JPH0151472B2 - - Google Patents

Info

Publication number
JPH0151472B2
JPH0151472B2 JP18826782A JP18826782A JPH0151472B2 JP H0151472 B2 JPH0151472 B2 JP H0151472B2 JP 18826782 A JP18826782 A JP 18826782A JP 18826782 A JP18826782 A JP 18826782A JP H0151472 B2 JPH0151472 B2 JP H0151472B2
Authority
JP
Japan
Prior art keywords
time
prolonging
weight
drug composition
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18826782A
Other languages
Japanese (ja)
Other versions
JPS5978993A (en
Inventor
Yasuhiro Kusaka
Keiichi Iseya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP18826782A priority Critical patent/JPS5978993A/en
Publication of JPS5978993A publication Critical patent/JPS5978993A/en
Publication of JPH0151472B2 publication Critical patent/JPH0151472B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は遅発電気雷管およびその他の火工品の
用に供する延時薬組成物に関するもので、その目
的は経時における燃焼速度(以下燃速という)の
変化の極めて少ない延時薬組成物を提供すること
にある。 延時薬組成物は一般に酸化剤、還元剤、その他
必要に応じて添加される燃焼調整剤および結合剤
からなる混合物であるが、経時に伴いこれら混合
物系内において酸化剤と還元剤との間で化学反応
を生じ、延時薬組成物の燃速が当初設計された燃
速値より低下してくるといういわゆる経時変化を
起すことが知られている。またこの反応は湿気、
水分等により加速されるということも知られてい
る。 延時薬組成物がこのような経時変化を起した場
合、発破作業等において延時薬組成物を用いた遅
発電気雷管やその他の火工品の延時秒時間隔にば
らつきを生じ効率的な発破等が行えないという問
題を生じる。 従来、これらの湿気、水分等に対する対策とし
て、特公昭31−9407号公報には延時薬組成物中に
クロム酸塩を配合することにより吸湿を防止する
ことが記載されている。しかしこの方法ではクロ
ム酸塩以外の組成物の吸湿はまぬがれないという
欠点があつた。 本発明者らは延時薬組成物に関するこれらの欠
点を防止改善するため研究を重ねた結果、延時薬
組成物に特定の界面活性剤を含有させることによ
り耐湿性が向上し経時変化による燃速の低下が減
少することを見出し本発明を完成するに至つた。 本発明の延時薬組成物は、オキシエチレン基付
加成分が10〜40重量%であるポリオキシエチレン
オキシプロピレン型非イオン界面活性剤を0.05〜
1重量%含有することを特徴とするものである。 すなわち、本発明は通常一般に用いられている
酸化剤、還元剤および燃焼調整剤からなる従来の
延時薬組成物に前記特定の界面活性剤を含有させ
てなるものである。 前記従来の延時薬組成物としては例えば鉛丹、
硅素鉄、および三硫化アンチモンを主成分とする
ものがある。 本発明で使用するポリオキシエチレンオキシプ
ロピレン型非イオン界面活性剤は疎水基としてオ
キシプロピレン基を含有し、親水基としてオキシ
エチレン基を含有する界面活性剤であり、市販の
ものは通常ポリプロピレングリコールにエチレン
オキシドを付加させて製造されている。 本発明における前記界面活性剤のオキシエチレ
ン基の含有率は10〜40重量%であることが望まし
く、その含有率が10重量%未満では延時薬組成物
の経時変化による燃速低下の防止効果が不十分と
なり、また含有率が40重量%を越えては延時薬組
成物の耐湿効果が不十分となり好ましくない。 これらの界面活性剤の添加量は、延時薬組成物
全重量に対して0.05〜1重量%の範囲にすること
により所望の効果が得られる。添加量が延時薬組
成物全重量に対して0.05重量%未満の場合には所
望の効果は期待し得ない。また延時薬組成物全重
量に対して1重量%を越えて添加した場合には、
界面活性剤自身が有機物であることから燃焼ガス
の発生量が多くなり、延時薬にとつて必要な燃速
の低下防止等の性能に対して、ガス圧による速燃
化、あるいは燃焼時の外部雰囲気に対する敏感化
等をもたらすことから1重量%を越えて添加すべ
きでない。 以上の成分からなる本発明の延時薬組成物は通
常の製造方法で得られる。まず界面活性剤以外の
延時薬成分を均一に混合しておき、これに本発明
で使用する界面活性剤を溶解した結合剤を加え良
く混和する。次いで造粒、乾燥、および分級し、
延時薬組成物を得る。このようにして得られた本
発明の延時薬組成物は次のような効果がある。 第1の効果として、混合物系内における酸化剤
と還元剤との直接接触による化学反応を防止する
ことができ、経時による燃速の低下を防止改善す
ることができる。また第2の効果として、延時薬
組成物の吸湿を防止することができ、経時劣化の
加速原因である水分の影響を排除することができ
る。このことは特に夏期或は梅雨期における延時
薬組成物の製造において有利である。 次に本発明の延時薬組成物を実施例および比較
例によつて具体的に説明する。 実施例 1〜6 鉛丹57重量%、硅素鉄6重量%、および三硫化
アンチモン37重量%からなる延時薬混合物と界面
活性剤とを用いて第1表に示すような配合組成の
延時薬組成物を下記のようにして製造した。 すなわち所定比率の延時薬混合物と、所定比率
の第1表に示す界面活性剤を溶解した綿薬アセト
ン溶液とを混和し、次いで造粒、乾燥、分級の工
程を経て延時薬混合物と界面活性剤との配合比が
第1表に示す比率の延時薬組成物を得た。この延
時薬組成物の一定量を原料雷管(管体に添装薬及
び起爆薬を圧填したもの)の起爆薬上に入れ一定
圧力にて圧搾し、延時薬入り原料雷管を30本作製
した。このうち10本は100%相対湿度下で、吸湿
試験を10日間行い吸湿量を測定し、その結果を第
2表に示した。残りの20本の延時薬入り原料雷管
については、点火部付塞栓を取り付け、遅発電気
雷管を作製した。この遅発電気雷管について、デ
ジタル式カウンター(武田理研(株)製)を使用し、
この遅発電気雷管への通電から起爆に至るまでの
遅延時間を測定しその値と延時薬の充填層厚さと
から延時薬組成物の燃速を求めた。なお燃速の測
定は試料作製直後と試料作製3年後に行ない燃速
の経時変化を調べた。燃速の経時変化の結果は第
3表に示した。 比較例 1〜7 実施例1〜6と同配合の延時薬混合物を用いて
第1表に示すような配合組成の延時薬組成物を下
記のようにして製造した。 すなわち所定比率の延時薬混合物と、所定比率
の第1表に示す界面活性剤を溶解した綿薬アセト
ン溶液とを混和し、次いで造粒、乾燥、分級の工
程を経て延時薬混合物と界面活性剤との配合比が
第1表に示す比率の延時薬組成物の試料を得た。
以下実施例1〜6に準じて延時薬入り原料雷管を
作製し、実施例1〜6に準じて吸湿試験を行つ
た。吸湿試験の結果は第2表に示した。また実施
例1〜6に準じて遅発電気雷管を作製し、実施例
1〜6に準じて燃速の測定を行つた。燃速の経時
変化の結果は第3表に示した。
The present invention relates to a time-prolonging composition for use in slow-fire electric detonators and other pyrotechnics, and its purpose is to provide a time-prolonging composition whose burning rate (hereinafter referred to as "burning rate") hardly changes over time. There is a particular thing. A time-prolonging drug composition is generally a mixture consisting of an oxidizing agent, a reducing agent, and other combustion modifiers and binders added as necessary. It is known that a chemical reaction occurs, causing the so-called time-dependent change in which the burning rate of the time-prolonging drug composition decreases from the originally designed burning rate value. This reaction also occurs due to humidity,
It is also known that it is accelerated by moisture and the like. If the time-delaying chemical composition undergoes such a change over time, it may cause variations in the delay time interval of delayed electric detonators and other pyrotechnics using the time-delaying chemical composition during blasting operations, making it difficult to perform efficient blasting. The problem arises that it is not possible to do this. Conventionally, as a countermeasure against moisture, moisture, etc., Japanese Patent Publication No. 31-9407 describes that a chromate salt is incorporated into a time delay drug composition to prevent moisture absorption. However, this method has the disadvantage that components other than chromate can absorb moisture. The present inventors have conducted repeated research to prevent and improve these shortcomings of time-prolonging drug compositions, and have found that by incorporating a specific surfactant into a time-prolonging drug composition, moisture resistance is improved and the burning speed due to changes over time is reduced. The present invention was completed based on the discovery that this decrease was reduced. The time-prolonging drug composition of the present invention contains a polyoxyethylene oxypropylene type nonionic surfactant containing 10 to 40% by weight of an oxyethylene group-added component.
It is characterized by containing 1% by weight. That is, the present invention comprises a conventional time-prolonging composition comprising a commonly used oxidizing agent, reducing agent, and combustion modifier, containing the above-mentioned specific surfactant. Examples of the conventional time delay drug composition include red lead,
Some contain iron silicon and antimony trisulfide as main components. The polyoxyethylene oxypropylene type nonionic surfactant used in the present invention is a surfactant containing an oxypropylene group as a hydrophobic group and an oxyethylene group as a hydrophilic group, and commercially available ones are usually polypropylene glycol. Manufactured by adding ethylene oxide. In the present invention, the content of oxyethylene groups in the surfactant is preferably 10 to 40% by weight, and if the content is less than 10% by weight, the effect of preventing a decrease in the burning speed due to changes over time in the time-prolonging drug composition is insufficient. If the content exceeds 40% by weight, the moisture resistance effect of the time delay drug composition will be insufficient, which is not preferable. The desired effect can be obtained by adjusting the amount of these surfactants added in the range of 0.05 to 1% by weight based on the total weight of the time-prolonging drug composition. If the amount added is less than 0.05% by weight based on the total weight of the time-prolonging drug composition, the desired effect cannot be expected. In addition, if it is added in an amount exceeding 1% by weight based on the total weight of the drug composition,
Since the surfactant itself is an organic substance, a large amount of combustion gas is generated. It should not be added in an amount exceeding 1% by weight since it may cause sensitivity to the atmosphere. The time-prolonging drug composition of the present invention comprising the above-mentioned components can be obtained by a conventional manufacturing method. First, the time-prolonging drug components other than the surfactant are mixed uniformly, and a binder in which the surfactant used in the present invention is dissolved is added to this mixture and mixed well. Then granulated, dried and classified,
A time-prolonging drug composition is obtained. The time delay drug composition of the present invention thus obtained has the following effects. The first effect is that a chemical reaction due to direct contact between an oxidizing agent and a reducing agent in the mixture system can be prevented, and a decrease in combustion speed over time can be prevented and improved. Moreover, as a second effect, it is possible to prevent the time-prolonging drug composition from absorbing moisture, and to eliminate the influence of moisture, which is a cause of acceleration of deterioration over time. This is particularly advantageous in the production of time-prolonging drug compositions during the summer or rainy season. Next, the time delay drug composition of the present invention will be specifically explained using Examples and Comparative Examples. Examples 1 to 6 Time-prolonging drug compositions as shown in Table 1 using a time-prolonging drug mixture consisting of 57% by weight of red lead, 6% by weight of iron silicon, and 37% by weight of antimony trisulfide and a surfactant. The product was manufactured as follows. That is, a predetermined ratio of the time-prolonging drug mixture and a cotton powder acetone solution containing a predetermined ratio of the surfactant shown in Table 1 are mixed, and then through the steps of granulation, drying, and classification, the time-prolonging drug mixture and the surfactant are mixed. A time-prolonging drug composition having a compounding ratio shown in Table 1 was obtained. A certain amount of this time delay drug composition was placed on the detonator of a raw material detonator (tube body filled with additives and detonator) and squeezed under a constant pressure to produce 30 raw material detonators containing time delay drug. . Ten of them were subjected to a moisture absorption test under 100% relative humidity for 10 days to measure the amount of moisture absorbed, and the results are shown in Table 2. For the remaining 20 raw material detonators containing time-delaying charges, embolizers with ignition parts were attached to create delayed-fire electric detonators. For this delayed electric detonator, a digital counter (manufactured by Takeda Riken Co., Ltd.) was used.
The delay time from energization to the delayed electric detonator to detonation was measured, and the burning speed of the time delay drug composition was determined from that value and the packed layer thickness of the time delay drug. The combustion speed was measured immediately after the sample was prepared and 3 years after the sample was prepared to examine changes in the combustion speed over time. The results of the change in combustion speed over time are shown in Table 3. Comparative Examples 1 to 7 Using time delay drug mixtures having the same formulations as in Examples 1 to 6, time delay drug compositions having the formulations shown in Table 1 were manufactured in the following manner. That is, a predetermined ratio of the time-prolonging drug mixture and a cotton powder acetone solution containing a predetermined ratio of the surfactant shown in Table 1 are mixed, and then through the steps of granulation, drying, and classification, the time-prolonging drug mixture and the surfactant are mixed. A sample of a time-prolonging drug composition having a compounding ratio shown in Table 1 was obtained.
Thereafter, raw material detonators containing time-prolonging medicine were prepared according to Examples 1 to 6, and moisture absorption tests were conducted according to Examples 1 to 6. The results of the moisture absorption test are shown in Table 2. Further, delayed electric detonators were manufactured according to Examples 1 to 6, and the combustion speeds were measured according to Examples 1 to 6. The results of the change in combustion speed over time are shown in Table 3.

【表】【table】

【表】 吸湿試験結果の表示法としては、吸湿量を測定
し延時薬入り原料雷管1本当りの装填延時薬量に
対する吸湿量の割合を吸湿率として求めた。また
比較例1(界面活性剤無添加)の5日目における
吸湿量を1.00として、他の実施例および比較例の
吸湿量をそれに対する割合値として求め第2表に
示した。 燃速の経時変化の表示法としては、遅発電気雷
管を製造した直後、および3年後における遅延時
間(通電から起爆に至るまでの遅延時間)を測定
し、遅発電気雷管における延時薬長(2.5mm)と、
この遅延時間により燃速を決定した。また比較例
1の製造直後における燃速を1.00として、他の実
施例および比較例の燃速をそれに対する割合値と
して求めた。燃速の変化率は経時3年後と製造直
後との間の燃速の減少率を下記の如く求め第3表
に示した。 燃速の変化率(%)=B−A/A×100 A:製造直後の燃速(mm/sec) B:製造3年後の燃速(mm/sec)
[Table] To display the results of the moisture absorption test, the amount of moisture absorbed was measured, and the ratio of the amount of moisture absorbed to the amount of time-duration drug loaded per one raw material detonator containing a time-duration drug was determined as the moisture absorption rate. Further, assuming that the moisture absorption amount of Comparative Example 1 (no surfactant added) on the 5th day was 1.00, the moisture absorption amounts of other Examples and Comparative Examples were calculated as a percentage value and shown in Table 2. The method of displaying the change in combustion speed over time is to measure the delay time (delay time from energization to detonation) immediately after manufacturing the delayed electric detonator and 3 years later, and calculate the delayed charge length in the delayed electric detonator. (2.5mm) and
The combustion speed was determined by this delay time. Further, the combustion speed of Comparative Example 1 immediately after production was set as 1.00, and the combustion speeds of other Examples and Comparative Examples were determined as a ratio value to that value. As for the rate of change in combustion speed, the rate of decrease in combustion speed between 3 years after aging and immediately after manufacture was determined as follows and shown in Table 3. Rate of change in combustion speed (%) = B-A/A×100 A: Combustion speed immediately after manufacture (mm/sec) B: Combustion speed 3 years after manufacture (mm/sec)

【表】【table】

【表】【table】

【表】 以上第1表、第2表、および第3表からわかる
ように、比較例2および3、についてみると吸湿
試験の吸湿率においては実施例の値に比較的近い
値を示しているが、燃速の変化率においては実施
例よりはるかに大きい値を示している。また比較
例1、4、および5、についてみると吸湿試験、
および燃速の変化率共に実施例よりはるかに大き
い値を示している。したがつて比較例1〜5にお
いては吸湿性低下および燃速の低下の防止に効果
のあるものはない。比較例6、においてはニツサ
ンプロノン102の添加量が2.0%と多いために燃焼
時のガス量が多く燃速も大幅に早くなつている、
したがつて比較例6も実用的でないことがわか
る。またポリプロピレングリコールへのエチレン
オキシドの付加された量については、比較例7に
おいてニツサンプロノン208(ポリプロピレングリ
コールにエチレンオキシドを80%付加したもの)
を1重量%添加した場合には、経時による燃速低
下は小さいが耐湿効果が不足している。 これに対し実施例1〜6はオキシエチレン基含
有率10〜40重量%のニツサンプロノンを0.05〜1
重量%添加することにより吸湿の防止および経時
による燃速の低下の防止の両方に対して際立つた
効果をもつていることがわかる。
[Table] As can be seen from Tables 1, 2, and 3 above, Comparative Examples 2 and 3 show values that are relatively close to the values of Examples in terms of moisture absorption rates in the moisture absorption test. However, the rate of change in fuel velocity shows a much larger value than in the example. Also, regarding Comparative Examples 1, 4, and 5, the moisture absorption test
and the rate of change in fuel velocity both show much larger values than in the example. Therefore, none of Comparative Examples 1 to 5 is effective in preventing a decrease in hygroscopicity and a decrease in combustion speed. In Comparative Example 6, the amount of Nitsusan Pronone 102 added was as high as 2.0%, so the amount of gas during combustion was large and the burning speed was significantly faster.
Therefore, it can be seen that Comparative Example 6 is also not practical. Regarding the amount of ethylene oxide added to polypropylene glycol, in Comparative Example 7, Nitsusanpronon 208 (80% ethylene oxide added to polypropylene glycol) was used.
When 1% by weight of is added, the decrease in combustion speed over time is small, but the moisture resistance effect is insufficient. On the other hand, in Examples 1 to 6, Nitsusanpronone with an oxyethylene group content of 10 to 40% was added to 0.05 to 1
It can be seen that the addition of % by weight has a remarkable effect on both prevention of moisture absorption and prevention of decrease in combustion speed over time.

Claims (1)

【特許請求の範囲】[Claims] 1 オキシエチレン基付加成分が10〜40重量%で
あるポリオキシエチレンオキシプロピレン型非イ
オン界面活性剤を0.05〜1重量%含有することを
特徴とする延時薬組成物。
1. A time-prolonging drug composition characterized by containing 0.05-1% by weight of a polyoxyethylene oxypropylene type nonionic surfactant having an oxyethylene group-added component of 10-40% by weight.
JP18826782A 1982-10-28 1982-10-28 Time-delayed drug composition Granted JPS5978993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18826782A JPS5978993A (en) 1982-10-28 1982-10-28 Time-delayed drug composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18826782A JPS5978993A (en) 1982-10-28 1982-10-28 Time-delayed drug composition

Publications (2)

Publication Number Publication Date
JPS5978993A JPS5978993A (en) 1984-05-08
JPH0151472B2 true JPH0151472B2 (en) 1989-11-02

Family

ID=16220676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18826782A Granted JPS5978993A (en) 1982-10-28 1982-10-28 Time-delayed drug composition

Country Status (1)

Country Link
JP (1) JPS5978993A (en)

Also Published As

Publication number Publication date
JPS5978993A (en) 1984-05-08

Similar Documents

Publication Publication Date Title
RU2053212C1 (en) Priming composition
CA1084715A (en) High-energy explosive or propellant composition
US3960621A (en) Propellents
JPH0151472B2 (en)
JP2000154084A (en) Hexanitrohexazaisourotitanium composition and high performance explosive composition obtained by blending same
JPS6065786A (en) Double base propellent composition
US4277542A (en) Resistance material
US2048050A (en) Explosive composition
US2218563A (en) Manufacture of explosive compositions or blasting charges
US4416712A (en) Double-base solid propellants
EP0067560B1 (en) Gelatinized highly explosive composition and method of preparation
JPH02271987A (en) Casting type composition for explosive
US2186426A (en) Electric blasting cap
RU2105748C1 (en) Explosive composition
JPS609998B2 (en) propellant composition
JPH0151473B2 (en)
US2440267A (en) Propellant and process for manufacturing
US3546034A (en) Ammonium nitrate-nitromethane type blasting agent containing urea as a crystallization inhibitor
CA1203175A (en) Organic nitrate drug mixtures resistant to detonation by fire
US2168563A (en) Nitrostarch explosive
EP1097115B1 (en) High energy gun propellants
WO2006008706A2 (en) An alternate oxidant for a delay composition
US2545270A (en) Gelatin blasting explosive composition containing water-soluble salts
RU1779684C (en) Inert compound filling of ammunition
US4746506A (en) Organic nitrate drug mixtures resistant to detonation by fire