JPH0151528B2 - - Google Patents

Info

Publication number
JPH0151528B2
JPH0151528B2 JP60160804A JP16080485A JPH0151528B2 JP H0151528 B2 JPH0151528 B2 JP H0151528B2 JP 60160804 A JP60160804 A JP 60160804A JP 16080485 A JP16080485 A JP 16080485A JP H0151528 B2 JPH0151528 B2 JP H0151528B2
Authority
JP
Japan
Prior art keywords
mold
metal
foam
bubbles
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60160804A
Other languages
Japanese (ja)
Other versions
JPS6220846A (en
Inventor
Shigeru Akyama
Hidetoshi Ueno
Koji Imagawa
Akira Kitahara
Sumio Osada
Kazuo Morimoto
Tooru Nishikawa
Masao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Kobelco Wire Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shinko Wire Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP16080485A priority Critical patent/JPS6220846A/en
Priority to DE8686305558T priority patent/DE3665739D1/en
Priority to EP86305558A priority patent/EP0210803B1/en
Priority to US06/886,678 priority patent/US4713277A/en
Priority to CA000514164A priority patent/CA1267550A/en
Publication of JPS6220846A publication Critical patent/JPS6220846A/en
Publication of JPH0151528B2 publication Critical patent/JPH0151528B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、発泡金属を構成する多数の独立気
泡の大きさが均一でかつ内部に引けを生じない発
泡金属の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a foamed metal in which the large number of closed cells constituting the foamed metal are uniform in size and no internal shrinkage occurs.

(従来技術) 金属の発泡体を得る手段としては、金属の融点
近傍で熱分解により発生する発泡材と、発生した
ガスを溶湯内に溜めて気泡を形成するために溶湯
の粘性を制御する増粘材を必要とし、これらの材
料が手段を選択することによつて種々の発泡体が
得られる。この発泡金属は多数の独立気泡よりな
り、軽量で、機械的、熱的諸特性等の多くの優れ
た機能を有する新素材として開発が進められ、溶
融金属の粘性制御法や発泡法等多くの研究がなさ
れているが、技術的に種々の制約があつて実用化
に至つていない。その理由は、工業的規模におけ
る大型材料を製作すると気泡の大きさが不揃いと
なり、また金属が凝固する際に、内部に引けを生
じるという問題があるからであり、したがつて実
用化にはこれらの問題の解決を必要としていた。
(Prior art) Methods for obtaining metal foam include foaming materials generated by thermal decomposition near the melting point of the metal, and foaming materials that control the viscosity of the molten metal to trap the generated gas in the molten metal and form bubbles. A viscous material is required, and various foams can be obtained by selecting the means for these materials. This foamed metal is made up of many closed cells, and is being developed as a new material that is lightweight and has many excellent functions such as mechanical and thermal properties. Although research has been carried out, various technical limitations have prevented it from being put into practical use. The reason for this is that when large-scale materials are produced on an industrial scale, the bubble sizes become uneven, and when the metal solidifies, there is a problem that shrinkage occurs inside the material. needed a solution to the problem.

(発明の目的) この発明は、このような従来の課題の解決のた
めになされたものであり、多数の気泡が均質で、
内部に引けを生じない発泡金属を、工業的に製造
する方法を提供するものである。
(Object of the invention) This invention was made to solve such conventional problems.
An object of the present invention is to provide a method for industrially manufacturing a foamed metal that does not cause internal shrinkage.

(発明の構成) この発明の第1の要旨は、溶融金属に発泡材お
よび増粘材を加えて撹拌することにより多数の独
立気泡よりなる発泡金属を製造する方法におい
て、鋳型全体が発泡金属の融点以上の温度となる
ように加熱し、かつ撹拌を終了して発泡を開始
し、気泡が成長する過程で空気抜き用の放出口を
有する状態で鋳型を密閉し、発泡材が熱により分
解して生じる多数の気泡が膨脹することによつて
鋳型内の空気を鋳型の外部に放出させ、発泡金属
が鋳型内部の全体に充満することにより、溶融充
満した発泡金属により上記放出口を閉塞して鋳型
を密閉状態とし、密閉された鋳型内で多数の気泡
の内圧の上昇により気泡相互の圧力の均衡の下に
均一なセル構造を形成させ、ついで鋳型の加熱を
停止して発泡金属を冷却、凝固させるようにした
ものである。
(Structure of the Invention) The first gist of the present invention is that in a method for producing a foamed metal consisting of a large number of closed cells by adding a foaming material and a thickening material to molten metal and stirring the mixture, the entire mold is made of foamed metal. Heat to a temperature above the melting point, stop stirring, and start foaming. During the process of bubble growth, the mold is sealed with an air release port, and the foam material decomposes due to the heat. The air inside the mold is released to the outside of the mold by the expansion of the many bubbles that are generated, and the foamed metal fills the entire inside of the mold, and the molten and filled foamed metal closes the outlet and closes the mold. A uniform cell structure is formed by balancing the pressure between the bubbles by increasing the internal pressure of a large number of bubbles in the sealed mold, and then the heating of the mold is stopped and the foam metal is cooled and solidified. It was designed so that

またこの発明の第2の要旨は、溶融金属に発泡
材および増粘材を加えて撹拌することにより多数
の独立気泡よりなる発泡金属を製造する方法にお
いて、鋳型全体が発泡金属の融点以上の温度とな
るように加熱した後、溶融金属としてアルミニウ
ムまたはその合金、増粘材としてカルシウム、発
泡材として水素化チタンを用い、上記増粘材を
0.2〜8重量%加えて撹拌し、アルミニウムの粘
性を調整した後、水素化チタンの粉末1〜3重量
%を加えて撹拌し、発泡させるようにし、気泡が
成長する過程で空気抜き用の放出口を有する状態
で鋳型を密閉し、発泡材が熱により分解して生じ
る多数の気泡が膨脹することによつて鋳型内の空
気を鋳型の外部に放出させ、発泡金属が鋳型内部
の全体に充満することにより、溶融充満した発泡
金属により上記放出口を閉塞して鋳型を密閉状態
とし、密閉された鋳型内で多数の気泡の内圧の上
昇により気泡相互の圧力の均衡の下に均一なセル
構造を形成させ、ついで鋳型の加熱を停止して発
泡金属を冷却、凝固させるようにしたものであ
る。
The second gist of the invention is a method for producing a foamed metal consisting of a large number of closed cells by adding a foaming material and a thickener to molten metal and stirring the mixture, in which the entire mold is heated to a temperature higher than the melting point of the foamed metal. After heating to a temperature of
After adding 0.2 to 8% by weight and stirring to adjust the viscosity of aluminum, add 1 to 3% by weight of titanium hydride powder and stirring to make it foam. The mold is sealed in a state in which the foam material decomposes due to heat, and the numerous bubbles that are generated expand and release the air inside the mold to the outside of the mold, filling the entire inside of the mold with foamed metal. As a result, the discharge port is closed by the molten metal foam, and the mold is sealed, and the internal pressure of the many bubbles increases within the sealed mold, creating a uniform cell structure by balancing the pressure between the bubbles. The foamed metal is then cooled and solidified by stopping the heating of the mold.

(実施例) 第1図において鋳型1内には発泡材を加えた溶
融アルミニウム2が装入され、この溶融アルミニ
ウム2を撹拌機3で撹拌するようにし、また鋳型
1を加熱するためのヒータ4が鋳型1の周囲に配
置されている。第1図Bに示すように、発泡材が
分解することにより溶融アルミニウム2が膨脹し
て発泡アルミニウム20となり、その内部のガス
圧力(P2)が高まり、このためその圧力が大気
圧P0と溶融アルミニウムの粘性抵抗の和P1に打
勝つて多数の気泡が膨脹するが、鋳型1の一面が
大気中に解放されて自由面が形成されているため
に、各気泡はそれぞれのガス圧によつて任意に膨
脹し、大きさや形状が極めて不揃いの気泡の集合
体となる。
(Example) In FIG. 1, molten aluminum 2 to which a foaming material has been added is charged into a mold 1, and the molten aluminum 2 is stirred by a stirrer 3, and a heater 4 is used to heat the mold 1. are arranged around the mold 1. As shown in FIG. 1B, as the foam material decomposes, the molten aluminum 2 expands and becomes foamed aluminum 20, and the gas pressure (P 2 ) inside increases, so that the pressure becomes atmospheric pressure P 0 . Many bubbles expand by overcoming the sum of the viscous resistance P1 of molten aluminum, but since one side of the mold 1 is open to the atmosphere and a free surface is formed, each bubble is affected by its own gas pressure. As a result, it expands arbitrarily, forming a collection of bubbles that are extremely irregular in size and shape.

第2図はこのようなガス圧力と発泡アルミニウ
ムの体積との関係を線図に表わしたものである。
同図において、アルミニウムに発泡材を加えて撹
拌を開始する時点Aのアルミニウムの体積V0は、
発泡材を加えている間、点Aのガス圧力PAをほ
ぼ維持したまま、点Bの体積Vlまで膨脹する。
この場合、発泡材の添加時間に差があるために、
すでに発生したガス量にも差が生じ、このため各
気泡の体積は不揃いとなる。発泡アルミニウム2
0の体積は、気泡材の添加終了点(点B)に達し
た時の体積Vlから凝固が完結する点Cまでの間
徐々に上昇し、ガス圧力を高めながらVsまで膨
脹する。
FIG. 2 is a diagram showing the relationship between such gas pressure and the volume of foamed aluminum.
In the same figure, the volume V 0 of aluminum at time A when foaming material is added to aluminum and stirring is started is:
While the foaming material is being added, the gas pressure P A at point A is maintained approximately while expanding to the volume Vl at point B.
In this case, due to the difference in the addition time of the foaming material,
A difference also occurs in the amount of gas already generated, and therefore the volume of each bubble becomes uneven. aluminum foam 2
The volume of 0 gradually increases from the volume Vl when the addition of the foam material reaches the end point (point B) to the point C when solidification is completed, and expands to Vs while increasing the gas pressure.

ここで従来法にしたがつて第1図Bの状態で発
泡を続けると、形成される発泡アルミニウム20
は外気と接した自由面では凝固が最も早く、これ
がガス圧のために破壊されて、第7図に示すよう
なクレータ29を生じる。また発泡アルミニウム
20の内部においては、各気泡21の大きさが不
揃いで、最終に凝固する中心部近傍では大きな気
孔22が形成される。発泡アルミニウム20が凝
固し、常温まで冷却すると、各気泡内のガスも冷
却する結課、第2図D点に示すように圧力も低下
する。
If foaming is continued in the state shown in FIG. 1B according to the conventional method, foamed aluminum 20 is formed.
Solidification is fastest on the free surface in contact with the outside air, and this is destroyed by the gas pressure, producing a crater 29 as shown in FIG. Further, inside the aluminum foam 20, the size of each bubble 21 is uneven, and large pores 22 are formed near the center where it finally solidifies. When the foamed aluminum 20 is solidified and cooled to room temperature, the gas inside each bubble is also cooled, and the pressure also decreases as shown at point D in FIG.

第3図はアルミニウムの温度Tと経過時間S、
および各段階における操作の関係を線図に表わし
たものである。同図において、点a1はアルミニウ
ムの融点(M.P.)よりも高い温度Taで、発泡材
の混入、撹拌の開始時点、点a2は撹拌終了時、点
a3は鋳型1に対する加熱を停止する時点で、点a1
からa3までの間、融点以上の温度Taに保持しな
がら発泡させる。点bは発泡アルミニウムが融点
にまで達した時点で、点Cで凝固を完了し、常温
(R.T.)に達した点dで鋳型1から取出す。
Figure 3 shows the temperature T of aluminum and the elapsed time S,
and a diagram showing the relationship between operations at each stage. In the figure, point a 1 is a temperature Ta higher than the melting point (MP) of aluminum, at the time when the foaming material is mixed and the stirring begins, and point a 2 is at the end of stirring.
A 3 is the point a 1 at the point when heating to mold 1 is stopped.
Foaming is carried out while maintaining the temperature at Ta above the melting point from to a3 . At point b, the foamed aluminum reaches the melting point, solidification is completed at point C, and at point d, when the foamed aluminum reaches room temperature (RT), it is taken out from the mold 1.

この発明による方法での基本操作は第3図の点
a2、すなわち発泡材を加えて撹拌を終了した時点
において鋳型1を閉じることにある。すなわち第
1図Cに示すように発泡温度Taに予熱した蓋9
を鋳型1に取付け、これによつて空気抜き用の放
出口10を形成させた状態で鋳型1を密閉する。
放出口10は適宜の位置に複数個形成させてもよ
い。蓋9を予熱するのは、蓋の温度が低いと発泡
しつつあるアルミニウムの膨帳自由面がアルミニ
ウムの融点以下となつて充分な気泡の成長がなさ
れないからである。また鋳型1の大きさとその内
部に装入する溶融アルミニウム2の量との関係
は、最終製品が所定の発泡率になるように設定す
る。
The basic operations in the method according to this invention are as shown in Figure 3.
a 2 , that is, the mold 1 is closed at the time when the foaming material is added and stirring is completed. That is, as shown in FIG. 1C, the lid 9 is preheated to the foaming temperature Ta.
is attached to the mold 1, and the mold 1 is hermetically sealed with the air outlet 10 formed therein.
A plurality of discharge ports 10 may be formed at appropriate positions. The reason why the lid 9 is preheated is because if the temperature of the lid is low, the free surface of the expanded foam of the foaming aluminum will be below the melting point of aluminum, and sufficient bubble growth will not occur. Further, the relationship between the size of the mold 1 and the amount of molten aluminum 2 charged into the mold 1 is set so that the final product has a predetermined foaming rate.

発泡アルミニウム20中の発生ガスの圧力P2
が、閉塞された鋳型1の内部空間8の空気圧P3
より大きくなると、発泡アルミニウム20中の気
泡が膨脹し、これによつて内部空間8中の空気は
放出口10から放出される。発泡アルミニウム2
0が膨脹を続け、密閉した鋳型1中に充満する
と、第1図Dに示すように放出口10は溶融アル
ミニウム20によつて閉塞され、鋳型1内は完全
に密閉される。そして、まだ十分に発泡材中のガ
スを放出して大きくなつていない気泡は、圧力
P2を保ちつつ均衡を保つた形状、大きさの均質
なセル構造を形成する。すなわち鋳型1が密閉さ
れていなければ、自由面に近い気泡は膨脹して他
の部分の気泡より大きくなるが、上記のように鋳
型1が密閉されていると、他の気泡の圧力によつ
て膨脹が妨げられ、このため気泡の大きさがほぼ
均一になる。
Pressure of gas generated in aluminum foam 20 P 2
However, the air pressure P 3 in the internal space 8 of the closed mold 1 is
When the size becomes larger, the bubbles in the foamed aluminum 20 expand, thereby causing the air in the internal space 8 to be discharged from the discharge port 10. aluminum foam 2
0 continues to expand and fills the closed mold 1, the discharge port 10 is closed by the molten aluminum 20, as shown in FIG. 1D, and the inside of the mold 1 is completely sealed. Then, the bubbles that have not yet sufficiently released gas in the foam material and become large will be exposed to pressure.
Forms a homogeneous cell structure with a balanced shape and size while maintaining P 2 . In other words, if the mold 1 is not sealed, the bubbles near the free surface will expand and become larger than the bubbles in other parts, but if the mold 1 is sealed as described above, the bubbles will expand due to the pressure of other bubbles. Expansion is inhibited and the bubbles are therefore approximately uniform in size.

第4図において、点A1で発泡材を混入、撹拌
し、予熱した蓋9を取付け、鋳型1を密閉した時
点A2から気泡の内圧P2が上昇し、発泡アルミニ
ウム20が鋳型1内を充満した時点Bでは、体積
Vlが一定のまま気泡の内圧がPcまで上昇し、均
一な気泡の集合体となる。この時点(第3図の点
a3に相当)で鋳型を炉外に取出し、常温まで冷却
すると、第5図に示すように各気泡23がほぼ同
一寸法の均質な発泡アルミニウム24が得られ
る。
In FIG. 4, the foaming material is mixed and stirred at point A1 , the preheated lid 9 is attached, and the mold 1 is sealed.From the point A2 , the internal pressure P2 of the bubbles increases, and the foamed aluminum 20 moves inside the mold 1. At time B when it is filled, the volume
The internal pressure of the bubble increases to Pc while Vl remains constant, forming a uniform collection of bubbles. At this point (point in Figure 3)
When the mold is taken out of the furnace and cooled to room temperature, a homogeneous aluminum foam 24 in which each cell 23 has approximately the same size as shown in FIG. 5 is obtained.

なお、上記方法に使用される鋳型の形状は種々
の変形が可能であり、例えば第6図A,Bに示す
ように球形の鋳型5を用いてもよい。同図におい
て、Aは球状鋳型に溶融アルミニウム2が装入さ
れている状態、Bは発泡アルミニウム20が鋳型
5中に充満して放出口10が閉塞された状態を示
している。
Note that the shape of the mold used in the above method can be modified in various ways; for example, a spherical mold 5 may be used as shown in FIGS. 6A and 6B. In the figure, A shows a state in which molten aluminum 2 is charged into the spherical mold, and B shows a state in which foamed aluminum 20 fills the mold 5 and the discharge port 10 is closed.

上記実施例においては、アルミニウムを720℃
に溶融して1.6重量%のカルシウムを加えて撹拌
し、増粘した。アルミニウムの粘度調整は、増粘
材を加えずに空気吹込み法でも可能であるが、こ
の方法では発泡材の熱分解ガスを溶湯内に溜めて
独立気泡を保持するのに必要な粘性を与えるのに
極めて長期間の撹拌を要することになる。一方、
増粘材として酸素との親和力の強いアルミニウム
を加えて撹拌すると極めて短時間に増粘すること
が可能となる。この場合、カルシウムの添加量が
0.2重量%以下ならば、撹拌に長時間を要するの
で極めて非能率的、不経済である。また8重量%
以下であれば、十分に増粘の目的を達することが
できる。
In the above example, aluminum was heated at 720°C.
1.6% by weight of calcium was added and stirred to thicken the solution. Adjusting the viscosity of aluminum can also be done by air blowing without adding a thickening agent, but this method traps the pyrolysis gases from the foam in the molten metal to provide the viscosity necessary to maintain closed cells. This requires a very long period of stirring. on the other hand,
If aluminum, which has a strong affinity for oxygen, is added as a thickener and stirred, it becomes possible to thicken the mixture in an extremely short time. In this case, the amount of calcium added is
If it is less than 0.2% by weight, stirring takes a long time, which is extremely inefficient and uneconomical. Also 8% by weight
If it is below, the purpose of thickening can be sufficiently achieved.

また粘度調整を終えた溶湯を720℃に保持しつ
つ発泡材として水素化チタンの粉末を1.6重量%
加えて撹拌すると、気孔率約90%の均質な発泡体
を得ることができる。この場合、水素化チタンの
添加量が1重量%以下であると、気泡の発生が充
分でなく、また3重量%を超えると気泡の発生が
過剰となり、長時間の撹拌を必要とするか、また
は膜構造が破壊されたり、均一な膜構造が得がた
くなるので、水素化チタンの添加量は1〜3重量
%が適正である。
In addition, while maintaining the molten metal at 720℃ after viscosity adjustment, 1.6% by weight of titanium hydride powder was added as a foaming material.
When added and stirred, a homogeneous foam with a porosity of about 90% can be obtained. In this case, if the amount of titanium hydride added is less than 1% by weight, the generation of bubbles will not be sufficient, and if it exceeds 3% by weight, the generation of bubbles will be excessive, requiring a long period of stirring. Otherwise, the film structure may be destroyed or it becomes difficult to obtain a uniform film structure, so the appropriate amount of titanium hydride to be added is 1 to 3% by weight.

(発明の効果) 以上説明したように、この発明は溶融金属とし
てアルミニウムまたはその合金、増粘材としてカ
ルシウム、発泡材として水素化チタンを用い、上
記増粘材を0.2〜8重量%加えて撹拌し、アルミ
ニウムの粘性を調整した後、水素化チタンの粉末
1〜3重量%を加えて撹拌し、発泡させるように
したものであり、大きさ、形状の均質な気泡より
なるセル構造を有する発泡体を製造することがで
き、工業的な規模での製造も可能なものである。
そしてこの発泡材は軽量で吸音性が高く、高い断
熱効果や機械的特性、機械加工性を有する新素材
として有用である。
(Effects of the Invention) As explained above, the present invention uses aluminum or its alloy as the molten metal, calcium as the thickener, and titanium hydride as the foaming material, adds 0.2 to 8% by weight of the thickener, and stirs the mixture. After adjusting the viscosity of aluminum, 1 to 3% by weight of titanium hydride powder is added and stirred to foam. It is possible to manufacture a body, and it is also possible to manufacture it on an industrial scale.
This foam material is lightweight, has high sound absorption properties, and is useful as a new material with high heat insulation effects, mechanical properties, and machinability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Dはこの発明を実施する工程の説明
図、第2図は従来方法の発泡金属の圧力−体積線
図、第3図はこの発明の温度−時間、操作線図、
第4図はこの発明の方法による圧力−体積線図、
第5図はこの発明によつて得られた発泡金属の概
念図、第6図A,Bはこの発明の実施に使用する
装置の1例を示す概略説明図、第7図は従来法に
よつて得られた発泡金属の概念図である。 1……鋳型、2……溶融アルミニウム、3……
撹拌機、4……ヒータ、9……蓋、10……放出
口、20,24……発泡アルミニウム、23……
気泡。
1A to 1D are explanatory diagrams of the steps of carrying out the present invention, FIG. 2 is a pressure-volume diagram of foamed metal according to the conventional method, and FIG. 3 is a temperature-time and operation diagram of the present invention.
FIG. 4 is a pressure-volume diagram obtained by the method of this invention.
FIG. 5 is a conceptual diagram of the foamed metal obtained by this invention, FIGS. 6A and B are schematic explanatory diagrams showing one example of the apparatus used for carrying out this invention, and FIG. FIG. 2 is a conceptual diagram of the foam metal obtained in this manner. 1... Mold, 2... Molten aluminum, 3...
Stirrer, 4... Heater, 9... Lid, 10... Outlet, 20, 24... Aluminum foam, 23...
Bubbles.

Claims (1)

【特許請求の範囲】 1 溶融金属に発泡材および増粘材を加えて撹拌
することにより多数の独立気泡よりなる発泡金属
を製造する方法において、鋳型全体が発泡金属の
融点以上の温度となるように加熱し、かつ撹拌を
終了して発泡を開始し、気泡が成長する過程で空
気抜き用の放出口を有する状態で鋳型を密閉し、
発泡材が熱により分解して生じる多数の気泡が膨
脹することによつて鋳型内の空気を鋳型の外部に
放出させ、発泡金属が鋳型内部の全体に充満する
ことにより、溶融充満した発泡金属により上記放
出口を閉塞して鋳型を密閉状態とし、密閉された
鋳型内で多数の気泡の内圧の上昇により気泡相互
の圧力の均衡の下に均一なセル構造を形成させ、
ついで鋳型の加熱を停止して発泡金属を冷却、凝
固させることを特徴とする発泡金属の製造方法。 2 上記溶融金属としてアルミニウムまたはその
合金、増粘材としてカルシウム、発泡材として水
素化チタンを用い、上記溶融金属に対して上記増
粘材を0.2〜8重量%加えて撹拌し、溶融金属の
粘性を調整した後、水素化チタンの粉末1〜3重
量%を加えて撹拌し、発泡させるようにしたこと
を特徴とする特許請求の範囲第1項記載の発泡金
属の製造方法。
[Scope of Claims] 1. A method for producing a foamed metal consisting of a large number of closed cells by adding a foaming material and a thickener to molten metal and stirring the mixture, in which the entire mold is heated to a temperature equal to or higher than the melting point of the foamed metal. The mold is heated to a temperature of 100 ml, and the stirring is finished to start foaming, and the mold is sealed with an outlet for air release during the process of bubble growth.
When the foam material decomposes due to heat, a large number of bubbles generated expand, releasing the air inside the mold to the outside of the mold, and the foam metal fills the entire inside of the mold, causing the molten metal to melt. The discharge port is closed to bring the mold into a sealed state, and within the sealed mold, the internal pressure of a large number of bubbles increases to form a uniform cell structure under balanced pressure between the bubbles;
A method for producing a metal foam, the method comprising: then stopping the heating of the mold to cool and solidify the metal foam. 2 Using aluminum or its alloy as the molten metal, calcium as the thickener, and titanium hydride as the foaming material, 0.2 to 8% by weight of the thickener is added to the molten metal and stirred to determine the viscosity of the molten metal. 2. The method for producing metal foam according to claim 1, wherein after adjusting the amount of titanium hydride powder, 1 to 3% by weight of titanium hydride powder is added and stirred to cause foaming.
JP16080485A 1985-07-19 1985-07-19 Manufacture of foamed metal Granted JPS6220846A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16080485A JPS6220846A (en) 1985-07-19 1985-07-19 Manufacture of foamed metal
DE8686305558T DE3665739D1 (en) 1985-07-19 1986-07-18 Foamed metal and method of producing same
EP86305558A EP0210803B1 (en) 1985-07-19 1986-07-18 Foamed metal and method of producing same
US06/886,678 US4713277A (en) 1985-07-19 1986-07-18 Foamed metal and method of producing same
CA000514164A CA1267550A (en) 1985-07-19 1986-07-18 Foamed metal and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16080485A JPS6220846A (en) 1985-07-19 1985-07-19 Manufacture of foamed metal

Publications (2)

Publication Number Publication Date
JPS6220846A JPS6220846A (en) 1987-01-29
JPH0151528B2 true JPH0151528B2 (en) 1989-11-06

Family

ID=15722798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16080485A Granted JPS6220846A (en) 1985-07-19 1985-07-19 Manufacture of foamed metal

Country Status (1)

Country Link
JP (1) JPS6220846A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10104338A1 (en) * 2001-02-01 2002-08-08 Goldschmidt Ag Th Production of flat, metallic integral foams
KR100581189B1 (en) * 2004-06-22 2006-05-17 한국기계연구원 A continuous manufacturing method of Poros workpieces
CN103924113B (en) * 2014-03-21 2016-02-10 苏州宇希新材料科技有限公司 A kind of take foamed aluminium as the ferrite composite wave-suction material of matrix
CN103898350B (en) * 2014-03-21 2016-04-06 苏州宇希新材料科技有限公司 The preparation method of a kind of foamed aluminium/ferrite composite wave-suction material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216841A (en) * 1975-07-29 1977-02-08 Matsushita Electric Works Ltd Louver
JPS56141960A (en) * 1980-04-08 1981-11-05 Agency Of Ind Science & Technol Production of ceramic-metal composite body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216841A (en) * 1975-07-29 1977-02-08 Matsushita Electric Works Ltd Louver
JPS56141960A (en) * 1980-04-08 1981-11-05 Agency Of Ind Science & Technol Production of ceramic-metal composite body

Also Published As

Publication number Publication date
JPS6220846A (en) 1987-01-29

Similar Documents

Publication Publication Date Title
Körner et al. Processing of metal foams—challenges and opportunities
Kennedy Porous metals and metal foams made from powders
US3616841A (en) Method of making an inorganic reticulated foam structure
US5181549A (en) Method for manufacturing porous articles
JP2635817B2 (en) Manufacturing method of metal foam reinforced with particles
US20020121157A1 (en) Process for producing metal foam and metal body produced using this process
US8562904B2 (en) Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material
JP4176975B2 (en) Manufacturing method of foam metal
US6444007B1 (en) Production of metal foams
JP5526938B2 (en) Method for producing porous aluminum sintered body
JP6748208B2 (en) METHOD FOR PRODUCING PARTS INCLUDING METAL FOAM, PARTS PRODUCED BY THE METHOD, AND MOLD FOR IMPLEMENTING THE METHOD
JP3823024B2 (en) Foamable aluminum alloy and method for producing aluminum foam from foamable aluminum alloy
US3305902A (en) Method of making smooth surface castings of foam metal
JPH0151528B2 (en)
US2974034A (en) Method of foaming granulated metal
US20060118984A1 (en) Method for producing porous sintered bodies
JP2006513319A (en) Method for producing metal foam
US3756303A (en) Method of making foamed metal bodies
US2979392A (en) Foaming of granulated metal
US3607223A (en) Production of low-density materials
JPH0564653B2 (en)
US3669654A (en) Foamed metal
JPH03230859A (en) Manufacture of light aluminum casting
Gergely et al. A novel melt-based route to aluminium foam production
JPH1110743A (en) Manufacture of weld-molded body and composite for manufacture of weld-molded body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term