689A (en) Curable resin composition comprising cyanate ester and acrylic alkenyl ester
US4396745A (en) Curable resin composition
US4369304A (en) Curable resin composition of (1) polyfunctional cyanate ester, (2) acrylic or methacrylic ester and (3) maleimide
US4469859A (en) Curable resin composition comprising cyanate ester and cyclopentadiene
JPS6326124B2 (en)
US4410666A (en) Curable resin composition
US4404330A (en) Curable resin composition
US4330658A (en) Curable resin composition
US4403073A (en) Curable resin composition
JPS6326145B2 (en)
US4429112A (en) Process of delaying cure of curable resin composition containing cyanate ester compound with benzene sulfonic acid compound
JPH0152420B2 (en)
JPS6335664B2 (en)
JPS6333504B2 (en)
JPS6326130B2 (en)
JPH024621B2 (en)
JPS6326146B2 (en)
JPH0153299B2 (en)
JPH0160064B2 (en)
JPS6328100B2 (en)
JPH0245348B2 (en)
JPS6328099B2 (en)
JPS6358185B2 (en)
JPH02145622A (en) Thermosetting resin composition