JPH0151760B2 - - Google Patents

Info

Publication number
JPH0151760B2
JPH0151760B2 JP9503781A JP9503781A JPH0151760B2 JP H0151760 B2 JPH0151760 B2 JP H0151760B2 JP 9503781 A JP9503781 A JP 9503781A JP 9503781 A JP9503781 A JP 9503781A JP H0151760 B2 JPH0151760 B2 JP H0151760B2
Authority
JP
Japan
Prior art keywords
heat pipe
working fluid
heat
section
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9503781A
Other languages
Japanese (ja)
Other versions
JPS57210291A (en
Inventor
Kazuo Yamashita
Takahito Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9503781A priority Critical patent/JPS57210291A/en
Publication of JPS57210291A publication Critical patent/JPS57210291A/en
Publication of JPH0151760B2 publication Critical patent/JPH0151760B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 本発明は重力形ヒートパイプにおいて、その集
熱部(加熱部)の一部分を光照射、熱風またはヒ
ーター等の加熱体により加熱することにより、ヒ
ートパイプに封入した作動液量および非凝縮性ガ
スの混入量を簡易な設備で短時間に推定すること
を可能とし、きわめて容易にヒートパイプの特性
の良否を判断することができるようにするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a gravity type heat pipe in which a part of the heat collecting part (heating part) is heated by light irradiation, hot air, or a heating element such as a heater, thereby reducing the temperature of the working fluid sealed in the heat pipe. This makes it possible to estimate the amount of non-condensable gas mixed in with simple equipment in a short time, and it is possible to very easily judge whether the characteristics of a heat pipe are good or bad.

第1図は一般的な重力式ヒートパイプ1を示
し、加熱部A、断熱部B、凝縮部Cより構成され
ており、構造的には容器2のなかに作動液3を密
封し、必要に応じ集熱フイン4および放熱フイン
5を取り付ける。この重力式ヒートパイプは加熱
部Aが加熱されると熱は集熱フイン4で集められ
て作動液3に伝達される。作動液3は加熱される
と潜熱を奪つて蒸発し、凝縮部Cに至り、ここで
潜熱を放出して液化し、管壁を通り加熱部Aに還
流する。このようにして加熱部Aで得た熱を効率
よく凝縮部Cに伝達し外部に放出する。このよう
な重力式ヒートパイプにおいて、作動液3の封入
量が少ない場合、加熱により作動液3がすべて蒸
発してしまうと加えられた熱を凝縮部Cに効率よ
く搬送することができなくなる。すなわち熱搬送
量が低下し、場合によつては加熱部Aが異常に高
温(加熱温度と同程度)となりヒートパイプ1の
損傷につながる。そこで必要以上に作動液3の量
を多くすると、作動液3が蒸発温度に達するまで
に時間を要し、熱搬送特性の低下を招くと共に余
分の作動液3を使用することでコストアツプとな
る。
Fig. 1 shows a general gravity heat pipe 1, which is composed of a heating section A, a heat insulating section B, and a condensing section C. Structurally, a working fluid 3 is sealed in a container 2, and as needed. Attach heat collecting fins 4 and heat dissipating fins 5 accordingly. In this gravity heat pipe, when the heating section A is heated, the heat is collected by the heat collection fins 4 and transferred to the working fluid 3. When the working fluid 3 is heated, it absorbs latent heat and evaporates, reaching the condensing section C, where it releases latent heat and becomes liquefied, and flows back to the heating section A through the pipe wall. In this way, the heat obtained in the heating section A is efficiently transferred to the condensing section C and released to the outside. In such a gravity type heat pipe, if the amount of the working fluid 3 sealed is small and all of the working fluid 3 evaporates due to heating, the added heat cannot be efficiently transferred to the condensing section C. That is, the amount of heat conveyed decreases, and in some cases, the heating portion A becomes abnormally high in temperature (same level as the heating temperature), leading to damage to the heat pipe 1. Therefore, if the amount of the working fluid 3 is increased more than necessary, it will take time for the working fluid 3 to reach the evaporation temperature, leading to a decrease in heat transfer characteristics and increasing costs due to the use of the extra working fluid 3.

また、ヒートパイプ1の内部に非凝縮性のガス
が混入されると、このガスは凝縮部Cの先端にた
まり、作動液3の蒸気が凝縮部Cの先端に達する
のを阻止する働きをする。このため、凝縮部Cの
実効的な表面積はこの非凝縮性ガスの占有により
減少し、熱交換率を低下させる。上記のごとく重
力式ヒートパイプの特性に影響をおよぼす要因と
して作動液3の封入量および非凝縮性ガスの混入
量があり、これ等の値を管理することにより、重
力式ヒートパイプの特性も管理することができ
る。然る一般的にはヒートパイプ1の容器2は不
透明であるため(一部強化ガラスや透明プラスチ
ツクが用いられることもある。)封入量を外部よ
り測定することができない。また、非凝縮性ガス
も一般的には空気でありその混入を外部より測定
することが不可能である。
Furthermore, when non-condensable gas is mixed into the inside of the heat pipe 1, this gas accumulates at the tip of the condensing section C and acts to prevent the vapor of the working fluid 3 from reaching the tip of the condensing section C. . Therefore, the effective surface area of the condensing section C is reduced due to the occupation of this non-condensable gas, reducing the heat exchange rate. As mentioned above, the factors that affect the characteristics of the gravity heat pipe include the amount of hydraulic fluid 3 and the amount of non-condensable gas mixed in, and by controlling these values, the characteristics of the gravity heat pipe can also be managed. can do. However, since the container 2 of the heat pipe 1 is generally opaque (tempered glass or transparent plastic may be used in some cases), the amount enclosed cannot be measured from the outside. Furthermore, since the non-condensable gas is generally air, it is impossible to measure its incorporation from the outside.

したがつて、重力式ヒートパイプの特性の測定
方法としては、従来、ヒートパイプ1の加熱部A
を温水につけ、凝縮部Cの下端と上端との温度差
を測定することにより非凝縮性ガスの混入度合を
推定する方法が行われてきた。また、熱搬送量の
測定としては加熱部Aを温水に浸漬し系が熱平衡
状態に達した後、凝縮部Cからの放熱量を測定し
その熱搬送量を求めていた。この場合、重力式ヒ
ートパイプが小形で簡単な構造の場合は検査設備
も簡単で取り扱いも容易であるが、重力式ヒート
パイプが大形となり形状も複雑となると、大きな
検査設備が必要となり取り扱いも不便となる。さ
らに、熱搬送を測定する場合熱平衡に達するまで
に時間がかゝり、温水に浸漬する場合には容器2
の材質によつてはさびの発生を防ぐ事も考えねば
ならず工業的な検査方法として好ましいものでは
なかつた。
Therefore, as a method for measuring the characteristics of a gravity heat pipe, conventionally, the heating part A of the heat pipe 1 is
A method has been used to estimate the degree of contamination of non-condensable gas by soaking in hot water and measuring the temperature difference between the lower end and the upper end of the condensing section C. In order to measure the amount of heat transfer, the heating section A was immersed in hot water, and after the system reached a thermal equilibrium state, the amount of heat released from the condensing section C was measured to determine the amount of heat transfer. In this case, if the gravity heat pipe is small and has a simple structure, the inspection equipment is simple and easy to handle, but if the gravity heat pipe is large and has a complicated shape, large inspection equipment is required and handling becomes difficult. It will be inconvenient. Furthermore, when measuring heat transport, it takes time to reach thermal equilibrium, and when immersing in hot water, the container 2
Depending on the material used, prevention of rust must also be considered, and this is not a desirable method for industrial testing.

本発明は上記欠点をなくし、どのような形状の
重力式ヒートパイプでも容易にかつ短時間にその
特性を検査することができるようにしたものであ
る。すなわち第2図に示すように、加熱部Aの一
部を加熱する方法である。同図において6は光照
射、熱風、または電気ヒーター等の加熱源、7は
作動液3上面の液面8,9,10はヒートパイプ
1の容器2外側面の温度を測定するための測温部
である。いま、作動液3の液面7の上部に加熱源
6′を置き、ヒートパイプ1を加熱すると、測温
部8′,9,10の温度Tは夫々時間の経過と共
に第3図に示すような変化をする。すなわち、加
熱源6′による加熱部近傍にある測温部8′では容
器2が加熱されるために温度が急上昇する。凝縮
部C下端の測温部9および上端の測温部10にお
いては、加熱源6′が液面7の上方にあるため、
作動液3が加熱されないので作動液3の蒸気が到
達しない。従つて第3図に示すように温度は上昇
しない。然るに、加熱源6″が作動液3の液面7
近くにある場合、作動液3は短時間で加熱され蒸
発していく。この時蒸発潜熱を周囲より奪うの
で、加熱部近傍の測温部8″は第4図にみられる
ようにそれほど温度上昇しない。また、凝縮部C
下端および上端の測温部9および10は加熱され
た作動液3の蒸気が到達するために第4図に示す
ように温度が上昇する。このようにして作動液3
の液面を推定することができる。設計上の作動液
3の量と熱搬送量とはほゞ一定の関係があるの
で、熱搬送量も類推することができ重力式ヒート
パイプの特性の概略を把握することができる。ま
た、非凝縮性ガスが存在しない場合は凝縮部Cの
上下端の温度差はほとんどない。したがつて凝縮
部Cの上下端に温度差がある場合は非凝縮性ガス
が混入しているものと推定することができる。実
用的には容器2における設計上の液管理面を加熱
し、ある一定時間後(通常数分)例えば第3図、
第4図におけるt1時間後に測温部9および10の
温度上昇を測定することにより、加熱部に液面が
あるか否か、また非凝縮性のガスが混入されてい
るかを判定することが出来る。なお、加熱源とし
ては光照射、温風またはヒーター等のいづれでも
良いが光照射の場合が簡単で実用的である。
The present invention eliminates the above drawbacks and makes it possible to easily and quickly test the characteristics of gravity heat pipes of any shape. That is, as shown in FIG. 2, this is a method in which a part of the heating section A is heated. In the figure, 6 is a heating source such as light irradiation, hot air, or an electric heater, and 7 is a liquid level 8, 9, and 10 on the upper surface of the working fluid 3, which is a temperature measurement device for measuring the temperature of the outer surface of the container 2 of the heat pipe 1. Department. Now, when the heating source 6' is placed above the liquid level 7 of the working fluid 3 and the heat pipe 1 is heated, the temperatures T of the temperature measuring parts 8', 9, and 10 will change over time as shown in FIG. make a change. That is, in the temperature measuring section 8' located near the heating section by the heating source 6', the temperature rises rapidly because the container 2 is heated. In the temperature measuring section 9 at the lower end of the condensing section C and the temperature measuring section 10 at the upper end, since the heating source 6' is above the liquid level 7,
Since the working fluid 3 is not heated, the vapor of the working fluid 3 does not reach the system. Therefore, the temperature does not rise as shown in FIG. However, the heating source 6'' is lower than the liquid level 7 of the working fluid 3.
If it is nearby, the working fluid 3 will be heated and evaporated in a short time. At this time, the latent heat of vaporization is taken away from the surroundings, so the temperature of the temperature measuring section 8'' near the heating section does not rise much as shown in Figure 4.
The temperature measuring sections 9 and 10 at the lower end and the upper end are heated by the vapor of the working fluid 3, so that the temperature increases as shown in FIG. 4. In this way, the hydraulic fluid 3
The liquid level can be estimated. Since there is a substantially constant relationship between the designed amount of the working fluid 3 and the amount of heat transfer, the amount of heat transfer can also be inferred and an outline of the characteristics of the gravity heat pipe can be grasped. Further, when there is no non-condensable gas, there is almost no temperature difference between the upper and lower ends of the condensing section C. Therefore, if there is a temperature difference between the upper and lower ends of the condensing section C, it can be assumed that non-condensable gas is mixed in. Practically, the designed liquid management surface of the container 2 is heated, and after a certain period of time (usually several minutes), for example, as shown in FIG.
By measuring the temperature rise in the temperature measurement parts 9 and 10 one hour after t in Fig. 4, it is possible to determine whether there is a liquid level in the heating part and whether non-condensable gas is mixed in. I can do it. The heating source may be light irradiation, hot air, a heater, or the like, but light irradiation is simple and practical.

以上のように本発明は重力形ヒートパイプの集
熱部における設計上の作動液の液面近傍のみを加
熱体により加熱するとともに、前記液面近傍と凝
縮部の下端および上端とを測温するので、ヒート
パイプに封入した作動液量および非凝縮性ガスの
混入を簡単な設備でもつて短時間に、かつ容易に
判別できる。
As described above, the present invention uses a heating element to heat only the vicinity of the designed working fluid surface in the heat collecting section of a gravity heat pipe, and also measures the temperature of the vicinity of the liquid surface and the lower and upper ends of the condensing section. Therefore, the amount of working fluid sealed in the heat pipe and the mixture of non-condensable gas can be easily determined in a short time and with simple equipment.

またヒートパイプの作動液の液面近傍のみを加
熱体により加熱するので、作動液が加熱されるか
されないかで蒸気発生の有無により、測温部が適
確に測温でき作動液の液面を正確にかつ早く把握
でき、かつヒートパイプの作動液全体を加熱する
従来技術に比べ熱エネルギーが少なく経済的であ
る。
In addition, since only the area near the surface of the working fluid in the heat pipe is heated by the heating element, the temperature measuring section can accurately measure the temperature depending on whether the working fluid is heated or not and whether steam is generated. can be determined accurately and quickly, and is economical as it requires less thermal energy than conventional technology that heats the entire working fluid of the heat pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は重力形ヒートパイプの断面図、第2図
は本発明の一実施例にかかる検査方法を示す重力
形ヒートパイプの断面図、第3図、第4図は第2
図の方法により測定した場合の重力形ヒートパイ
プの温度上昇の経時変化を示す特性図である。 1……重力式ヒートパイプ、A……集熱部、
6,6′,6″……加熱源。
FIG. 1 is a sectional view of a gravity type heat pipe, FIG. 2 is a sectional view of a gravity type heat pipe showing an inspection method according to an embodiment of the present invention, and FIGS.
FIG. 3 is a characteristic diagram showing a change over time in temperature rise of a gravity heat pipe when measured by the method shown in the figure. 1... Gravity type heat pipe, A... Heat collecting section,
6, 6', 6''...Heating source.

Claims (1)

【特許請求の範囲】[Claims] 1 重力形ヒートパイプの集熱部における設計上
の作動液の液面近傍のみを加熱体により加熱する
とともに、液面近傍と凝縮部の下端および上端と
を測温することを特徴とする重力形ヒートパイプ
の特性検査方法。
1 A gravity type heat pipe characterized by heating only the vicinity of the designed working fluid surface in the heat collecting section of the gravity heat pipe with a heating element, and measuring the temperature near the liquid surface and the lower and upper ends of the condensing section. Method for testing heat pipe characteristics.
JP9503781A 1981-06-18 1981-06-18 Characteristic inspection method for gravity type heat pipe Granted JPS57210291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9503781A JPS57210291A (en) 1981-06-18 1981-06-18 Characteristic inspection method for gravity type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9503781A JPS57210291A (en) 1981-06-18 1981-06-18 Characteristic inspection method for gravity type heat pipe

Publications (2)

Publication Number Publication Date
JPS57210291A JPS57210291A (en) 1982-12-23
JPH0151760B2 true JPH0151760B2 (en) 1989-11-06

Family

ID=14126876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9503781A Granted JPS57210291A (en) 1981-06-18 1981-06-18 Characteristic inspection method for gravity type heat pipe

Country Status (1)

Country Link
JP (1) JPS57210291A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425979C (en) * 2004-07-23 2008-10-15 鸿富锦精密工业(深圳)有限公司 Measuring device and method of heat pipe performance
CN102380218A (en) * 2011-09-29 2012-03-21 上海奥格利环保工程有限公司 Vertical evaporator with gravity assisted heat tubes for production of sulfuric acid
CN107764858A (en) * 2017-10-25 2018-03-06 华南理工大学 A kind of rotary heat pipe temperature test machine

Also Published As

Publication number Publication date
JPS57210291A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
SE8304378L (en) VERMERORAPPARAT
Ng et al. Outdoor testing of evacuated-tube heat-pipe solar collectors
JPH0151760B2 (en)
JPH02134549A (en) Heat exchange measurement method and apparatus
JPH07190971A (en) Method and equipment for dew point measurement
US5171518A (en) Method of determining differences or changes in the rate of heat transfer through tube walls
US2128462A (en) Thermocouple hygrometer
CA2692229A1 (en) Thermoeletric 2-phase gravity condenser & methods of improving existing heat pipe systems
Watanabe et al. Development of a variable-conductance heat-pipe for a sodium-sulfur (NAS) battery
JPS6363838B2 (en)
JPS5927236A (en) Steam leakage detector
SU987397A1 (en) Method of checking level of easily evaporating liquid in a closed vessel
JPS6139577B2 (en)
JPS5853298B2 (en) Heat pipe transport calorific value measuring device
JPS62146347A (en) Apparatus for preventing freezing of gutter
US20140199054A1 (en) Biphasic heat exchange radiator with optimisation of the boiling transient
JPS6022279Y2 (en) Heat pipe solar water heater
Dutcher Some Observations of the Properties of Certain So-Called Thermal Insulators
JPS631314Y2 (en)
JPH01244515A (en) Heater
JPS5971985A (en) Heat transporting apparatus
Nemec et al. Dustproof cooling of the electrical box
JPS644044Y2 (en)
SU562019A1 (en) Thermal cooling device for protection against wetting of paper and oil insulation of transformers and reactors
Semerkhanov et al. Heat transfer with condensation on mesh capillary structures of heat pipes