JPH0151570B2 - - Google Patents

Info

Publication number
JPH0151570B2
JPH0151570B2 JP7221984A JP7221984A JPH0151570B2 JP H0151570 B2 JPH0151570 B2 JP H0151570B2 JP 7221984 A JP7221984 A JP 7221984A JP 7221984 A JP7221984 A JP 7221984A JP H0151570 B2 JPH0151570 B2 JP H0151570B2
Authority
JP
Japan
Prior art keywords
resin
composite
sheath
core
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7221984A
Other languages
Japanese (ja)
Other versions
JPS60215834A (en
Inventor
Yoshihiko Matsuno
Katsuhiro Shishikura
Kunio Goda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP7221984A priority Critical patent/JPS60215834A/en
Publication of JPS60215834A publication Critical patent/JPS60215834A/en
Publication of JPH0151570B2 publication Critical patent/JPH0151570B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱接着性を有する複合連糸モノフイラ
メントの製造方法に関する。さらに詳しくは芯成
分樹脂ならびにその融点が該芯成分用樹脂の融点
より20℃以上低い鞘成分用樹脂を用いて鞘芯型に
複合押出して得られる複合モノフイラメント状紡
出物(以下複合単糸MF状紡出物という。)を延
伸工程で連糸構造体とする熱接着性を有する複合
連糸モノフイラメントに関する。 一般にポリオレフイン樹脂などの熱可塑性樹脂
を原料として製造されるモノフイラメントの断面
形状は押出機のダイノズルの断面形状および構造
により単糸構造のものおよび複数個の単糸が平行
に配列し相互に連結した連糸構造のものの2種類
のものがある。 一般に連糸構造のモノフイラメントの方が、織
り、編み、撚りなどの2次加工工程の運転作業が
簡単になり、加工時のトラブルも減少するなど2
次加工工程の合理化、省力化、コストダウンに大
きく寄与することならびにモノフイラメント製造
工程においてもワインダーの数を減少させること
が出来ることによる運転作業の簡単化がはかれる
といつたメリツトがあるため単糸構造のモノフイ
ラメントにかわつてよく使用される。通常、鞘芯
構造の複合連糸モノフイラメント(以下複合連糸
MFという。)は鞘芯構造をした連糸状のダイノ
ズルを有する押出機を使用することにより製造さ
れる。 しかしながら、従来の複合連糸MFの製造の場
合、連糸の数の変更、連糸のバラケ易さまたはバ
ラケにくさなど得られるモノフイラメントの製品
仕様に様々な要求があり、これらの要求に応える
ためにはその製品仕様に合つた各種のダイノズル
を用意することが必要であり、しかも要求される
製品仕様毎に一々製造装置を停止して押出機のダ
イノズルを交換する必要があり、設備費や生産性
の面において無駄が多いといつた欠点がある。 しかも複合連糸MFの製造において連糸の数が
多くなればなるほど、複合連糸モノフイラメント
状紡出物(以下複合連糸MF状紡出物という。)
が押出機のダイノズル出口で湾曲しまたはカール
状に変形し易くなる。その結果、可紡性、延伸性
が悪化するため、押出、冷却、引取、延伸などの
各条件を厳密にコントロールすることが必要とな
り必然的に連糸の数が制限され、従つて複合モノ
フイラメントの多連糸化が極めて難しいといつた
欠点がある。 本発明者らは複合連糸MFの製造に係る上述の
欠点を解決するため鋭意研究した。その結果、芯
成分用樹脂ならびにその融点が該芯成分用樹脂の
融点より20℃以上低い鞘成分用の熱可塑性樹脂を
用いて、鞘芯型のダイノズルを有する押出機によ
り複合押出し、この複合単糸MF状紡出物を鞘成
分用樹脂の軟化点以上芯成分用樹脂の融点以下に
保つた延伸槽で熱融着により連糸を形成させ、か
つ同時に延伸することにより任意の連糸構造を持
つた複合連糸MFが得られることを見い出し、本
発明を完成した。 以上の記述からわかるように本発明の目的は、
複合単糸MF状紡出物を用いて、延伸工程で簡
単、かつ経済的に各種の連糸構造を有する複合連
糸MFの製造方法を提供することである。 本発明は下記の構成を有する。 (1) 芯成分用の熱可塑性樹脂ならびにその融点が
該芯成分用樹脂の融点より20℃以上低い鞘成分
用の熱可塑性樹脂を用いて鞘芯型に複合押出し
て得られる鞘芯複合比30/70〜60/40の複合溶
融モノフイラメント状紡出物を、該紡出物の鞘
成分用樹脂の軟化点以上芯成分用樹脂の融点以
下の温度に保つた延伸槽で2本以上相互に熱融
着ならびに熱延伸せしめることにより連糸構造
体とすることを特徴とする熱接着性を有する複
合連糸モノフイラメントの製造方法。 本発明に用いられる熱可塑性樹脂の組み合せと
しては鞘成分用樹脂の融点が芯成分用樹脂の融点
より20℃以上低い熱可塑性樹脂を用いることが必
要である。それ以外には特に制限はなく、鞘芯部
に用いる熱可塑性樹脂の組み合せは同一樹脂成分
でも、異種の樹脂成分の組み合せでもよいが鞘芯
界面の層間剥離の生じにくい相溶性の良い樹脂成
分同士の組み合せが好ましい。 本発明に用いられる熱可塑性樹脂としてはポリ
エチレン樹脂(以下PEという。))、ポリプロピレ
ン樹脂(以下PPという。)などのポリオレフイン
樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、エ
チレン酢酸ビニル共重合樹脂などである。また通
常の熱可塑性樹脂に添加される添加剤例えば酸化
防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、
着色剤、滑剤、艶消剤などを必要に応じて用いる
ことが出来る。 本発明に係る複合モノフイラメントにおいて
は、芯成分が該モノフイラメントの強度を保持す
る作用をし、鞘成分が熱融着による接着性を付与
する作用をするため、鞘成分用樹脂の融点は芯成
分用樹脂の融点より出来るだけ低い方が良くその
融点差は20℃以上であることが必要である。融点
差が20℃未満の場合は、延伸時の熱融着による連
糸の形成性が悪くなり、さらに得られた複合連糸
MFをネツト状に成織しヒートセツトする際のヒ
ートセツト温度が必然的に芯成分の融点に近い温
度となり、またヒートセツト時間が長時間必要に
なる。その結果、ヒートセツトして網目部の熱融
着による接着により該ネツト状物の目づれ防止が
出来たとしても、ヒートセツト時の熱により芯成
分の配向が大巾に戻り強度が低下することとな
り、従つて得られる該ネツト状物の強度が低下し
てしまい好ましくない。 また本発明に用いられる延伸用の加熱装置は通
常のモノフイラメントの製造に使用されている一
般的な装置で充分であるが温度調節範囲が巾広く
とれる加熱空気浴槽またはスチーム浴槽が好まし
い。以下、添付図を利用して本発明を説明する。 本発明の連糸MFの製造法は、溶融押出後、冷
却固化された複合単糸MF状紡出物を延伸槽の入
口(第1図の2の部分)で所望の連糸本数分第2
図に示すように延伸方向に垂直に配列し隣接した
各単糸が互いに接触した状態に維持したまま、延
伸槽に導入して加熱延伸する。延伸槽から出て来
るモノフイラメントは付加倍率だけ延伸され、か
つ各単糸が熱融着により所望の連糸構造となつた
複合連糸MFとして得られる。 また、延伸槽の温度は、鞘成分用樹脂の軟化点
以上芯成分用樹脂の融点以下が好ましい。この温
度が鞘成分用樹脂の軟化点未満では鞘芯成分用樹
脂の延伸挙動の相異により延伸不良や各単糸間の
熱融着不良が発生し易く、また温度が芯成分用樹
脂の融点を超える場合には、各単糸間の熱融着は
充分であるが、熱融着度合の調節が難しく、さら
に芯成分樹脂の延伸配向が戻ることにより、強度
が低下するので好ましくない。 また所望の連糸数にするには前述のように延伸
槽入口部で複合単糸MF状紡出物を希望する本数
だけ延伸方向に垂直の方向に配列することによ
り、希望する多連糸が容易に得られる。さらに使
用する複合単糸MF状紡出物の繊度を調節するこ
とにより、100デニール〜数万デニールの複合連
糸MFの製造が可能である。 複合構造のMF状紡出物を延伸する場合、複合
させる各樹脂成分により延伸挙動が異なり、鞘芯
樹脂成分間の物性差が大きい程または延伸倍率が
大きくなるほど鞘芯樹脂成分間の界面剥離や表層
部のメクレおよび各単糸同士の融着度合のバラツ
キが生じ易い傾向にあるので、複合させる各樹脂
成分により適当な延伸倍率を選定する必要がある
がその範囲は5〜10倍が適当である。延伸倍率が
5倍未満の場合は延伸不足のため得られるモノフ
イラメントの強度が不足する。また延伸倍率が10
倍を超える場合には鞘芯樹脂成分間の界面剥離や
表層部のメクレおよび各MF状紡出物の熱融着度
合のバラツキが大きくなり好ましくない。 なお延伸工程の後に延伸MFの収縮性を改善す
る目的で一般的な装置および方法により緩和熱処
理を施すことも好ましく用いられる。 複合連糸MFの製造について従来公知の方法で
は希望する連糸数または連糸接着度合の要求仕様
のたびに装置を一たん停止し押出機のダイノズル
を要求仕様に合つたダイノズルに交換する必要が
あつたが本発明に係る製造方法では装置を止める
ことなく同一ダイノズルのままで容易にかつ経済
的にいろいろな熱融着度合を有し、しかも任意の
連糸数を有する複合連糸MFの製造が可能であ
る。 以下実施例および比較例により本発明について
説明する。なお実施例および比較例で用いられる
評価の基準および記号は下記の如くである。 (1) MI:ポリエチレン樹脂の溶融流動指数。
(ASTMD―1238による。)すなわち温度190
℃、荷重2.16Kgの条件で10分間に押出された溶
融ポリエチレン樹脂の吐出量をg数で表したも
の。 (2) MFR:ポリプロピレン樹脂の溶融流動指数。
すなわち温度230℃、荷重2.16Kgの条件下で10
分間に押出された溶融ポリプロピレン樹脂の吐
出量をg数で表したもの。 (3) 鞘芯複合比:鞘芯成分樹脂を各単独に押出
し、その押出された紡出物の単位時間当りの重
量比率。 (4) 紡糸性:押出紡出物の状態。 〇は正常、△は紡出物がノズル出口で湾曲す
る。 (5) 延伸性:延伸状態で評価。 〇は延伸工程でトラブルなし。 △はカール状になり捲き取り工程でトラブル
を発生しやすい。 (6) 連糸形成性:熱融着による接着状態の度合。 〇は各単糸間の融着が均一になつている。 △は各単糸間の融着にバラつきがみられる。 (7) 網目部の接着性:手触りによる官能検査。 〇は充分に接着されている。 △は接着状態が不充分である。 実施例1〜2、比較例1 芯成分用樹脂として融点が160℃でMFRが3.5
g/10分のPPを、鞘成分用樹脂としてMFRが
7.8g/10分融点が128℃の低融点のPPを用いて
または芯成分用樹脂として上述のPPを用い、鞘
成分用樹脂としてMFRが7.8g/10分、融点が
134℃の低融点PPを用いて、口径40mmの押出機2
台に口径1.5mmの円形孔を有する鞘芯型口金を用
いて溶融押出、冷却し、複合比50/50、繊度3200
デニールの鞘芯型複合単糸MF状紡出物を得た。
引き続き第1図に示した延伸槽入口にセツトした
セパレーシヨンバー2で該複合単糸MF状紡出物
1を第2図に示した如く5本づつを1組にしてセ
ツトし、隣接する各複合単糸MF状紡出物1が互
いに接触した状態に保持したまま、温度が130℃
に調節されたスチーム加熱浴槽3に導入し、延伸
倍率8倍にて延伸した。その結果、鞘芯成分樹脂
間の剥離が全くなく、各単糸が熱融着により5連
糸構造となつた繊度2000デニールの複合5連糸
MF4が得られた。 さらに前記によりつくられた複合5連糸MFを
用いて、織り密度が縦5本/25mm、横5本/25mm
のネツト状に成織したのち、140℃の熱風加熱槽
にて1.5分間ヒートセツトし、網目部が熱融着に
より接着した目ヅレの生じにくいネツト状物を得
た。 また比較例1として、芯成分用樹脂に融点160
℃、MFR3.5g/10分のPPを用い、鞘成分用樹
脂に融点が141℃、MFR8.0g/10分の低融点PP
を用いて実施例1〜2と同様の方法で複合5連糸
MFを製造し、実施例1〜2と同様の方法でネツ
ト状に成織したのち1.5分間ヒートセツトしネツ
ト状物を得た。 このときの製造工程における紡糸性、延伸性、
連糸形成性、および網目部接着性を観察し評価し
た。 その結果を第1表に示す。 実施例3〜5、比較例2〜3 芯成分用樹脂として融点160℃、MFR3.5g/
10分のPPを用い、鞘成分用樹脂として融点128
℃、MI16.1g/10分の高密度PEを用いて実施例
1〜2と同一の条件で鞘芯複合比30/70、50/50
および60/40、繊度3200デニールの各種鞘芯型複
合単糸MF状紡出物を得た。引き続き第1図に示
した延伸槽入口にセツトしたセパレーシヨンバー
2で該複合単糸MF状紡出物1を10本1組として
紡出物の垂直方向に互いに隣接するように配列
し、実施例1〜2と同様の条件、方法により、繊
度4000デニールの鞘芯成分樹脂間の剥離の全くな
い複合10連糸MFを得た。この複合10連糸MFを
用いて実施例1〜2と同様にネツト状に成織し実
施例1〜2と同一の方法でヒートセツトし網目部
が熱融着され、目ヅレの生じにくいネツト状物を
得た。 また比較例2〜3として芯成分用樹脂、鞘成分
用樹脂には実施例3〜5と同一の樹脂をそれぞれ
使用し実施例1〜2と同一の条件下で鞘芯複合比
25/75および65/35、繊度3200デニールの鞘芯型
複合単糸MF状紡出物を得た。得られた該複合単
糸MF状紡出物を実施例3〜5と同様の条件、方
法で延伸し繊度3200デニールの複合10連糸MFを
得た。この複合10連糸MFを用いて実施例1〜2
と同様にネツト状に成織し、実施例1〜2と同一
の方法でヒートセツトしネツト状物を得た。 このときの製造工程における紡糸性、延伸性、
連糸形成性および網目部接着性を観察評価した。
その結果を第2表に示す。 実施例 6 芯成分用樹脂として融点160℃、MFR3.5g/
10分のPPを用い、鞘成分用樹脂として融点90℃、
MI12g/10分の低密度PE70重量部と酢酸ビニル
含量15重量%のエチレン酢酸ビニル共重合樹脂30
重量部の混合物を用いて実施例1〜2と同一の条
件下で鞘芯複合比50/50、繊度3200デニールの鞘
芯型複合単糸MF状紡出物を得た。 得られた該複合紡出物を第1図に示した延伸加
熱槽入口にセツトしたセペレーシヨンバー2で20
本1組として紡出物の垂直方向に互いに隣接する
ように配列し、実施例1〜2と同様の条件、方法
により、繊度8000デニールの鞘芯成分樹脂間の剥
離が全くない複合20連糸MFを得た。 この複合20連糸MFを用いて実施例1〜2と同
様にネツト状に成織し、実施例1〜2と同一の方
法でヒートセツトし網目部が熱融着され、目ヅレ
の生じにくいネツト状物を得た。
The present invention relates to a method for producing a composite continuous monofilament having thermal adhesive properties. More specifically, a composite monofilament-like spun product (hereinafter referred to as a composite monofilament) obtained by composite extrusion into a sheath-core mold using a core component resin and a sheath component resin whose melting point is 20°C or more lower than the melting point of the core component resin The present invention relates to a composite continuous monofilament having thermal adhesive properties in which an MF-like spun product) is formed into a continuous structure in a drawing process. Monofilaments, which are generally manufactured using thermoplastic resins such as polyolefin resins as raw materials, have a single-filament structure or multiple single threads arranged in parallel and interconnected, depending on the cross-sectional shape and structure of the die nozzle of the extruder. There are two types, one with a continuous thread structure. In general, monofilaments with a continuous thread structure are easier to operate in secondary processing processes such as weaving, knitting, and twisting, and reduce problems during processing.
Single yarn has the advantage of greatly contributing to streamlining, labor saving, and cost reduction in the next processing process, as well as simplifying operational work by reducing the number of winders in the monofilament manufacturing process. Often used as an alternative to monofilament structures. Usually, composite monofilament with a sheath-core structure (hereinafter referred to as composite monofilament)
It's called MF. ) is produced by using an extruder having a continuous die nozzle with a sheath-core structure. However, in the case of conventional manufacturing of composite continuous yarn MF, there are various requirements for the product specifications of the monofilament obtained, such as changing the number of continuous yarns, ease of unraveling of continuous yarns, or difficulty in unraveling, and it is difficult to meet these demands. In order to achieve this, it is necessary to prepare various die nozzles that match the product specifications, and it is also necessary to stop the manufacturing equipment and replace the die nozzle of the extruder for each required product specification, which reduces equipment costs. The drawback is that there is a lot of waste in terms of productivity. Moreover, the larger the number of continuous yarns in the production of composite continuous yarn MF, the more the composite continuous yarn monofilament-like spun product (hereinafter referred to as composite continuous yarn MF-like spun product).
becomes easily bent or curled at the exit of the die nozzle of the extruder. As a result, spinnability and drawability deteriorate, making it necessary to strictly control extrusion, cooling, take-off, drawing, and other conditions, which inevitably limits the number of continuous yarns, and thus reduces the ability to form composite monofilaments. The disadvantage is that it is extremely difficult to make multiple threads. The present inventors have conducted extensive research in order to solve the above-mentioned drawbacks related to the production of composite continuous yarn MF. As a result, using a resin for the core component and a thermoplastic resin for the sheath component whose melting point is 20°C or more lower than the melting point of the resin for the core component, composite extrusion was carried out using an extruder having a sheath-core type die nozzle. The yarn MF-like spun product is thermally fused to form a continuous yarn in a drawing bath kept at a temperature above the softening point of the resin for the sheath component and below the melting point of the resin for the core component, and is simultaneously drawn to form any continuous yarn structure. The present invention was completed based on the discovery that it is possible to obtain a composite continuous thread MF with a long-lasting structure. As can be seen from the above description, the purpose of the present invention is to
It is an object of the present invention to provide a method for easily and economically producing composite continuous yarn MF having various continuous yarn structures in a drawing step using a composite single yarn MF-shaped spun product. The present invention has the following configuration. (1) A sheath-core composite ratio of 30 obtained by composite extrusion into a sheath-core mold using a thermoplastic resin for the core component and a thermoplastic resin for the sheath component whose melting point is 20°C or more lower than the melting point of the resin for the core component. /70 to 60/40 composite molten monofilament-like spun products are mutually drawn in two or more drawing tanks kept at a temperature higher than the softening point of the resin for the sheath component and lower than the melting point of the resin for the core component of the spun product. 1. A method for producing a composite continuous monofilament having thermal adhesive properties, which comprises forming a continuous structure by heat-sealing and hot stretching. As for the combination of thermoplastic resins used in the present invention, it is necessary to use thermoplastic resins in which the melting point of the resin for the sheath component is 20° C. or more lower than the melting point of the resin for the core component. Other than that, there are no particular restrictions, and the combination of thermoplastic resins used for the sheath-core portion may be the same resin component or a combination of different resin components, but resin components with good compatibility that prevents delamination at the sheath-core interface may be used. A combination of these is preferred. Thermoplastic resins used in the present invention include polyolefin resins such as polyethylene resin (hereinafter referred to as PE), polypropylene resin (hereinafter referred to as PP), polyamide resin, polyvinyl chloride resin, ethylene vinyl acetate copolymer resin, etc. . Additionally, additives added to ordinary thermoplastic resins such as antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents,
Coloring agents, lubricants, matting agents, etc. can be used as necessary. In the composite monofilament according to the present invention, the core component functions to maintain the strength of the monofilament, and the sheath component functions to provide adhesiveness by heat fusion, so the melting point of the resin for the sheath component is lower than the core component. It is better that the melting point is as low as possible than the melting point of the component resin, and the difference in melting point should be 20°C or more. If the melting point difference is less than 20°C, the formation of continuous threads due to heat fusion during drawing will be poor, and the resulting composite continuous threads will be
When MF is woven into a net shape and heat set, the heat set temperature is inevitably close to the melting point of the core component, and a long heat set time is required. As a result, even if it is possible to prevent slippage of the net-like material by heat-setting and adhesion by heat-sealing the mesh portions, the heat during heat-setting causes the orientation of the core components to return to the wide width, resulting in a decrease in strength. Therefore, the strength of the resulting net-like product is undesirably reduced. Further, as the heating device for drawing used in the present invention, a general device used in the production of ordinary monofilaments is sufficient, but a heated air bath or a steam bath is preferable because of its wide temperature control range. Hereinafter, the present invention will be explained using the accompanying drawings. The continuous yarn MF manufacturing method of the present invention involves melt-extruding, cooling and solidifying the composite single yarn MF-like spun product at the entrance of a drawing tank (part 2 in FIG.
As shown in the figure, adjacent single filaments arranged perpendicularly to the drawing direction are maintained in contact with each other and are introduced into a drawing tank and heated and drawn. The monofilament coming out of the drawing tank is drawn by an additional magnification, and a composite continuous yarn MF is obtained in which each single yarn has a desired continuous yarn structure by heat fusion. Further, the temperature of the stretching tank is preferably higher than the softening point of the resin for the sheath component and lower than the melting point of the resin for the core component. If this temperature is below the softening point of the resin for the sheath component, poor stretching and poor thermal fusion between the individual yarns are likely to occur due to differences in the stretching behavior of the resin for the sheath/core component; If it exceeds the above, the heat fusion between the individual filaments is sufficient, but it is difficult to control the degree of heat fusion, and furthermore, the stretching orientation of the core component resin returns, resulting in a decrease in strength, which is not preferable. In addition, in order to obtain the desired number of continuous yarns, as mentioned above, by arranging the desired number of composite single yarn MF-shaped spun products in the direction perpendicular to the drawing direction at the inlet of the drawing tank, it is easy to obtain the desired multi-strand yarn. can be obtained. Further, by adjusting the fineness of the composite single yarn MF-shaped spun product used, it is possible to manufacture composite continuous yarn MF of 100 deniers to several tens of thousands of deniers. When stretching an MF-shaped spun product with a composite structure, the stretching behavior differs depending on each resin component to be composited. Since there is a tendency for the surface layer to become loose and the degree of fusion between each single yarn to vary, it is necessary to select an appropriate stretching ratio depending on each resin component to be composited, but the appropriate range is 5 to 10 times. be. If the stretching ratio is less than 5 times, the resulting monofilament will lack strength due to insufficient stretching. Also, the stretching ratio is 10
If it is more than twice that, it is not preferable because interfacial peeling between the sheath-core resin components, clogging of the surface layer, and variation in the degree of thermal fusion of each MF-shaped spun product will increase. Note that after the stretching step, it is also preferably used to perform a relaxing heat treatment using a general apparatus and method for the purpose of improving the shrinkability of the stretched MF. In the conventionally known method for manufacturing composite thread MF, it is necessary to temporarily stop the equipment and replace the die nozzle of the extruder with a die nozzle that meets the required specifications each time the desired number of threads or the degree of thread adhesion is met. However, with the manufacturing method according to the present invention, it is possible to easily and economically produce composite yarn MF having various degrees of thermal fusion and having any number of yarns without stopping the equipment and using the same die nozzle. It is. The present invention will be explained below with reference to Examples and Comparative Examples. The evaluation criteria and symbols used in Examples and Comparative Examples are as follows. (1) MI: Melt flow index of polyethylene resin.
(according to ASTMD-1238) i.e. temperature 190
The amount of molten polyethylene resin extruded in 10 minutes at ℃ and 2.16 kg load expressed in grams. (2) MFR: Melt flow index of polypropylene resin.
In other words, 10 at a temperature of 230℃ and a load of 2.16Kg.
The amount of molten polypropylene resin extruded per minute expressed in grams. (3) Sheath-core composite ratio: The sheath-core component resin is extruded individually, and the weight ratio of the extruded product per unit time. (4) Spinnability: Condition of extruded product. 〇 indicates normal condition, △ indicates that the spun product is curved at the nozzle exit. (5) Stretchability: Evaluated in stretched state. 〇 indicates no trouble during the stretching process. △ means it becomes curled and troubles tend to occur during the winding process. (6) String forming property: degree of adhesion due to thermal fusion. ○ indicates that the fusion between each single yarn is uniform. △ shows variations in the fusion between each single yarn. (7) Adhesiveness of mesh area: Sensory test by touch. 〇 is sufficiently bonded. △ means the adhesion state is insufficient. Examples 1-2, Comparative Example 1 Core component resin with melting point of 160°C and MFR of 3.5
MFR of PP of g/10 min as resin for sheath component.
7.8g/10min Using PP with a low melting point of 128℃ or using the above-mentioned PP as the resin for the core component, and using the resin for the sheath component with an MFR of 7.8g/10min and a melting point of
Using PP with a low melting point of 134℃, extruder 2 with a diameter of 40mm
Melt extrusion using a sheath-core type nozzle with a circular hole of 1.5 mm in diameter on the stand, cooling, composite ratio 50/50, fineness 3200.
A denier sheath-core type composite single yarn MF-shaped spun product was obtained.
Subsequently, using the separation bar 2 set at the inlet of the drawing tank shown in FIG. 1, the composite single fiber MF-shaped spun product 1 is set in sets of five fibers as shown in FIG. While the composite single fiber MF-shaped spun product 1 is kept in contact with each other, the temperature is increased to 130°C.
The film was introduced into a steam heating bath 3 adjusted to a temperature of 1, and was stretched at a stretching ratio of 8 times. As a result, there is no peeling between the sheath and core component resins, and each single yarn has a five-strand structure due to heat fusion.The result is a composite five-strand yarn with a fineness of 2000 denier.
MF4 was obtained. Furthermore, using the composite 5-strand MF made by the above method, the weaving density is 5 yarns/25mm vertically and 5 yarns/25mm horizontally.
After weaving it into a net shape, it was heat set in a hot air heating tank at 140° C. for 1.5 minutes to obtain a net-like product in which the mesh portions were bonded by heat fusion and were resistant to sagging. In addition, as Comparative Example 1, the core component resin had a melting point of 160.
℃, MFR 3.5g/10 minutes PP is used, and the resin for the sheath component has a melting point of 141℃, MFR 8.0g/10 minutes low melting point PP.
5 composite yarns in the same manner as in Examples 1 and 2 using
MF was produced, woven into a net shape in the same manner as in Examples 1 and 2, and then heat set for 1.5 minutes to obtain a net-like product. Spinnability, stretchability,
The continuous thread formation property and mesh area adhesion were observed and evaluated. The results are shown in Table 1. Examples 3 to 5, Comparative Examples 2 to 3 Melting point 160°C, MFR 3.5g/ as core component resin
Using 10-minute PP, the melting point is 128 as the resin for the sheath component.
℃, MI 16.1 g/10 min using high-density PE under the same conditions as Examples 1 and 2, with sheath-core composite ratios of 30/70 and 50/50.
Various types of sheath-core type composite single yarn MF-shaped spun products were obtained. Subsequently, using the separation bar 2 set at the inlet of the drawing tank as shown in FIG. Using the same conditions and method as in Examples 1 and 2, a composite 10-strand MF with a fineness of 4000 denier and no peeling between the sheath and core component resins was obtained. Using this composite 10-strand MF, it was woven into a net shape in the same manner as in Examples 1 and 2, and heat set in the same manner as in Examples 1 and 2, so that the mesh portions were heat-sealed, resulting in a net that was difficult to cause mesh sagging. I got something like that. In addition, as Comparative Examples 2 to 3, the same resins as in Examples 3 to 5 were used for the core component resin and the sheath component resin, respectively, and the sheath-core composite ratio was
Sheath-core type composite single yarn MF-shaped spun products with a fineness of 3200 denier and 25/75 and 65/35 were obtained. The obtained composite single yarn MF-shaped spun product was drawn under the same conditions and method as in Examples 3 to 5 to obtain a composite 10-strand MF having a fineness of 3200 deniers. Examples 1 to 2 using this composite 10-strand MF
It was woven into a net-like material in the same manner as in Example 1 and 2, and heat-set in the same manner as in Examples 1 and 2 to obtain a net-like material. Spinnability, stretchability,
The continuous thread forming property and mesh area adhesion were observed and evaluated.
The results are shown in Table 2. Example 6 As core component resin, melting point 160℃, MFR 3.5g/
Using 10-minute PP, the melting point is 90℃ as the resin for the sheath component.
MI12g/10min low density PE70 parts by weight and ethylene vinyl acetate copolymer resin 30 with vinyl acetate content 15% by weight
A sheath-core type composite single yarn MF-shaped spun product having a sheath-core composite ratio of 50/50 and a fineness of 3200 denier was obtained under the same conditions as in Examples 1 and 2 using the mixture in the following parts by weight. The resulting composite spun product was heated for 20 minutes using a separation bar 2 set at the inlet of the drawing and heating tank shown in Fig. 1.
20 composite yarns with a fineness of 8,000 denier and no peeling between the sheath and core component resins, arranged as one set so as to be adjacent to each other in the vertical direction of the spun product, using the same conditions and method as in Examples 1 and 2. Got MF. This composite 20-strand MF is woven into a net shape in the same manner as in Examples 1 and 2, and heat set in the same manner as in Examples 1 and 2, so that the mesh portions are heat-sealed and do not easily sag. A net-like substance was obtained.

【表】 分
[Table] Minutes

【表】 第1表よりわかるように、鞘成分用樹脂の融点
が芯成分用樹脂の融点に近くなるほど連糸形成性
および網目部接着性が悪化する。このことより鞘
芯成分用樹脂の融点差が20℃以上必要であること
が判明した。 また第2表から比較例2のように鞘芯複合比
25/75の場合、その紡糸性、連糸形成性および網
目部接着性が悪くなり、また比較例3のように複
合比が65/35になると紡糸性および延伸性が悪化
することがわかり、鞘芯複合比は30/70〜60/40
の範囲にあることが好ましいことが判明した。 実施例6に示したように本発明に係る製造方法
では20連糸の如き多連糸構造のモノフイラメント
が簡単に製造出来ることが確認された。 上述した如く、本発明に係る複合連糸MFの製
造方法では、従来公知の方法のように、要求され
る連糸数または連糸接着度合ごとに装置を停止し
押出機のダイノズルを要求される仕様のダイノズ
ルに交換するといつた必要が全くなく簡単かつ経
済的に目的とする仕様の複合連糸MFを同一のダ
イノズルのままで製造できることが判明した。
[Table] As can be seen from Table 1, the closer the melting point of the resin for the sheath component is to the melting point of the resin for the core component, the worse the continuous thread forming property and the adhesiveness of the network portion. From this, it was found that the melting point difference between the resins for the sheath and core components must be 20°C or more. Also, from Table 2, as in Comparative Example 2, the sheath-core composite ratio
In the case of 25/75, it was found that the spinnability, continuous yarn forming property, and network part adhesion deteriorated, and when the composite ratio was 65/35 as in Comparative Example 3, the spinnability and stretchability deteriorated. Sheath-core composite ratio is 30/70 to 60/40
It has been found that it is preferable to fall within the range of . As shown in Example 6, it was confirmed that the manufacturing method according to the present invention can easily produce a monofilament having a multi-thread structure such as 20 threads. As described above, in the method for manufacturing composite continuous thread MF according to the present invention, unlike conventionally known methods, the device is stopped for each required number of continuous threads or degree of continuous thread adhesion, and the die nozzle of the extruder is adjusted according to the required specification. It has been found that there is no need to change the die nozzle, and it is possible to easily and economically produce composite yarn MF of the desired specifications using the same die nozzle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は延伸装置側面図を示す。第2図は延伸
槽入口部の断面図を示す。(第1図の2の部分の
断面図)第3図は延伸槽入口で配列された複合単
糸MF状紡出物の断面図および延伸加熱されてで
きた複合連糸MFの断面図(この場合5連糸)を
示す。 また図中の数字は下記を表わす。1……複合単
糸MF状紡出物、1a……鞘成分、1b……芯成
分、2……セパレーシヨンバー、3……延伸槽
(スチーム加熱浴槽)、4……複合5連糸MF、4
a……鞘成分、4b……芯成分。
FIG. 1 shows a side view of the stretching device. FIG. 2 shows a sectional view of the inlet of the drawing tank. (Cross-sectional view of the part 2 in Fig. 1) Fig. 3 is a cross-sectional view of the composite single fiber MF-shaped spun products arranged at the inlet of the drawing tank, and a cross-sectional view of the composite continuous thread MF produced by drawing and heating. In case of 5 consecutive threads). In addition, the numbers in the figure represent the following. 1... Composite single yarn MF-shaped spun product, 1a... Sheath component, 1b... Core component, 2... Separation bar, 3... Drawing tank (steam heating bath), 4... Composite 5-strand MF , 4
a... Sheath component, 4b... Core component.

Claims (1)

【特許請求の範囲】 1 芯成分用の熱可塑性樹脂ならびにその融点が
該芯成分用樹脂の融点より20℃以上低い鞘成分用
の熱可塑性樹脂を用いて鞘芯型に複合押出して得
られる鞘芯複合比30/70〜60/40の複合溶融モノ
フイラメント状紡出物を、該紡出物の鞘成分用樹
脂の軟化点以上でかつ該芯成分用樹脂の融点以下
の温度に保つた延伸槽で2本以上相互に熱融着な
らびに熱延伸せしめることにより連糸構造体とす
ることを特徴とする熱接着性を有する複合連糸モ
ノフイラメントの製造方法。 2 鞘成分用樹脂がエチレン・プロピレン共重合
体またはエチレン・プロピレン・ブテン三元共重
合体であり、芯成分用樹脂がポリプロピレン単独
重合体である特許請求の範囲第1項記載の複合連
糸モノフイラメントの製造方法。 3 鞘成分用樹脂がポリエチレン樹脂またはポリ
エチレン樹脂とエチレン・酢酸ビニル共重合樹脂
の混合物であり、芯成分用樹脂がポリプロピレン
樹脂である特許請求の範囲第1項記載の複合連糸
モノフイラメントの製造方法。
[Scope of Claims] 1. A sheath obtained by composite extrusion into a sheath-core type using a thermoplastic resin for a core component and a thermoplastic resin for a sheath component whose melting point is 20°C or more lower than the melting point of the resin for the core component. Stretching of a composite molten monofilament-like spun product with a core composite ratio of 30/70 to 60/40 while maintaining the temperature above the softening point of the resin for the sheath component of the spun product and below the melting point of the resin for the core component. A method for producing a composite continuous monofilament having thermal adhesive properties, which comprises forming a continuous structure by heat-sealing and hot-stretching two or more filaments together in a bath. 2. The composite continuous yarn monomer according to claim 1, wherein the resin for the sheath component is an ethylene-propylene copolymer or an ethylene-propylene-butene terpolymer, and the resin for the core component is a polypropylene homopolymer. Method of manufacturing filament. 3. The method for producing a composite continuous monofilament according to claim 1, wherein the resin for the sheath component is a polyethylene resin or a mixture of a polyethylene resin and an ethylene/vinyl acetate copolymer resin, and the resin for the core component is a polypropylene resin. .
JP7221984A 1984-04-11 1984-04-11 Production of composite connected yarn monofilament Granted JPS60215834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7221984A JPS60215834A (en) 1984-04-11 1984-04-11 Production of composite connected yarn monofilament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7221984A JPS60215834A (en) 1984-04-11 1984-04-11 Production of composite connected yarn monofilament

Publications (2)

Publication Number Publication Date
JPS60215834A JPS60215834A (en) 1985-10-29
JPH0151570B2 true JPH0151570B2 (en) 1989-11-06

Family

ID=13482913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7221984A Granted JPS60215834A (en) 1984-04-11 1984-04-11 Production of composite connected yarn monofilament

Country Status (1)

Country Link
JP (1) JPS60215834A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264915A (en) * 1987-04-15 1988-11-01 Teijin Ltd Hot-melt adhesive hollow conjugate fiber
JP3814289B2 (en) * 1997-03-25 2006-08-23 三井化学株式会社 Binding material

Also Published As

Publication number Publication date
JPS60215834A (en) 1985-10-29

Similar Documents

Publication Publication Date Title
KR101280682B1 (en) Metallocene polypropylene fibers and nonwovens with improved mechanical properties
EP0607174B1 (en) Oriented profiled fibers
US3922329A (en) Methods of making network structures
EP0132110B1 (en) Process for producing composite monofilaments
JPH04501587A (en) Maleic anhydride grafted polyolefin fiber
US20040116019A1 (en) Nonwoven industrial fabrics with improved barrier properties
US5669796A (en) Geogrid composed of polyethylene terephthalate and polyolefin bicomponent fibers
EP0958414B1 (en) Bicomponent fibers in a sheath-core structure comprising fluoropolymers and methods of making and using same
JPH0151570B2 (en)
JPH07197367A (en) Filament-laminated spun-bonded nonwoven fabric
JPH0874161A (en) Three-dimensional network body having reinforcing structure and its production
JPS61119704A (en) Cooling of collected filaments
JPH11140766A (en) Polyolefin conjugated continuous filament nonwoven fabric
JPH02446B2 (en)
JPH09291457A (en) Laminated nonwoven fabric of conjugate long fiber
JPS633968B2 (en)
JPH04222203A (en) Spinneret for combined filament yarn having different fineness
JPH09512064A (en) Non-woven fabric
JPH10158969A (en) Conjugate filament nonwoven fabric and its production
JPH11286862A (en) Spun-bonded nonwoven fabric for clothes and its production
JP4330497B2 (en) Process for producing entangled polyolefin multifilament, entangled polyolefin multifilament and filter cloth
JPS61152810A (en) Production of improved polypropylene monofilament
JPS6017108A (en) Preparation and spinning die for thermoplastic resin multifilament
JPS6330429B2 (en)
JPS6328910A (en) Production of combined yarn of different fineness