JPH0150975B2 - - Google Patents

Info

Publication number
JPH0150975B2
JPH0150975B2 JP6528881A JP6528881A JPH0150975B2 JP H0150975 B2 JPH0150975 B2 JP H0150975B2 JP 6528881 A JP6528881 A JP 6528881A JP 6528881 A JP6528881 A JP 6528881A JP H0150975 B2 JPH0150975 B2 JP H0150975B2
Authority
JP
Japan
Prior art keywords
light
thin film
prism
reflected
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6528881A
Other languages
Japanese (ja)
Other versions
JPS57181504A (en
Inventor
Kiichi Kato
Tooru Musha
Kenichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP6528881A priority Critical patent/JPS57181504A/en
Priority to US06/339,718 priority patent/US4505584A/en
Priority to NLAANVRAGE8200220,A priority patent/NL184245C/en
Priority to FR8200918A priority patent/FR2498340A1/en
Priority to KR8200249A priority patent/KR850001924B1/en
Priority to DE3201964A priority patent/DE3201964C2/en
Priority to GB08201844A priority patent/GB2110499B/en
Publication of JPS57181504A publication Critical patent/JPS57181504A/en
Publication of JPH0150975B2 publication Critical patent/JPH0150975B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/14Mountings, adjusting means, or light-tight connections, for optical elements for lenses adapted to interchange lenses
    • G02B7/16Rotatable turrets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • G11B7/0917Focus-error methods other than those covered by G11B7/0909 - G11B7/0916
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • G11B7/0917Focus-error methods other than those covered by G11B7/0909 - G11B7/0916
    • G11B2007/0919Critical angle methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 本発明は、例えば記録媒体上に螺旋或いは同心
円状に記録された情報トラツクに対物レンズを経
て読み取り光スポツトを集束して情報を読み取る
装置において対物レンズの記録媒体に対する焦点
はずれを検出する焦点検出方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an apparatus for reading information by focusing a reading light spot onto an information track recorded spirally or concentrically on a recording medium through an objective lens. The present invention relates to a focus detection method for detecting misalignment.

上述した情報読み取り装置は従来より既知であ
り、情報トラツクを有する記録媒体には、例えば
ビデオデイスクやオーデイオデイスクと呼ばれて
いるものがある。このビデオデイスクやオーデイ
オデイスクには情報トラツクにに符号化されたビ
デオ信号や音声信号が、光学的透過特性、反射特
性、位相特性などの光学的情報として記録されて
いる。デイスクに記録された情報は、これを高速
で回転させながらレーザ光源から放射されるレー
ザ光を対物レンズを経て情報トラツク上に集束さ
せ、情報トラツクによつて変調された透過光また
は反射光を検出して読み取つている。このような
記録媒体の特徴の一つは、情報の記録密度が非常
に高いことであり、そのため各情報トラツクの幅
が極めて狭いと共に、順次の情報トラツク間の間
隔も非常に狭くなつている。このように幅もピツ
チも狭い情報トラツクから元の情報を正確に読み
取るためには、対物レンズをデイスク面に対して
常に合焦状態となるようにして、デイスク面上で
の光スポツトの径を小さくする必要がある。しか
しデイスクと対物レンズとの間の距離は変動する
ので常に合焦状態を保持することはできない。こ
のためかかる光学的読み取り装置においては、対
物レンズのデイスク面に対する焦点はずれを検出
し、この焦点はずれ信号に基いて対物レンズをそ
の光軸方向に変位させるようサーボ機構によりフ
オーカツシング制御が行なわれている。
The above-mentioned information reading device is known from the prior art, and examples of recording media having information tracks include those called video discs and audio discs. On these video disks and audio disks, video signals and audio signals encoded into information tracks are recorded as optical information such as optical transmission characteristics, reflection characteristics, and phase characteristics. The information recorded on the disk is recorded by rotating the disk at high speed, focusing the laser light emitted from the laser light source onto the information track through an objective lens, and detecting the transmitted light or reflected light modulated by the information track. I'm reading it. One of the characteristics of such recording media is that the information recording density is very high, so that the width of each information track is very narrow and the spacing between successive information tracks is also very narrow. In order to accurately read the original information from such a narrow information track, it is necessary to keep the objective lens always in focus on the disk surface and to reduce the diameter of the light spot on the disk surface. It needs to be made smaller. However, since the distance between the disk and the objective lens varies, it is not possible to maintain a focused state at all times. For this reason, in such an optical reading device, focusing control is performed by a servo mechanism to detect the defocus of the objective lens with respect to the disk surface, and to displace the objective lens in the direction of its optical axis based on this defocus signal. ing.

第1図は従来の光学的読み取り装置における焦
点検出方式を説明するための線図である。レーザ
光源1から放射された光(P偏光)はコリメータ
レンズ2によつて平行光とされ、偏光膜を有する
偏光プリズム3、1/4波長板4および対物レンズ
5を経て情報トラツク6aを含むデイスク6上に
集束される。この光束は凹凸のピツト形状を持つ
情報トラツク6aにより反射され、対物レンズ5
および1/4波長板4を経て偏光プリズム3に入射
する。偏光プリズム3に入射する反射光は、1/4
波長板4の作用によりS偏光となるから、この光
は偏光プリズム3で反射される。この偏光プリズ
ム3で反射された光束を集光レンズ7および円筒
レンズ8により集束させる。ここで円筒レンズ8
は一軸方向にのみ集束作用を持つから、集光レン
ズ7および円筒レンズ8による集束ビームの形状
は、デイスク6の位置が上下にずれると、情報ト
ラツクに正しく集束された状態(合焦位置)を境
として直交した方向に変形する。従来は、この形
状変化を例えば四分割した光検出器(図示せず)
により検出して焦点誤差信号を得、この信号によ
りフオーカツシング制御を行なつている。
FIG. 1 is a diagram for explaining a focus detection method in a conventional optical reading device. The light (P-polarized light) emitted from the laser light source 1 is made into parallel light by a collimator lens 2, and passes through a polarizing prism 3 having a polarizing film, a quarter-wave plate 4, and an objective lens 5 to a disk including an information track 6a. It is focused on 6. This light beam is reflected by the information track 6a having an uneven pit shape, and is reflected by the objective lens 5.
The light then passes through a quarter-wave plate 4 and enters the polarizing prism 3. The reflected light incident on the polarizing prism 3 is 1/4
Since the light becomes S-polarized by the action of the wave plate 4, this light is reflected by the polarizing prism 3. The light beam reflected by the polarizing prism 3 is focused by a condenser lens 7 and a cylindrical lens 8. Here, cylindrical lens 8
Since the beam has a focusing effect only in one axis direction, the shape of the focused beam formed by the focusing lens 7 and the cylindrical lens 8 will change when the position of the disk 6 shifts up or down, causing the beam to be correctly focused on the information track (focus position). It deforms in the direction orthogonal to the boundary. Conventionally, this shape change was divided into four parts, for example, into a photodetector (not shown).
A focus error signal is obtained by detection, and focusing control is performed using this signal.

しかし、上述した従来の焦点検出方式において
は、ビデオデイスク6からの反射光を偏光プリズ
ム3で反射した後に焦点を結ばせるため大きな光
路長を必要とするため、光学系が大形となる欠点
がある。また焦点誤差信号を得る光検出器は、光
軸方向とこれと直交する平面内での方向との二軸
方向に正確に配置する必要があるため、その位置
調整が難しい欠点がある。更に、焦束ビームの形
状変化による誤差信号が得られる領域が狭いた
め、合焦状態から離れ過ぎると信号が得られない
欠点がある。
However, the above-mentioned conventional focus detection method requires a long optical path length to focus the reflected light from the video disk 6 after being reflected by the polarizing prism 3, so it has the disadvantage that the optical system becomes large. be. Furthermore, since the photodetector that obtains the focus error signal needs to be accurately placed in two axes: the optical axis direction and the plane orthogonal to the optical axis direction, it is difficult to adjust its position. Furthermore, since the area in which an error signal can be obtained due to changes in the shape of the focused beam is narrow, there is a drawback that no signal can be obtained if the beam is too far away from the focused state.

一方、本願人は光学系を小形に構成できると共
に、フオーカツシングエラー信号を得る光検出器
の配置が容易で、しかも常に高精度で正確に焦点
状態を検出できる焦点検出方法および装置を既に
提案している。第2図は本願人が先に提案した焦
点検出装置を用いる光学的情報読取装置の一例の
要部の構成を示す線図であり、レーザ光源11か
ら放射された光(P偏光)をコリメータレンズ1
2によつて平行光とし、偏光膜を有する偏光プリ
ズム13、1/4波長板14および対物レンズ15
を径て情報トラツクを有するデイスク16上に収
束させている。この光束は凹凸のピツト形状を持
つ情報トラツク16aにより反射され、対物レン
ズ15および1/4波長板14を径て偏光プリズム
13に入射する。偏向プリズム13に入射する反
射光束は、1/4波長板14の作用によりS偏光と
なるから、この光は偏光プリズム13で反射され
る。この偏光プリズム13で反射される平行光束
を検出プリズム17に入射させ、その反射面18
により反射される光束を光検出器19で受光す
る。反射面18は、合焦状態での入射光線(平行
光束)に対して臨界角またはそれより僅かに小さ
くなるように設定する。このようにすれば、合焦
状態では偏光プリズム13で反射された全光線は
反射面18で全反射され(実際には反射面の状態
が完全ではないので図示n方向に幾分の光が透過
する)、デイスク16が合焦状態からa方向にず
れると偏光プリズム13で反射された光束は反射
面18に対して最外側の光線ai1〜ai2で示すよう
な傾き成分を持つ光線束となる。またデイスク1
6が合焦状態からb方向にずれると、反射面18
への入射光束は最外側光線bi1〜bi2で示すような
傾き成分を持つ光束となる。すなわち、デイスク
16が合焦状態からずれると、反射面18への入
射光線は光軸上の中心光線(一点鎖線)を除いて
臨界角の前後で連続的に変化する。したがつて、
デイスク16がaおよびb方向に変位して合焦状
態からずれると、反射面18での反射強度が臨界
角近傍では僅かな入射角の変化で急激に変化する
から、反射面18からの反射光束の中心光線(出
射光軸)を含む紙面、すなわち反射面18に対す
る入射面に対し垂直な面と境として明暗の状態が
それぞれ逆になる。これに対し、合焦状態では、
一様に全反射されるから、このような明暗は現わ
れない。光検出器19は、このような反射面18
からの反射光の光量分布を検出するもので、第2
図中に平面図をも示すように、上記入射面に対し
垂直な境界面を境に二分割した2つの受光領域1
9A,19Bをもつて構成する。
On the other hand, the applicant has already proposed a focus detection method and device that allows for a compact optical system, easy arrangement of a photodetector for obtaining a focusing error signal, and always detects the focus state with high precision. are doing. FIG. 2 is a diagram showing the configuration of essential parts of an example of an optical information reading device using a focus detection device proposed earlier by the applicant. 1
2 to make parallel light, a polarizing prism 13 having a polarizing film, a quarter wavelength plate 14 and an objective lens 15.
The information is converged on a disk 16 having an information track. This light beam is reflected by the information track 16a having an uneven pit shape, passes through the objective lens 15 and the quarter-wave plate 14, and enters the polarizing prism 13. Since the reflected light beam incident on the polarizing prism 13 becomes S-polarized light due to the action of the quarter-wave plate 14, this light is reflected by the polarizing prism 13. The parallel light beam reflected by this polarizing prism 13 is made incident on the detection prism 17, and its reflecting surface 18
A photodetector 19 receives the light beam reflected by the photodetector 19 . The reflective surface 18 is set at a critical angle or slightly smaller than a critical angle with respect to an incident light beam (parallel light beam) in a focused state. In this way, in the focused state, all the light reflected by the polarizing prism 13 is totally reflected by the reflecting surface 18 (actually, since the condition of the reflecting surface is not perfect, some light is transmitted in the n direction shown in the figure). ), when the disc 16 deviates from the focused state in the direction a, the light beam reflected by the polarizing prism 13 becomes a light beam having an inclination component as shown by the outermost rays a i1 to a i2 with respect to the reflecting surface 18. Become. Also disk 1
6 deviates from the focused state in the b direction, the reflective surface 18
The incident light beam has a tilt component as shown by the outermost rays b i1 to b i2 . That is, when the disk 16 is out of focus, the light beams incident on the reflective surface 18 change continuously around the critical angle, except for the central ray (dotted chain line) on the optical axis. Therefore,
When the disk 16 is displaced in directions a and b and is out of focus, the intensity of reflection at the reflective surface 18 changes rapidly with a slight change in the angle of incidence near the critical angle, so that the light flux reflected from the reflective surface 18 The light and dark states are reversed at the plane of the paper containing the central ray (output optical axis), that is, the plane perpendicular to the plane of incidence on the reflective surface 18. On the other hand, in the focused state,
Since the light is totally reflected uniformly, such brightness and darkness do not appear. The photodetector 19 has such a reflective surface 18
This detects the distribution of the amount of light reflected from the second
As shown in the figure, there are two light-receiving areas 1 divided into two by a boundary plane perpendicular to the incident plane.
It consists of 9A and 19B.

第2図において、デイスク16がa方向に変位
したときは、反射面18に入射する光のうち中心
光線より図において下側の光束は、一番外側の入
射光線ai1を筆頭としてすべての入射光線の入射
角は臨界角より小さくなる。したがつて、この部
分では透過光が存在し、一番外側の透過光線at1
からn迄を含む光線束が透過する。この透過した
分だけ、一番外側の反射光線ar1から中心光線迄
を含む反射光線束の強度は弱められる。また反射
面18に入射する光のうち、中心光線より図にお
いて上側の光束は、一番外側の入射光線ai2を筆
頭としてすべての入射光線の入射角は臨界角より
も大きくなる。したがつて、この部分では透過光
が存在せず、入射した全ての光線が、一番外側の
反射光線ar2から中心光線迄を含む光束に含まれ
て反射する。したがつて、この場合には、光検出
器19上での光量分布は、受光領域19Aが暗く
なり、受光領域19Bは明るいまま変化しない。
In FIG. 2, when the disk 16 is displaced in the direction a, among the light incident on the reflective surface 18, the light beam below the center ray in the figure is composed of all the incident light beams starting from the outermost incident ray a i1 . The angle of incidence of the ray will be less than the critical angle. Therefore, there is transmitted light in this part, and the outermost transmitted light ray a t1
A bundle of rays including from n to n is transmitted. The intensity of the reflected ray bundle including the outermost reflected ray a r1 to the center ray is weakened by the amount of light transmitted. Furthermore, among the light beams incident on the reflective surface 18, the angle of incidence of all the light beams above the central light beam in the figure, starting with the outermost incident light beam a i2 , is larger than the critical angle. Therefore, there is no transmitted light in this part, and all the incident light rays are reflected as being included in the light flux including from the outermost reflected light ray a r2 to the center ray. Therefore, in this case, the light amount distribution on the photodetector 19 is such that the light receiving area 19A becomes dark and the light receiving area 19B remains bright.

これに対し、デイスク16がb方向に変位した
ときは、反射面18への入射光線の傾きの関係が
上述したa方向の場合と逆になり、したがつて光
検出器19の領域19A,19Bの明暗の関係が
逆になる。この場合の反射面18における反射光
および透過光をそれぞれ符号br1,br2およびbt2
示す。なお、合焦状態では光検出器19の受光領
域19A,19Bへの入射光量はそれぞれ等しく
なる。したがつて、各受光領域19A,19Bの
出力の差を検出することにより、その量および極
性からずれの量および方向を表わすフオーカツシ
ングエラー信号を得ることができ、この信号に基
いて対物レンズ15を光軸方向に移動制御するフ
オーカツシング制御を行うことができると共に、
受光領域19A,19Bの出力の和からデイスク
16に記録された情報信号を検出することができ
る。しかも合焦状態では反射面18での透過成分
が殆んどないから、光量の損失が極めて少ないと
共に、合焦から外れた場合には、中心光線を境に
いずれか一方の側の光束が全反射され、他方の側
の光束の反射強度が極端に減少するから受光領域
19A,19Bにおける光量差が著しくなる。し
たがつて、第1図に示した場合に比べて十分正確
に焦点検出を行なうことができる。
On the other hand, when the disk 16 is displaced in the b direction, the relationship of the inclination of the incident light beam to the reflective surface 18 is opposite to that in the a direction described above, and therefore The relationship between light and dark is reversed. The reflected light and transmitted light on the reflecting surface 18 in this case are indicated by symbols b r1 , b r2 and b t2 , respectively. Note that in the focused state, the amounts of light incident on the light receiving areas 19A and 19B of the photodetector 19 are equal. Therefore, by detecting the difference between the outputs of the light receiving areas 19A and 19B, a focusing error signal representing the amount and direction of deviation can be obtained from the amount and polarity, and based on this signal, the objective lens It is possible to perform focusing control to control the movement of 15 in the optical axis direction, and
The information signal recorded on the disk 16 can be detected from the sum of the outputs of the light receiving areas 19A and 19B. Moreover, in the focused state, there is almost no transmitted component on the reflective surface 18, so the loss of light quantity is extremely small, and when the focus is out of focus, the light beam on either side of the center ray is completely absorbed. Since the reflected light beam is reflected and the reflected intensity of the light beam on the other side is extremely reduced, the difference in light amount between the light receiving areas 19A and 19B becomes significant. Therefore, focus detection can be performed more accurately than in the case shown in FIG.

第2図に示した例では反射面18での反射光を
二分割した受光領域19A,19Bを有する光検
出器19で受光するようにしたが、反射面18で
屈折される透過光を2個の光検出器で受光した
り、反射光と透過光を2個の光検出器で受光する
ことによつても焦点誤差信号を得ることができ
る。
In the example shown in FIG. 2, the light reflected by the reflective surface 18 is received by the photodetector 19 having two divided light receiving areas 19A and 19B. The focus error signal can also be obtained by receiving the light with one photodetector, or by receiving the reflected light and the transmitted light with two photodetectors.

また、本願人は第3図に示すように、レーザ光
源11から偏光プリズム13に偏光ビームを入射
させ、このS偏光ビームを偏光プリズム13で反
射させて1/4波長板14および対物レンズ15を
経てデイスク16上に集束させ、その反射光を対
物レンズ15および1/4波長板14を経てP偏光
にして偏光プリズム13に入射させて該偏光プリ
ズム13を透過させ、この透過光(デイスク16
からの反射光束)を検出プリズム17を経て反射
光束の中心光線を中心とし、検出プリズム17の
反射面18における入射面と平行な方向およびこ
れと直交する方向に4分割した受光領域19A〜
19Dを有する光検出器19で受光するようにし
た光学的情報読取装置も提案している。この装置
によれば光検出器19の受光領域19A〜19D
の出力の和から情報信号を、受光領域19Aおよ
び19Bの出力の和と受光領域19Cおよび19
Dの出力の和との差から焦点誤差信号を、また受
光領域19Aおよび19Dの出力の和と受光領域
19Bおよび19Cの出力の和との差から情報ト
ラツク16aに対するビームスポツトの位置ずれ
を表わすトラツキング誤差信号を同時に検出する
ことができる。
Further, as shown in FIG. 3, the applicant makes a polarized beam enter a polarizing prism 13 from a laser light source 11, and reflects this S-polarized beam by the polarizing prism 13 to form a quarter wavelength plate 14 and an objective lens 15. The reflected light passes through the objective lens 15 and the 1/4 wavelength plate 14, becomes P-polarized light, enters the polarizing prism 13, and is transmitted through the polarizing prism 13.
The light receiving area 19A is divided into four parts in a direction parallel to the plane of incidence on the reflection surface 18 of the detection prism 17 and in a direction perpendicular to the incident plane on the reflection surface 18 of the detection prism 17.
An optical information reading device in which light is received by a photodetector 19 having 19D has also been proposed. According to this device, the light receiving areas 19A to 19D of the photodetector 19
An information signal is generated from the sum of the outputs of the light receiving areas 19A and 19B and the sum of the outputs of the light receiving areas 19C and 19B.
Tracking that expresses a focus error signal from the difference between the sum of the outputs of the light receiving areas 19A and 19D and the positional deviation of the beam spot with respect to the information track 16a from the difference between the sum of the outputs of the light receiving areas 19A and 19D and the sum of the outputs of the light receiving areas 19B and 19C. Error signals can be detected simultaneously.

第2図および第3図においては検出プリズム1
7の反射面18にS偏光およびP偏光をそれぞれ
入射させるようにしたが、検出プリズム17での
S偏光およびP偏光におけるそれぞれの反射強度
RSおよびRPは、第4図に示すように臨界角付近
での反射強度の変化はP偏光の方がS偏光よりも
急峻となる。したがつて、第3図に示したように
検出プリズム17にP偏光を入射させるようにし
た方が、焦点誤差を高感度で検出することができ
る。しかし、第2図および第3図から明らかなよ
うに、検出プリズム17にS偏光を入射させる場
合と、P偏光を入射させる場合とでは、レーザ光
源11、検出プリズム17および光検出器19の
配置位置が異なるため、装置構成上必ずしも第3
図に示すように配置できない場合がある。なお、
第4図に示す反射強度は検出プリズム17の屈折
率が1.50のときのものである。
In Figs. 2 and 3, the detection prism 1
Although the S-polarized light and the P-polarized light are incident on the reflective surface 18 of the detector prism 17, the respective reflection intensities of the S-polarized light and the P-polarized light at the detection prism 17 are
Regarding R S and R P , as shown in FIG. 4, the change in reflection intensity near the critical angle is steeper for P-polarized light than for S-polarized light. Therefore, if the P-polarized light is made incident on the detection prism 17 as shown in FIG. 3, the focus error can be detected with higher sensitivity. However, as is clear from FIGS. 2 and 3, the arrangement of the laser light source 11, the detection prism 17, and the photodetector 19 is different when the S-polarized light is incident on the detection prism 17 and when the P-polarized light is incident on the detection prism 17. Due to the different locations, the third
It may not be possible to arrange it as shown in the figure. In addition,
The reflection intensity shown in FIG. 4 is when the refractive index of the detection prism 17 is 1.50.

更に、本願人は上述したようなほゞ臨界角に設
定した検出プリズムを用いる焦点検出装置におい
て、検出プリズムとして第5図に示すように長尺
の検出プリズム17′を用い、偏光プリズム13
で反射または透過したデイスク16からの反射光
束を検出プリズム17′の互いに平行に対向する
反射面18′の間で複数回全反射させて光検出器
19に入射させるうにしたものも提案した。この
ように複数回全反射させると、1回の全反射での
反射割合を1/TとするときN回の全反射では1/TN となり感度は指数関数的に高くなる。したがつ
て、検出プリズム17′への入射光(デイスク1
6からの反射光束)がS偏光であつても高感度の
焦点検出ができると共に、入射光がP偏光のとき
は検出感度を更に高めることができる。しかし、
このような方法では検出プリズム17′の寸法が
大きくなるため、コンパクトな光学系を構成する
ことができなくなると共に両反射面18′の平行
度が必要となるため検出プリズム17′の作成が
難しくなり、高価となる不具合がある。
Furthermore, in a focus detection device using a detection prism set to a substantially critical angle as described above, the applicant uses a long detection prism 17' as the detection prism as shown in FIG.
It has also been proposed that the reflected light beam from the disk 16 that has been reflected or transmitted by the detector is totally reflected multiple times between parallel opposing reflecting surfaces 18' of the detection prism 17', and is incident on the photodetector 19. When total reflection is performed multiple times in this way, when the reflection ratio for one total reflection is 1/T, for N total reflections it becomes 1/T N , and the sensitivity increases exponentially. Therefore, the incident light on the detection prism 17' (disk 1
Highly sensitive focus detection is possible even if the reflected light beam from 6 is S-polarized light, and detection sensitivity can be further increased when the incident light is P-polarized light. but,
In such a method, the dimensions of the detection prism 17' become large, making it impossible to construct a compact optical system, and the parallelism of both reflecting surfaces 18' is required, making it difficult to create the detection prism 17'. , there are defects that make it expensive.

本発明の目的は上述した臨界角に全反射を利用
した焦点検出にいて、多数回反射を行なわずにS
偏光における検出感度を向上することができる焦
点検出方法を提供しようとするものである。
The purpose of the present invention is to detect focus using total reflection at the critical angle mentioned above, and to detect the focus without performing multiple reflections.
The present invention aims to provide a focus detection method that can improve detection sensitivity in polarized light.

本発明の焦点検出方法は、光源から射出された
光を対物レンズにより被照対物体上に集束させ、
その反射光の少なくとも一部の光束を反射防止薄
膜を被覆したプリズムの反射面に対してその一つ
の光線が臨界角若しくはこれよりもやや小さめと
なるようにすると共に前記反射面に対してS偏光
で入射させ、前記反射面からの反射光の光量変化
を検出することにより前記対物レンズの前記被照
射物体に対する焦点誤差信号を得ることを特徴と
するものである。
The focus detection method of the present invention focuses light emitted from a light source onto an object using an objective lens,
At least a part of the reflected light beam is directed to a reflective surface of a prism coated with an anti-reflection thin film so that one of the light beams is at a critical angle or slightly smaller than this, and is S-polarized with respect to the reflective surface. A focus error signal of the objective lens with respect to the object to be irradiated is obtained by detecting a change in the amount of reflected light from the reflecting surface.

以下図面を参照して本発明を詳細に説明する。
第6図は本発明による焦点検出方法を実施する装
置の一例の構成を示すものであり、検出プリズム
以外の構成は第2図に示した装置と同様であるの
で、同一部分には第2図と同一の符号を付けて示
し、その説明は省略する。本発明においては、検
出プリズム17の反射面18に蒸着、スパツタリ
ング等により反射防止薄膜20を被着し、反射面
18に対してS偏光の入射光束(デイスク16か
らの反射光束)を、その一つの光線が反射防止薄
膜20と空気との境界面における入射角が臨界角
若しくはこれよりもやゝ小さめとなるように検出
プリズム17に入射させて、境界面からの反射光
の光量変化を検出することにより対物レンズ15
のデイスク16に対する焦点検出を行なう。反射
防止薄膜20は、本例では検出プリズム17より
も低屈折率の媒質、例えばMgF2で形成する。す
なわち、検出プリズム17のガラスの屈折率をn1
とし、反射防止薄膜20の屈折率をn2とすると
き、n2<n1とする。また、反射防止薄膜20の膜
厚dは、入射光の波長をλ、臨界角付近での入射
角をθとするとき、d=λ/4n2cosθとする。すなわ ち、臨界角付近の入射光に対し、反射防止薄膜2
0の上面および下面からの反射光の位相差が1/2 波長となるようにする。
The present invention will be described in detail below with reference to the drawings.
FIG. 6 shows the configuration of an example of an apparatus for carrying out the focus detection method according to the present invention.The configuration other than the detection prism is the same as that of the apparatus shown in FIG. They are shown with the same reference numerals as , and their explanation will be omitted. In the present invention, an antireflection thin film 20 is deposited on the reflective surface 18 of the detection prism 17 by vapor deposition, sputtering, etc., and one of the S-polarized incident light beams (reflected light beam from the disk 16) is directed to the reflective surface 18. The two light beams are incident on the detection prism 17 such that the angle of incidence at the interface between the antireflection thin film 20 and the air is at or slightly smaller than the critical angle, and changes in the amount of light reflected from the interface are detected. Possibly the objective lens 15
Focus detection for the disk 16 is performed. In this example, the antireflection thin film 20 is formed of a medium having a lower refractive index than the detection prism 17, for example, MgF2 . That is, the refractive index of the glass of the detection prism 17 is n 1
When the refractive index of the antireflection thin film 20 is n 2 , n 2 <n 1 is satisfied. Further, the film thickness d of the antireflection thin film 20 is set to d=λ/4n 2 cosθ, where λ is the wavelength of the incident light and θ is the incident angle near the critical angle. In other words, for incident light near the critical angle, the antireflection thin film 2
The phase difference between the reflected light from the top and bottom surfaces of 0 is set to 1/2 wavelength.

ここで、検出プリズム17として屈折率n1
1.51のものを、反射防止薄膜20として屈折率n2
=1.4のものを用い、この反射防止薄膜20を臨
界角付近の入射角θ=41.47゜の入射光に対しλ/
4となる厚さに被着したときの反射率変化は、第
7図に実線で示すように反射防止薄膜20を被着
しないときのS偏光の反射率変化RSとP偏光の
反射率変化RPとの中間となり、S偏光における
検出感度を向上させることができる。なお、この
反射率変化はn1とn2との差を大きくすればする程
更に急峻にすることができる。
Here, as the detection prism 17, the refractive index n 1 =
1.51 as the antireflection thin film 20 with a refractive index n 2
= 1.4, and this anti-reflection thin film 20 has a λ/
The change in reflectance when the anti-reflection thin film 20 is coated to a thickness of 4 is the change in reflectance R S for S-polarized light and the change in reflectance R S for P-polarized light when the anti-reflection thin film 20 is not coated, as shown by the solid line in FIG. It is intermediate between R P and can improve detection sensitivity in S-polarized light. Note that this reflectance change can be made more steep as the difference between n 1 and n 2 is increased.

本発明においては、上述したように検出プリズ
ム17に反射防止薄膜20を被着するが、この薄
膜は必ずしも単層とする必要はなく、多層膜とす
ることもできる。第8図は検出プリズム17(屈
折率n1=1.51)の反射面18上にMgF2より成る
低屈折率(n2=1.4)の薄膜層20―1、TiO2より
成る高屈折率(n3=2.5)の薄膜層20―2および
MgF2より成る低屈折率(n4=1.4)の薄膜層20―
3を順次に積層すると共に、各薄膜層の厚さd1
d2,d3をそれぞれd1=λ/4n2cosθ2、d2=λ/4n3cos
θ3、 d3=λ/4n4cosθ4(たゞしθは臨界角付近の入射角) としたものである。この場合の反射率変化は第9
図に曲線Aで示すようになり、P偏光を第5図に
示すようにして3回反射させた場合以上の反射率
変化を得ることができる。なお、多層膜の構成は
その他種々考えられるが、好適には検出プリズム
17の屈折率に対し、高屈折率および低屈折率の
薄膜層を交互に積層すると共に、最上層の空気に
面する薄膜層が低屈折率の薄膜層となるように構
成する。第9図の曲線Bは屈折率1.51の検出プリ
ズム17の反射面18上に屈折率2.5(TiO2)の
高屈折率の薄膜層および屈折率1.4(MgF2)の低
屈折率の薄膜層を順次に積層した場合の反射率変
化を示し、また曲線Cは上記と同様の屈折率の薄
膜層を高―低―高―低の順で積層した場合の反射
率変化をそれぞれ示すものである。
In the present invention, the antireflection thin film 20 is coated on the detection prism 17 as described above, but this thin film does not necessarily have to be a single layer, but can also be a multilayer film. FIG . 8 shows a thin film layer 20-1 of low refractive index (n 2 = 1.4) made of MgF 2 and a high refractive index (n 3 = 2.5) thin film layer 20-2 and
A thin film layer 20 of low refractive index (n 4 = 1.4) made of MgF 2
3 are sequentially laminated, and the thickness d 1 of each thin film layer,
d 2 and d 3 are respectively d 1 = λ/4n 2 cosθ 2 and d 2 = λ/4n 3 cos
θ 3 , d 3 =λ/4n 4 cosθ 4 (where θ is the incident angle near the critical angle). In this case, the change in reflectance is the 9th
As shown by curve A in the figure, it is possible to obtain a change in reflectance greater than that obtained when P-polarized light is reflected three times as shown in FIG. Although various other configurations are possible for the multilayer film, it is preferable to alternately laminate thin film layers with a high refractive index and a low refractive index relative to the refractive index of the detection prism 17, with the top layer facing the air. The layer is configured to be a thin film layer with a low refractive index. Curve B in FIG. 9 shows a thin film layer with a high refractive index of 2.5 (TiO 2 ) and a thin film layer with a low refractive index of 1.4 (MgF 2 ) on the reflective surface 18 of the detection prism 17 with a refractive index of 1.51. The curve C shows the change in reflectance when the layers are stacked in sequence, and the curve C shows the change in reflectance when thin film layers having the same refractive index as above are stacked in the order of high-low-high-low.

本発明は上述した実施例にのみ限定されるもの
ではなく、幾多の変形、変更が可能である。例え
ばプリズムおよび薄膜以外の光学系の構成は種々
の変形例が考えられる。また、被照射物体はデイ
スクに限られるものではなく、光束を合焦すべき
種々の物体に適用することもできる。
The present invention is not limited only to the embodiments described above, and numerous modifications and changes are possible. For example, various modifications can be made to the configuration of the optical system other than the prism and the thin film. Further, the object to be irradiated is not limited to a disk, and the present invention can be applied to various objects on which the light beam should be focused.

上述した本発明によれば、第2図に示したよう
に単にプリズムのみによつて臨界角による全反射
を利用する場合に比べ、S偏光の入射角の変動に
伴なう反射率の変化は急峻となり、きわめて高い
感度で焦点誤差信号を得ることができる。また、
複数回の全反射を行なう必要がないからプリズム
を小形軽量とすることができると共に多数回反射
プリズムのような反射面の平行性も要求されな
い。また特に多層膜構造とした場合には反射防止
効果により反射率の変化はさらに急峻となり、一
層高い検出感度を得ることができる。更に、反射
防止薄膜の媒質としてTiO2やSiO2等のハードな
ものを使用すれば、反射面を有効に保護できる効
果もある。
According to the present invention, as shown in FIG. 2, the change in reflectance due to the change in the incident angle of S-polarized light is less This makes it possible to obtain a focus error signal with extremely high sensitivity. Also,
Since there is no need to perform multiple total reflections, the prism can be made small and lightweight, and parallelism of the reflecting surfaces is not required as in a multi-reflection prism. In addition, especially in the case of a multilayer film structure, the change in reflectance becomes even steeper due to the antireflection effect, and even higher detection sensitivity can be obtained. Furthermore, if a hard material such as TiO 2 or SiO 2 is used as the medium for the antireflection thin film, the reflective surface can be effectively protected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の焦点検出方法の一例を実施する
装置の構成を示す線図、第2図は本願人が先に提
案した焦点検出方法を実施する装置の一例の構成
を示す線図、第3図は同じく他の例の構成を示す
斜視図、第4図はS偏光およびP偏光の全反射プ
リズムでの反射率の変化を示すグラフ、第5図は
本願人が先に提案した焦点検出方法を実施する装
置の更に他の例の要部の変形例を示す線図、第6
図は本発明による焦点検出方法を実施する装置の
一例の構成を示す線図、第7図は本発明による焦
点検出方法と第2図に示す焦点検出方法とにおけ
る反射率の変化の様子を示すグラフ、第8図は反
射防止薄膜の多層薄膜構造を示す線図、第9図は
多層薄膜構造の場合の反射率の変化を示すグラフ
である。 11……レーザ光源、13……偏光プリズム、
14……1/4波長板、15……対物レンズ、16
……デイスク、17……プリズム、19……光検
出器、20,21,―1〜20―3……薄膜。
FIG. 1 is a diagram showing the configuration of an apparatus for implementing an example of a conventional focus detection method, and FIG. 2 is a diagram showing the configuration of an example of an apparatus for implementing the focus detection method previously proposed by the applicant. Figure 3 is a perspective view showing the configuration of another example, Figure 4 is a graph showing changes in reflectance in a total reflection prism for S-polarized light and P-polarized light, and Figure 5 is a focus detection method previously proposed by the applicant. Diagram 6 showing a modification of the main part of still another example of the apparatus for carrying out the method
The figure is a diagram showing the configuration of an example of an apparatus for carrying out the focus detection method according to the present invention, and FIG. 7 shows how reflectance changes in the focus detection method according to the present invention and the focus detection method shown in FIG. FIG. 8 is a graph showing the multilayer thin film structure of the antireflection thin film, and FIG. 9 is a graph showing the change in reflectance in the case of the multilayer thin film structure. 11... Laser light source, 13... Polarizing prism,
14...1/4 wavelength plate, 15...Objective lens, 16
... Disc, 17 ... Prism, 19 ... Photodetector, 20, 21, -1 to 20-3 ... Thin film.

Claims (1)

【特許請求の範囲】 1 光源から射出された光を対物レンズにより被
照射体物上に集束させ、その反射光の少なくとも
一部の光束を反射防止薄膜を被覆したプリズムの
反射面に対してその一つの光線が臨界角若しくは
これよりもやや小さめとなるようにすると共に前
記反射面に対してS偏光で入射させ、前記反射面
からの反射光の光量変化を検出することにより前
記対物レンズの前記被照射物体に対する焦点誤差
信号を得ることを特徴とする焦点検出方法。 2 前記反射防止薄膜の屈折率を前記プリズムよ
りも低屈折率にすると共に、その膜厚を臨界角付
近の入射光に対し、該薄膜上面および下面からの
反射光の位相差が1/2波長となるようにしたこと
を特徴とする特許請求の範囲第1項記載の焦点検
出方法。 3 前記反射防止薄膜を、前記プリズムよりも低
屈折率および高屈折率の薄膜層を空気層に面する
薄膜層が低屈折率の薄膜層となるように交互に積
層した多層膜にすると共に、各薄膜層の厚さを臨
界角付近の入射光に対しその上面および下面から
の反射光の位相差が1/2波長となるようにしたこ
とを特徴とする特許請求の範囲第1項記載の焦点
検出方法。
[Claims] 1. Light emitted from a light source is focused onto an object to be irradiated by an objective lens, and at least a part of the reflected light is directed toward a reflective surface of a prism coated with an antireflection thin film. One light beam is made to have a critical angle or slightly smaller than this, and is incident on the reflective surface as S-polarized light, and a change in the amount of light reflected from the reflective surface is detected. A focus detection method characterized by obtaining a focus error signal for an irradiated object. 2 The refractive index of the anti-reflection thin film is made lower than that of the prism, and the film thickness is set such that the phase difference between the reflected light from the upper and lower surfaces of the thin film is 1/2 wavelength for incident light near the critical angle. A focus detection method according to claim 1, characterized in that: 3. The antireflection thin film is a multilayer film in which thin film layers having a lower refractive index and a higher refractive index than the prism are alternately laminated such that the thin film layer facing the air layer is the thin film layer having a low refractive index, and Claim 1, characterized in that the thickness of each thin film layer is set such that the phase difference between the reflected light from the upper and lower surfaces of the thin film layer is 1/2 wavelength with respect to the incident light near the critical angle. Focus detection method.
JP6528881A 1981-01-22 1981-05-01 Detection of focus Granted JPS57181504A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6528881A JPS57181504A (en) 1981-05-01 1981-05-01 Detection of focus
US06/339,718 US4505584A (en) 1981-01-22 1982-01-15 Method and apparatus for detecting focussing error signal of objective lens
NLAANVRAGE8200220,A NL184245C (en) 1981-01-22 1982-01-21 DEVICE FOR OBTAINING A FOCUSING ERROR SIGNAL FROM AN OBJECTIVE FLANGE RELATING TO AN OBJECT FOR WHICH A LIGHT BEAM SHOULD BE FOCUSED BY THE OBJECTION FLANGE.
FR8200918A FR2498340A1 (en) 1981-01-22 1982-01-21 METHOD AND APPARATUS FOR DETECTING AN OBJECTIVE FOCUSING ERROR SIGNAL
KR8200249A KR850001924B1 (en) 1981-01-22 1982-01-21 The method and apparatus for detecting a focussing error signal of objective lens
DE3201964A DE3201964C2 (en) 1981-01-22 1982-01-22 Device for focusing a lens
GB08201844A GB2110499B (en) 1981-01-22 1982-01-22 Method and apparatus for detecting focussing error signal of objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6528881A JPS57181504A (en) 1981-05-01 1981-05-01 Detection of focus

Publications (2)

Publication Number Publication Date
JPS57181504A JPS57181504A (en) 1982-11-09
JPH0150975B2 true JPH0150975B2 (en) 1989-11-01

Family

ID=13282592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6528881A Granted JPS57181504A (en) 1981-01-22 1981-05-01 Detection of focus

Country Status (1)

Country Link
JP (1) JPS57181504A (en)

Also Published As

Publication number Publication date
JPS57181504A (en) 1982-11-09

Similar Documents

Publication Publication Date Title
EP0520619A1 (en) Optical information recording medium
US4505584A (en) Method and apparatus for detecting focussing error signal of objective lens
US4797868A (en) Optical system employing a laser beam for focusing, tracking and transferring information signals with respect to a magneto-optical memory
JPS6339979B2 (en)
JPS6227456B2 (en)
EP0288230B1 (en) Focus detecting apparatus
JPH0372965B2 (en)
JPH0719394B2 (en) Semiconductor laser device
US5995473A (en) Optical pickup system capable of selectively reading a multiple number of optical disks
JPS6117103A (en) Polarizing beam splitter
JPH0150975B2 (en)
JPH07121923A (en) Optical-pickup head device
JPH0114561B2 (en)
JPS639305B2 (en)
JP2578203B2 (en) Light head
KR100200875B1 (en) Focusing servo method of dual layer optical disc
JPH0219537B2 (en)
JPS6297148A (en) Optical information processor
JPS6333209B2 (en)
JPH0146925B2 (en)
JPS641858B2 (en)
JPS5877039A (en) Reproducer of information signal
JPH08329513A (en) Optical pickup device
JPH02156430A (en) Focus detection
JPH04141846A (en) Optical head