JPH0151480B2 - - Google Patents

Info

Publication number
JPH0151480B2
JPH0151480B2 JP21092381A JP21092381A JPH0151480B2 JP H0151480 B2 JPH0151480 B2 JP H0151480B2 JP 21092381 A JP21092381 A JP 21092381A JP 21092381 A JP21092381 A JP 21092381A JP H0151480 B2 JPH0151480 B2 JP H0151480B2
Authority
JP
Japan
Prior art keywords
mixed crystal
ratio
vapor phase
layer
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21092381A
Other languages
Japanese (ja)
Other versions
JPS58115099A (en
Inventor
Hisanori Fujita
Eiichiro Nishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP21092381A priority Critical patent/JPS58115099A/en
Publication of JPS58115099A publication Critical patent/JPS58115099A/en
Publication of JPH0151480B2 publication Critical patent/JPH0151480B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は、表面状態及び結晶性の良好なりん化
ひ化ガリウム(GaAs1-xPx、0.5≦x<1、x:
混晶率、以下りん化ひ化ガリウムを総称する場合
は「GaAsP」という。)混晶エピタキシヤル膜の
気相成長方法に関する。
Detailed Description of the Invention The present invention is directed to gallium arsenide phosphide (GaAs 1-x Px, 0.5≦x<1, x:
The mixed crystal ratio, hereinafter collectively referred to as gallium arsenide phosphide, is referred to as "GaAsP". ) A method for vapor phase growth of a mixed crystal epitaxial film.

GaAsP、特に、混晶率xが0.5〜1の範囲のも
のは橙色〜黄色の発光ダイオード(LEC)製造
に用いられる。
GaAsP, especially those with a mixed crystal ratio x in the range of 0.5 to 1, are used for manufacturing orange to yellow light emitting diodes (LECs).

GaAsPのエピタキシヤル膜は、一般にはGaP
の(100)面または(100)面に対して2〜5゜のオ
フ・アングル(off−angle)を有する基板上に、
混晶率が1から所定の値まで徐々に変化する混晶
率変化層を成長させて格子定数の相違による転位
の発生を防止し、続いて混晶率が所定の値を有す
る混晶率一定層を成長させることにより製造され
る。成長方法としては混晶率の制御が容易な気相
成長法(VPE)が用いられることが多い。
GaAsP epitaxial films are generally GaAsP
on a substrate having an off-angle of 2 to 5 degrees with respect to the (100) plane or the (100) plane of
A mixed crystal ratio changing layer in which the mixed crystal ratio gradually changes from 1 to a predetermined value is grown to prevent the occurrence of dislocations due to differences in lattice constants, and then a mixed crystal ratio constant layer with a mixed crystal ratio of a predetermined value is grown. Manufactured by growing layers. As a growth method, vapor phase epitaxy (VPE), which allows easy control of the mixed crystal ratio, is often used.

LEDの製造に用いられるGaAsPエピタキシヤ
ルウエハは、パターンの転写等LEDの製造工程
における必要性から表面に凹凸がなく良好な平面
性を有することが要求される。
GaAsP epitaxial wafers used in the manufacture of LEDs are required to have good flatness with no irregularities on the surface due to the needs of the LED manufacturing process such as pattern transfer.

さらに、LEDの輝度寿命等の性能面から、エ
ピタキシヤル膜の結晶性が良好なことが必要とさ
れる。
Furthermore, in terms of performance such as brightness life of the LED, it is necessary that the epitaxial film has good crystallinity.

しかしながら、従来は、上記2種の要求は両立
することが難かしく結晶性及び平面性がともに良
好なものは得ることが困難であつた。
However, in the past, it has been difficult to satisfy both of the above two requirements, and it has been difficult to obtain a material with good crystallinity and flatness.

本発明者等は、上記の従来技術の問題点を解決
するために鋭意研究を重ねた結果本発明に到達し
たものである。
The present inventors have arrived at the present invention as a result of extensive research in order to solve the problems of the above-mentioned prior art.

すなわち、本発明の上記の目的は、単結晶基板
上にGaAsP混晶率変化層を気相成長させる過程
及びGaAsP混晶率一定層を気相成長させる過程
を含むGaAsP混晶エピタキシヤル膜の気相成長
方法において、混晶率変化層の気相成長過程にお
いては、気相成長ガス中のガリウムの供給量とり
ん及びひ素の供給量の合計量の比を〔Ga〕:
(〔P〕+〔As〕))=0.5〜1.5:1の範囲に選び、ま
た混晶率一定層の気相成長過程においては
〔Ga〕:(〔P〕+〔As〕)=3〜10:1に選び、か
つ、混晶率一定層の気相成長過程においては、り
んとひ素の供給量の合計量中に占めるりんの供給
量の割合を混晶率変化層の気相成長過程の終了時
における当該割合よりも増加させることを特徴と
する方法により達せられる。
That is, the above-mentioned object of the present invention is to provide a vapor phase growth method for a GaAsP mixed crystal epitaxial film, including a process of vapor phase growth of a GaAsP mixed crystal concentration variable layer and a process of vapor phase growth of a GaAsP constant mixed crystal content layer on a single crystal substrate. In the phase growth method, in the vapor phase growth process of the mixed crystal ratio change layer, the ratio of the total amount of gallium supplied in the vapor phase growth gas to the supplied amount of phosphorus and arsenic is [Ga]:
([P] + [As])) = 0.5 to 1.5:1, and in the vapor phase growth process of a constant mixed crystal ratio layer, [Ga]: ([P] + [As]) = 3 to 10:1, and in the vapor phase growth process of the constant mixed crystal ratio layer, the ratio of the supply amount of phosphorus to the total amount of phosphorus and arsenic supply is set as This is achieved by a method characterized in that the ratio is increased over the percentage at the end.

単結晶基板としてはGaPの(100)面または
(100)面に対して2〜5゜のオフアングルを有する
基板を用いるのが望ましい。その他にSi、Ga、
GaAs等の基板も用いることができる。
As the single crystal substrate, it is desirable to use a GaP (100) plane or a substrate having an off angle of 2 to 5 degrees with respect to the (100) plane. In addition, Si, Ga,
A substrate such as GaAs can also be used.

上記の基板上にエピタキシヤル膜を成長させる
場合は、基板とエピタキシヤル膜の格子定数の相
違に起因する転位等の結晶欠陥の発生を防止する
ために混晶率変化層が設けられる。例えば、GaP
基板上にGaAS0.35P0.65混晶エピタキシヤル膜を
形成する場合、混晶率、すなわちPの含有率が1
から0.65まで徐々に変化する層を設ける。
When growing an epitaxial film on the above-mentioned substrate, a mixed crystal ratio changing layer is provided to prevent crystal defects such as dislocations from occurring due to a difference in lattice constant between the substrate and the epitaxial film. For example, GaP
When forming a GaAS 0.35 P 0.65 mixed crystal epitaxial film on a substrate, the mixed crystal ratio, that is, the P content is 1.
Provide layers that gradually change from 0.65 to 0.65.

エピタキシヤル成長法には気相成長法と液相成
長法があるが、気相成長法によると混晶率変化層
の成長が極めて容易である。
Epitaxial growth methods include a vapor phase growth method and a liquid phase growth method, and the vapor phase growth method makes it extremely easy to grow a layer with a variable crystal content.

成長反応系としては、AsH3−PH3−Ga−HCl
系が濃度の制御が容易で好ましいが、AsH3
PH3−(CH33Ga系などGa、As、P各成分の供
給量を独立に制御できる系であれば使用できる。
As a growth reaction system, AsH 3 −PH 3 −Ga−HCl
The AsH 3 − system is preferred because the concentration can be easily controlled.
Any system such as PH 3 −(CH 3 ) 3 Ga system can be used as long as the supply amount of each of Ga, As, and P components can be controlled independently.

本発明方法によつてGaAsP混晶エピタキシヤ
ル膜を成長させる場合、混晶率変化層の気相成長
の過程では、Gaの供給量及び第族元素成分の
供給量すなわち、AsとPの各成分の供給量の合
計量の比を小さい値に保つ。すなわち、〔Ga〕:
(〔P〕+〔As〕)=0.5〜1.5:1(〔Ga〕、〔P〕及

〔As〕はそれぞれ各成分の供給量であつて単位時
間当りの原子数で表わす。)の範囲に保持する。
この場合、0.5未満では、成長速度が遅く、1.5を
超えると異常成長が起り表面状態が劣化する。な
お、上記各成分(AsH3等)は、理想気体とみな
して、供給量の比は体積の比で近似しても差支え
はない。
When growing a GaAsP mixed crystal epitaxial film by the method of the present invention, the amount of Ga supplied and the amount of supplied group element components, that is, each of As and P components, are Keep the ratio of the total amount of supply to a small value. That is, [Ga]:
([P] + [As]) = 0.5 to 1.5:1 ([Ga], [P] and [As] are the supply amounts of each component, expressed as the number of atoms per unit time.) Hold.
In this case, if it is less than 0.5, the growth rate will be slow, and if it exceeds 1.5, abnormal growth will occur and the surface condition will deteriorate. Note that each of the above components (AsH 3 etc.) may be regarded as an ideal gas, and the ratio of supply amounts may be approximated by the ratio of volumes.

続いて、混晶率一定層の気相成長の過程では、
〔Ga〕:(〔P〕+〔As〕)=3〜10:1に上記供給量
比を変化させる。この場合、急激に変化させるこ
とが混晶比の変動を生じないので好ましい。供給
量比が3未満では、成長速度が十分でなく、また
結晶性も劣るので好ましくない。また、10以上で
は、Ga等の消費量が大となり経済的でない。
Subsequently, in the process of vapor phase growth of a constant mixed crystal content layer,
The above supply ratio is changed to [Ga]:([P]+[As])=3 to 10:1. In this case, it is preferable to change the ratio rapidly because this will not cause fluctuations in the mixed crystal ratio. If the supply ratio is less than 3, the growth rate is not sufficient and the crystallinity is also poor, which is not preferable. Moreover, if it is 10 or more, the consumption amount of Ga etc. becomes large and it is not economical.

GaとAs及びPとの供給量の比を変化させると
それに伴なつて混晶率も変化し所定の値からずれ
る(通常は2〜4%程度)のでこれを補正するた
めに、PとAsの供給量の合計に占めるPの割合、
〔P〕/(〔As〕+〔P〕)を混晶率変化層の成長過
程の終了時よりも増加させる必要がある。すなわ
ち、混晶率変化層の終了時の〔P〕/(〔As〕+
〔P〕)の値の1.1〜2.5倍程度にするのが適当であ
る。一般に、xの値が大きい程、また、〔Ga〕:
(〔P〕+〔As〕)の変化量が大きい程、上記
〔P〕/(〔As〕+〔P〕)の値の変化量を大きくす
る必要がある。
When the ratio of the supply amounts of Ga, As, and P changes, the mixed crystal ratio also changes and deviates from the predetermined value (usually about 2 to 4%). The proportion of P in the total supply of
It is necessary to increase [P]/([As]+[P]) more than at the end of the growth process of the mixed crystal ratio change layer. In other words, [P]/([As]+
It is appropriate to set the value to about 1.1 to 2.5 times the value of [P]). Generally, the larger the value of x, the more [Ga]:
The larger the amount of change in ([P]+[As]), the larger the amount of change in the value of [P]/([As]+[P]) needs to be.

本発明方法によると、表面が鏡面を呈し、凹凸
がなく、かつ結晶性の極めて良好なGaAsP混晶
エピタキシヤルウエハを生産性よく製造すること
ができる。したがつて、高輝度かつ長寿命の
LEDを歩留りよく製造でき産業上の利用価値は
極めて大である。
According to the method of the present invention, a GaAsP mixed crystal epitaxial wafer having a mirror surface, no unevenness, and extremely good crystallinity can be manufactured with high productivity. Therefore, high brightness and long life
LEDs can be manufactured with high yield, and the industrial value is extremely large.

続いて、本発明方法を実施例及び比較例に基づ
いて具体的に説明する。
Next, the method of the present invention will be specifically explained based on Examples and Comparative Examples.

実施例 1 橙色(尖頭発光波長λmax=630nm±10nm)
LEDの製造に用いるGaAs0.35P0.65混晶エピタキ
シヤル膜の気相成長について説明する。
Example 1 Orange (peak emission wavelength λmax=630nm±10nm)
The vapor phase growth of a GaAs 0.35 P 0.65 mixed crystal epitaxial film used in the manufacture of LEDs will be explained.

硫黄を2×1017/cm3ドープしたGaP単結晶基板
(面方位(100)面から<110>方向に5゜傾いた面)
を機械−化学的に研磨した。
GaP single crystal substrate doped with sulfur at 2×10 17 /cm 3 (plane tilted 5° from the (100) plane to the <110> direction)
mechanically-chemically polished.

研磨後の基板を金属Ga入りボートを、内径70
mm長さ1000mmの水平型エピタキシヤル反応器内の
所定の場所にそれぞれ設置した。
After polishing the substrate, use a metal Ga-filled boat with an inner diameter of 70 mm.
Each was installed at a predetermined location in a horizontal epitaxial reactor with a length of 1000 mm.

上記反応器内を窒素置換した後、窒素の導入を
停止し、続いて水素ガスを2500ml/分導入した。
GaP基板設置部分を850℃、Gaボート設置部分を
800℃に昇温した後、水素により濃度20ppmに希
釈したTe(C2H52を5ml/分、Gaの輸送に用い
るHClを25ml/分及び濃度10%に水素で希釈した
PH3を250ml/分導入して10分間GaP基板上に
GaP層をエピタキシヤル成長させた。この層は基
板がGaAsPエピタキシヤル層に影響を与えるこ
とを防止するために設けられる。
After replacing the inside of the reactor with nitrogen, the introduction of nitrogen was stopped, and then hydrogen gas was introduced at 2500 ml/min.
The area where the GaP substrate is installed is heated to 850℃, and the area where the Ga boat is installed is heated to 850℃.
After raising the temperature to 800℃, Te(C 2 H 5 ) 2 diluted with hydrogen to a concentration of 20 ppm was diluted with hydrogen at 5 ml/min, and HCl used for transporting Ga was diluted with hydrogen at 25 ml/min and a concentration of 10%.
Introduce 250 ml/min of PH 3 onto the GaP substrate for 10 minutes.
A GaP layer was grown epitaxially. This layer is provided to prevent the substrate from influencing the GaAsP epitaxial layer.

続いて、濃度10%に水素で希釈したAsH3の供
給量60分の間に0ml/分から147ml/分まで徐々
に増加させた。
Subsequently, the feed rate of AsH 3 diluted with hydrogen to a concentration of 10% was gradually increased from 0 ml/min to 147 ml/min over a period of 60 minutes.

上記混晶率変化層の気相成長過程終了後HClの
供給量を25ml/分から180ml/分及びAsH3の供
給量(濃度10%)を147ml/分から112ml/分へそ
れぞれ急激に変化させた。他の成分の供給量は変
化させなかつた。その後30分間GaAs0.35P0.65混晶
エピタキシヤル層を成長させた。
After the vapor phase growth process of the mixed crystal ratio change layer was completed, the HCl supply rate was rapidly changed from 25 ml/min to 180 ml/min, and the AsH 3 supply rate (concentration 10%) was rapidly changed from 147 ml/min to 112 ml/min. The feed rates of other ingredients remained unchanged. A GaAs 0.35 P 0.65 mixed crystal epitaxial layer was then grown for 30 minutes.

次に、上記各成分の供給量を保持したまま、ア
イソエレクトロニツク・トラツプ(Isoele−
ctronic Trap)として窒素をドープするために
NH3を125ml/分導入して60分成長させた。
Next, while maintaining the supply amount of each component above, the isoelectronic trap (Isoele-
to dope nitrogen as ctronic trap)
NH 3 was introduced at 125 ml/min and grown for 60 minutes.

得られたエピタキシヤルウエハは、表面が鏡面
を保つていた。GaPエピタキシヤル層の厚みは
3.8μm混晶率変化層の厚みは、22μm、GaAs0.35
P0.65混晶率一定層の厚みは40μm(窒素ドープ部
分は25μm)、また窒素をドープした層のn型キ
ヤリア濃度は1.2×1016/cm3であつた。
The surface of the obtained epitaxial wafer maintained a mirror surface. The thickness of the GaP epitaxial layer is
The thickness of the 3.8μm mixed crystal ratio change layer is 22μm, GaAs 0.35
The thickness of the constant P 0.65 mixed crystal layer was 40 μm (the nitrogen-doped portion was 25 μm), and the n-type carrier concentration of the nitrogen-doped layer was 1.2×10 16 /cm 3 .

このウエハに、720℃でZnAs2を用いてp型不
純物であるZnを拡散して表面から4.5μmの位置に
pn接合を形成してLEDを製造した。
Zn, which is a p-type impurity, is diffused into this wafer using ZnAs 2 at 720°C to a position 4.5 μm from the surface.
An LED was manufactured by forming a pn junction.

得られたLEDのλmaxは631.5nm(平均値)、
また輝度は平均4480Ft.L(10A/cm2、エポキシコ
ートなし)で従来品の1.6倍であつた。また、電
流密度240A/cm2で168時間動作させたが、輝度の
低下率は初期値の17%(平均値)であり、従来の
50%に比較して著るしく改善された。
The λmax of the obtained LED is 631.5nm (average value),
The average brightness was 4480Ft.L (10A/cm 2 , without epoxy coating), which was 1.6 times that of the conventional product. In addition, after operating for 168 hours at a current density of 240A/ cm2 , the rate of decrease in brightness was 17% (average value) of the initial value, which was lower than the conventional
This was a marked improvement compared to 50%.

実施例 2 黄色LED(588nm±5nm)の製造に用いられる
GaAs0.15P0.85混晶エピタキシヤル膜の気相成長を
下記の通りに行つた。
Example 2 Used for manufacturing yellow LED (588nm±5nm)
Vapor phase growth of a GaAs 0.15 P 0.85 mixed crystal epitaxial film was performed as follows.

実施例1と同様にしてGaPエピタキシヤル層を
成長させた後、30分間にAsH3(濃度10%)の供
給量を0から34ml/分まで増加させて混晶率変化
層を成長させた。続いて、HClの供給量を25ml/
分から140ml/分、また、AsH3の供給量を34
ml/分から28ml/分へ急激に変化させ、他の成分
の供給量を一定に保つたまま混晶率一定層を30分
間成長させた。続いてNH3を125ml/分導入して
さらに60分間成長させた。
After a GaP epitaxial layer was grown in the same manner as in Example 1, the mixed crystal ratio variable layer was grown by increasing the supply amount of AsH 3 (concentration 10%) from 0 to 34 ml/min for 30 minutes. Next, increase the supply amount of HCl to 25ml/
minute to 140ml/min, and the supply amount of AsH3 to 34
The rate was rapidly changed from ml/min to 28 ml/min, and a constant mixed crystal ratio layer was grown for 30 minutes while keeping the supply amount of other components constant. Subsequently, NH 3 was introduced at 125 ml/min and growth was continued for an additional 60 minutes.

得られた、エピタキシヤルウエハのGaPエピタ
キシヤル層は、厚み3.2μm、混晶率変化層の厚み
は15μm、また混晶率一定層の厚みは39μm(窒
素ドープ層の厚みは23μm)であり、表面は鏡面
を呈していた。また窒素ドープ層のn型キヤリア
濃度は8.5×1015/cm3であつた。実施例1と同様
にして黄色LEDを製造した。その結果、
λmax588.5nm(平均値)、輝度6400Ft・L(平均
値、10A/cm2エポキシコートなし)で従来品の
1.3倍であつた。また、240A/cm2で168時間動作
させた所、輝度は初期値から19%低下した。これ
は、従来のLEDが同一条件で約50%低下するの
に比較して著るしく改善された。
The GaP epitaxial layer of the obtained epitaxial wafer had a thickness of 3.2 μm, a thickness of the mixed crystal ratio variable layer was 15 μm, and a thickness of the constant mixed crystal ratio layer was 39 μm (the thickness of the nitrogen doped layer was 23 μm). The surface had a mirror finish. Further, the n-type carrier concentration of the nitrogen-doped layer was 8.5×10 15 /cm 3 . A yellow LED was manufactured in the same manner as in Example 1. the result,
λmax588.5nm (average value), brightness 6400Ft・L (average value, 10A/cm 2 without epoxy coating) than conventional products
It was 1.3 times as hot. Furthermore, after operating at 240 A/cm 2 for 168 hours, the brightness decreased by 19% from the initial value. This is a significant improvement compared to the approximately 50% reduction of conventional LEDs under the same conditions.

Claims (1)

【特許請求の範囲】[Claims] 1 単結晶基板上にりん化ひ化ガリウム
(GaAs1-xPx、0.5≦x<1、x:混晶率)混晶率
変化層を気相成長させる過程及びりん化ひ化ガリ
ウム混晶率一定層を気相成長させる過程を含むり
ん化ひ化ガリウム混晶エピタキシヤル膜の気相成
長方法において、混晶率変化層の気相成長過程に
おいては、気相成長ガス中のガリウムの供給量と
りん及びひ素の供給量の合計量の比を[Ga]:
([P]+[As])〕=0.5〜1.5:1の範囲に選び、ま
た混晶率一定層の気相成長過程においては
[Ga]:([P]+[As])=3〜10:1に選び、か
つ、混晶率一定層の気相成長過程においては、り
んとひ素の供給量の合計量中に占めるりんの供給
量の割合を混晶率変化層の気相成長過程の終了時
における当該割合よりも増加させることを特徴と
する方法。
1 Process of vapor phase growth of gallium arsenide phosphide (GaAs 1-x Px, 0.5≦x<1, x: mixed crystal ratio) mixed crystal ratio variable layer on a single crystal substrate and gallium arsenide phosphide mixed crystal ratio In the vapor phase growth method of a gallium phosphide arsenide mixed crystal epitaxial film, which includes the process of vapor phase growth of a constant layer, in the vapor phase growth process of the mixed crystal ratio changing layer, the supply amount of gallium in the vapor phase growth gas is The ratio of the total amount of phosphorus and arsenic supplied is [Ga]:
([P] + [As])] = 0.5 to 1.5:1, and [Ga]: ([P] + [As]) = 3 to 1 in the vapor phase growth process of a constant mixed crystal layer. 10:1, and in the vapor phase growth process of the constant mixed crystal ratio layer, the ratio of the supply amount of phosphorus to the total amount of phosphorus and arsenic supply is set as A method characterized in that the ratio is increased from the ratio at the end.
JP21092381A 1981-12-29 1981-12-29 Method for growth of epitaxial layer of mixed crystal of gallium phosphide arsenide Granted JPS58115099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21092381A JPS58115099A (en) 1981-12-29 1981-12-29 Method for growth of epitaxial layer of mixed crystal of gallium phosphide arsenide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21092381A JPS58115099A (en) 1981-12-29 1981-12-29 Method for growth of epitaxial layer of mixed crystal of gallium phosphide arsenide

Publications (2)

Publication Number Publication Date
JPS58115099A JPS58115099A (en) 1983-07-08
JPH0151480B2 true JPH0151480B2 (en) 1989-11-02

Family

ID=16597306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21092381A Granted JPS58115099A (en) 1981-12-29 1981-12-29 Method for growth of epitaxial layer of mixed crystal of gallium phosphide arsenide

Country Status (1)

Country Link
JP (1) JPS58115099A (en)

Also Published As

Publication number Publication date
JPS58115099A (en) 1983-07-08

Similar Documents

Publication Publication Date Title
EP0497350B1 (en) Crystal growth method for gallium nitride-based compound semiconductor
JPS6115577B2 (en)
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
US4252576A (en) Epitaxial wafer for use in production of light emitting diode
US4987472A (en) Compound semiconductor epitaxial wafer
US5856208A (en) Epitaxial wafer and its fabrication method
US4218270A (en) Method of fabricating electroluminescent element utilizing multi-stage epitaxial deposition and substrate removal techniques
JP3146874B2 (en) Light emitting diode
JPH0151480B2 (en)
US5456765A (en) Epitaxial wafer of gallium arsenide phosphide
JP3301371B2 (en) Method for manufacturing compound semiconductor epitaxial wafer
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
EP1791171B1 (en) Epitaxial crystal growing method
JPH08264464A (en) Vapor-phase epitaxy
JPH03163884A (en) Epitaxial wafer and manufacture thereof
JP3221359B2 (en) P-type group III nitride semiconductor layer and method for forming the same
JPH08335555A (en) Fabrication of epitaxial wafer
JP4024965B2 (en) Epitaxial wafer and light emitting diode
JPS60214524A (en) Growing method of gallium phosphide arsenide epitaxial film
JP3156514B2 (en) Manufacturing method of semiconductor epitaxial wafer
JP2001036136A (en) Epitaxial wafer and light emitting diode
JP2001036133A (en) Epitaxial wafer and light-emitting diode
JPH05315210A (en) Gallium arsenide phosphide mixed-crystal epitaxial wafer
JPH0465036B2 (en)
JPS6158971B2 (en)