JPH0150859B2 - - Google Patents

Info

Publication number
JPH0150859B2
JPH0150859B2 JP18531681A JP18531681A JPH0150859B2 JP H0150859 B2 JPH0150859 B2 JP H0150859B2 JP 18531681 A JP18531681 A JP 18531681A JP 18531681 A JP18531681 A JP 18531681A JP H0150859 B2 JPH0150859 B2 JP H0150859B2
Authority
JP
Japan
Prior art keywords
reagent
flow path
liquid
discharge
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18531681A
Other languages
Japanese (ja)
Other versions
JPS5887462A (en
Inventor
Tetsuaki Abe
Takehide Sato
Katsuaki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18531681A priority Critical patent/JPS5887462A/en
Publication of JPS5887462A publication Critical patent/JPS5887462A/en
Publication of JPH0150859B2 publication Critical patent/JPH0150859B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 本発明は液体試料分析装置に係り、特に複数の
反応容器内へ試料と試薬液とを入れて反応せし
め、反応液を測定する分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid sample analyzer, and more particularly to an analyzer that measures a reaction liquid by placing a sample and a reagent liquid into a plurality of reaction vessels and allowing them to react.

臨床検査等で用いられる自動化学分析装置は、
1台で複数種の分析項目を定量分析するのが一般
的である。通常は1つの分析項目に2種の試薬液
が用いられるから、12項目を分析するためには24
種の試薬液が必要とされる。ところが、従来の試
薬供給機構は、試薬種の数と同数ポンプ(シリン
ジ)機構を用いており、各試薬吐出ノズルと各試
薬液槽の間にそれぞれポンプ機構を配設してい
た。このため、多項目分析装置には多数のポンプ
機構が設置されることになり、構成部品が多くて
保守性が悪くなり、分析装置の大形化をまねいて
いた。また、従来の分析装置では試薬液がポンプ
機構内を経由して供給されていたので、試薬流路
系内の容量が非常に大となり、分析装置の始動に
あたつて多量の試薬液を無駄にしなければならな
いという問題があつた。
Automatic chemical analyzers used in clinical tests, etc.
It is common for a single device to quantitatively analyze multiple types of analysis items. Normally, two types of reagent solutions are used for one analysis item, so in order to analyze 12 items, 24
Seed reagent solution is required. However, the conventional reagent supply mechanism uses the same number of pump (syringe) mechanisms as the number of reagent types, and a pump mechanism is disposed between each reagent discharge nozzle and each reagent liquid tank. Therefore, a large number of pump mechanisms are installed in a multi-item analyzer, and the number of component parts is large, resulting in poor maintainability and an increase in the size of the analyzer. In addition, in conventional analyzers, reagent liquid was supplied via the pump mechanism, which resulted in a very large capacity in the reagent flow path system, and a large amount of reagent liquid was wasted when starting the analyzer. There was a problem that I had to do it.

このような問題を解決するために、多数の試薬
液を1台のポンプ機構と試薬流路選択切換弁とに
よつて選択的に供給すれば、試薬供給機構を簡略
化でき、小形化できることを発明者らは見い出し
た。ところが、単純にポンプ機構を共用したので
は、複数の試薬同士が相互汚染され、分析項目の
定量結果に著しい誤差をもたらす。
In order to solve this problem, we have discovered that the reagent supply mechanism can be simplified and downsized by selectively supplying a large number of reagent solutions using one pump mechanism and a reagent flow path selection switching valve. The inventors found out. However, if a pump mechanism is simply shared, a plurality of reagents will be contaminated with each other, resulting in significant errors in the quantitative results of analysis items.

本発明は上述した点に鑑みてなされたもので、
その目的は、複数種の試薬の供給のために試薬液
送液機構を共用しても、試薬相互間の汚染を防止
できる液体試料分析装置を提供することにある。
The present invention has been made in view of the above points, and
The purpose is to provide a liquid sample analyzer that can prevent contamination between reagents even when a reagent liquid delivery mechanism is shared for supplying multiple types of reagents.

本発明の特徴は、液体の吸入動作と排出動作を
行う送液器と、この試液器の吸入動作にともなつ
て試薬液が導入され得る複数の試薬退避流路と、
それぞれが試薬容器から試薬液を導入する試薬導
入路と反応容器へ試薬液を吐出する試薬液吐出管
とのいずれかを対応する試薬退避流路に選択的に
連通する複数の接続選択手段と、これらの複数の
試薬退避流路のそれぞれが分岐されており、複数
の試薬退避流路の各々の分岐路の一方が接続され
た吸入側多流路切換器と、上記複数の試薬退避流
路の各々の分岐路の他方が接続された吐出側多流
路切換器と、上記吸入側多流路切換器と上記吐出
側多流路切換器とを同じ送液器に接続する共通流
路とを備え、吸入側多流路切換器と吐出側多流路
切換器との内の一方が上記共通路を上記複数の試
薬退避流路のいずれかに連通しているときには、
他方が上記共通流路と上記複数の試薬退避流路と
の連通を遮断するように構成したことにある。
The present invention is characterized by: a liquid feeder that performs a suction operation and a discharge operation of a liquid; a plurality of reagent evacuation channels into which reagent liquid can be introduced in conjunction with the suction operation of the reagent liquid container;
a plurality of connection selection means, each of which selectively communicates either a reagent introduction channel for introducing a reagent solution from a reagent container or a reagent solution discharge tube for discharging a reagent solution into a reaction container with a corresponding reagent evacuation channel; Each of the plurality of reagent evacuation channels is branched, and the suction side multi-channel switcher is connected to one of the branched channels of each of the plurality of reagent evacuation channels, and the plurality of reagent evacuation channels are connected to A discharge side multi-flow path switch to which the other of each branch path is connected, and a common flow path that connects the suction side multi-flow path switch and the discharge side multi-flow path switch to the same liquid feeder. and when one of the suction side multi-channel switching device and the discharge side multi-channel switching device communicates the common channel with any of the plurality of reagent evacuation channels,
The other is configured to block communication between the common channel and the plurality of reagent evacuation channels.

本発明の望ましい実施例では、液吸入用専用器
および液吐出用専用器のそれぞれに複数流路切換
弁を有しており、吸入側の切換弁と吐出側の切換
弁とは同じポンプ機構に流路接続されている。ポ
ンプ機構内には蒸留水等の洗浄液しか導入されな
い。ポンプによる吸入動作と吐出動作により洗浄
液が吸入側切換弁を介して吸入され、吐出側切換
弁を介して吐出される。
In a preferred embodiment of the present invention, a device exclusively for liquid suction and a device exclusively for liquid discharge each have a plurality of flow path switching valves, and the switching valve on the suction side and the switching valve on the discharge side are provided in the same pump mechanism. Flow path connected. Only a cleaning liquid such as distilled water is introduced into the pump mechanism. Due to the suction and discharge operations of the pump, cleaning liquid is sucked in through the suction side switching valve and discharged through the discharge side switching valve.

以下図面を用いて本発明の一実施例を説明す
る。第1図の実施例は、1反応テーブルで12項目
の分析を行なう多検体処理自動分析装置を示す。
サンプリング機構17は水平移動および上下動す
る2本のサンプリングノズルを有し、各ノズルに
2項目分の試料をサンプルテーブル7上のサンプ
ルカツプから吸引し、反応テーブル2上の反応容
器3へ移動することにより1サイクル動作中に4
項目分の試料を反応テーブル2上に分配するよう
構成してある。
An embodiment of the present invention will be described below with reference to the drawings. The embodiment shown in FIG. 1 shows a multi-sample processing automatic analyzer that performs analysis of 12 items using one reaction table.
The sampling mechanism 17 has two sampling nozzles that move horizontally and vertically, and each nozzle sucks samples for two items from the sample cup on the sample table 7 and transfers them to the reaction container 3 on the reaction table 2. 4 during one cycle of operation.
It is configured so that samples for each item are distributed on the reaction table 2.

分析に使用するR1試薬容器18とR2試薬容器
19は各々12種ずつ保冷庫4,5に配列してあ
り、各試薬の試薬流路切換弁20,60を介し
て、R1試薬ノズル移動機構21、R2試薬ノズル
移動機構22および多連流路切換部32,62に
配管、接続してある。多連流路切換部32,62
の共通流路には液体の吸入動作と排出動作を行う
送液器としての定量シリンジ23,24が接続し
てあり、多連流路切換部32,62の切換動作に
合わせて吸引、吐出動作を行なう。R1試薬ノズ
ル移動機構21、R3試薬ノズル移動機構22は
反応容器3の列に対して前後に移動し、分析に必
要な試薬が反応容器3に添加されるように複数の
ノズル列の停止位置が制御される。従つて、順次
送られてくる試料は4項目単位で選択的に各々に
対応する分析試薬が添加され、次々と分析を行な
つて行くことになる。
Twelve types of R1 reagent containers 18 and R2 reagent containers 19 used for analysis are arranged in the cold storages 4 and 5, and each reagent is connected to the R1 reagent nozzle via the reagent flow path switching valves 20 and 60. It is connected to the moving mechanism 21, the R2 reagent nozzle moving mechanism 22, and the multiple flow path switching sections 32 and 62 through piping. Multiple flow path switching parts 32, 62
Metering syringes 23 and 24 as liquid feeders that perform suction and discharge operations of liquid are connected to the common flow path, and suction and discharge operations are performed in accordance with the switching operations of the multiple flow path switching units 32 and 62. Do this. The R1 reagent nozzle moving mechanism 21 and the R3 reagent nozzle moving mechanism 22 move back and forth with respect to the row of reaction vessels 3, and stop the plurality of nozzle rows so that the reagents necessary for analysis are added to the reaction vessels 3. Position is controlled. Therefore, analysis reagents corresponding to each of the four items are selectively added to the samples sent in sequence, and analysis is performed one after another.

反応テーブル2の回転にともなつて、それぞれ
の所定位置で試薬を添加された反応容器3は、撹
拌機構8、分光器9の光路、洗浄機構10に順次
位置づけられる。洗浄機構10によつて洗浄され
た空の反応容器3は、再び試料受入位置に移送さ
れ使用される。分光器9は反応テーブル2の中央
付近に配置された白色光源からの光を受光して多
数の波長に分光し、光検知器によつてその分析項
目に対応した特定の波長の光だけを取り出し、分
析項目濃度を演算する。
As the reaction table 2 rotates, the reaction containers 3 to which reagents have been added at respective predetermined positions are sequentially positioned in the stirring mechanism 8, the optical path of the spectrometer 9, and the cleaning mechanism 10. The empty reaction container 3 that has been cleaned by the cleaning mechanism 10 is transferred to the sample receiving position and used again. The spectrometer 9 receives light from a white light source placed near the center of the reaction table 2, splits it into multiple wavelengths, and uses a photodetector to extract only light of a specific wavelength corresponding to the analysis item. , calculate the analysis item concentration.

第2図は第1図の実施例における4項目分の試
薬分注系をとり出した動作説明図である。多連流
路切換部32は吸入側切換弁29および吐出側切
換弁30を有し、これらの切換弁29,30はモ
ータ31によつて連動される。試薬吐出口を有す
るノズル11a〜11dは、反応テーブル2上の
試薬液受入位置に停止される反応容器3a〜3d
と対応するように後述するベース42に取付けら
れる。試薬退避管26a〜26dは、反応容器へ
試薬液を吐出する試薬液吐出管としてのノズル1
1a〜11dの各々と多連流路切換部32とを接
続する接続流路である。試薬退避管26a〜26
dは、それぞれが吸入側切換弁29に取付けられ
る吸入側流路27a〜27dと、それぞれが吐出
側切換弁30に取付けられる吐出側流路28a〜
28dとに分岐される。このような分岐管は後述
するように特異な働きをする。
FIG. 2 is an explanatory diagram of the operation of the reagent dispensing system for four items in the embodiment of FIG. 1. The multiple flow path switching section 32 has a suction side switching valve 29 and a discharge side switching valve 30, and these switching valves 29 and 30 are interlocked by a motor 31. Nozzles 11a to 11d having reagent discharge ports are connected to reaction vessels 3a to 3d that are stopped at reagent liquid receiving positions on the reaction table 2.
It is attached to a base 42, which will be described later, in a corresponding manner. The reagent evacuation tubes 26a to 26d are the nozzles 1 as reagent liquid discharge tubes that discharge the reagent liquid into the reaction container.
This is a connection flow path that connects each of 1a to 11d and the multiple flow path switching section 32. Reagent evacuation tubes 26a to 26
d indicates suction side flow passages 27a to 27d, each of which is attached to the suction side switching valve 29, and discharge side flow passages 28a to 28a, each of which is attached to the discharge side switching valve 30.
28d. Such a branch pipe has a unique function as described below.

試薬退避管26a〜26dの途中には、個別の
接続選択手段としての流路切換弁20a〜20d
が取り付けられ、これらの切換弁20a〜20d
に試薬導入路としての試薬チユーブ25a〜25
dが接続されている。試薬チユーブ25a〜25
dは、4種類の分析項目に対応する試薬液が収容
された試薬びん18a〜18d内に挿入されてい
る。
In the middle of the reagent evacuation tubes 26a to 26d, flow path switching valves 20a to 20d are provided as individual connection selection means.
are installed, and these switching valves 20a to 20d
Reagent tubes 25a to 25 as reagent introduction channels
d is connected. Reagent tubes 25a-25
d is inserted into reagent bottles 18a to 18d containing reagent solutions corresponding to four types of analysis items.

吸入側切換弁29のV1位置〜V4位置はそれぞ
れ流路に接続されるが、V5位置〜V8位置は閉塞
される。V9位置は排液路35に通ずる。吐出側
切換弁30のV1位置〜V4位置は閉塞され、V5位
置〜V8位置はそれぞれ流路に接続される。V9位
置は閉塞される。吸入側切換弁29と吐出側切換
弁30は流路的には独立しているが、一体構造に
構成されている。各切換弁29,30内に液密的
に回転可能に配設された吸入側すべり弁35と吐
出側すべり弁36は、同軸に取付けられ、モータ
31で回転される。
Positions V1 to V4 of the suction side switching valve 29 are connected to the flow paths, respectively, but positions V5 to V8 are closed. The V9 position communicates with the drain passage 35. Positions V1 to V4 of the discharge side switching valve 30 are closed, and positions V5 to V8 are connected to the flow paths, respectively. The V9 position is occluded. Although the suction side switching valve 29 and the discharge side switching valve 30 are independent in terms of flow paths, they are constructed as an integral structure. A suction side slide valve 35 and a discharge side slide valve 36, which are rotatably disposed in each of the switching valves 29 and 30 in a liquid-tight manner, are coaxially attached and rotated by a motor 31.

吸入側切換弁29に接続された共通流路40と
吐出側切換弁30に接続された共通流路41と
は、統合された単一の共通流路となり洗浄水を吸
排する試薬容量定量シリンジ23に連通される。
シリンジ23は、蒸留水流路33に設けられた電
磁弁34および送液ポンプ38を介して、洗浄液
となる蒸留水を収容した蒸留水タンク37に接続
される。シリンジ23内を往復動し得るピストン
13は、パルスモータ15の動作にともなつて運
動するラツク・ピニオン機構14により移動す
る。パルスモータ15、切換弁29,30、モー
タ31、電磁弁34、切換弁20a〜20d等
は、マイクロコンピユータを備えた制御装置によ
つて適正なタイミングで動作制御される。第2図
には、1つのシリンジ23が4種の試薬液を供給
する例が示してあるが、この実施例装置は第1図
や第3図に示すように、1台の分注用シリンジが
12種の試薬液の分注に使用される。
The common flow path 40 connected to the suction side switching valve 29 and the common flow path 41 connected to the discharge side switching valve 30 are integrated into a single common flow path for the reagent volume metering syringe 23 that sucks and discharges washing water. will be communicated to.
The syringe 23 is connected to a distilled water tank 37 containing distilled water serving as a cleaning liquid via a solenoid valve 34 and a liquid feed pump 38 provided in a distilled water flow path 33. A piston 13 that can reciprocate within the syringe 23 is moved by a rack and pinion mechanism 14 that moves in conjunction with the operation of a pulse motor 15. The operation of the pulse motor 15, switching valves 29, 30, motor 31, solenoid valve 34, switching valves 20a to 20d, etc. is controlled at appropriate timing by a control device equipped with a microcomputer. Although FIG. 2 shows an example in which one syringe 23 supplies four types of reagent liquids, this embodiment apparatus is similar to that shown in FIGS. but
Used for dispensing 12 types of reagent solutions.

第2図の構成において、流路系内の洗浄動作お
よび新旧試薬の置換動作について説明する。
In the configuration shown in FIG. 2, the cleaning operation within the channel system and the replacement operation of old and new reagents will be explained.

ノズル11a〜11dは試薬ノズル移動機構2
1の動作によつて図示しない廃液槽上に移動さ
れ、試薬流路切換弁20a〜20dは実線側に切
り換えられる。この時、吸入側すべり弁35と吐
出側すべり弁36は各々V1位置に停止している。
また、電磁弁34は閉状態にある。ポンプ38は
常時蒸留水を循環し、蒸留水流路33を常に加圧
状態に維持しているから、蒸留水は電磁弁34を
開くことにより試薬定量シリンジ23内を通り吸
入側切換弁29および吐出側切換弁30を加圧す
る。すべり弁35,36は最初V1に位置してい
るから、共通流路40に連通された吸入側流路2
7a、試薬退避管26aおよびノズル11a内を
経て洗浄用蒸留水が廃液槽に吐出され、これらの
流路内が洗浄される。
The nozzles 11a to 11d are the reagent nozzle moving mechanism 2.
1, the reagent is moved onto a waste liquid tank (not shown), and the reagent flow path switching valves 20a to 20d are switched to the solid line side. At this time, the suction side slide valve 35 and the discharge side slide valve 36 are each stopped at the V1 position.
Further, the solenoid valve 34 is in a closed state. Since the pump 38 constantly circulates distilled water and maintains the distilled water channel 33 under pressure, distilled water passes through the reagent metering syringe 23 by opening the electromagnetic valve 34 and passes through the suction side switching valve 29 and the discharge side. The side switching valve 30 is pressurized. Since the slide valves 35 and 36 are initially located at V1, the suction side flow path 2 communicating with the common flow path 40
7a, distilled water for cleaning is discharged into the waste liquid tank through the reagent evacuation pipe 26a and the nozzle 11a, thereby cleaning the inside of these channels.

次にすべり弁35,36はV2位置に切換えて、
吸入側流路27b、試薬退避管26bおよびノズ
ル11bを洗浄する。さらにすべり弁をV3位置
およびV4位置に切換えてノズル11c,11d
の流路系を洗浄する。引き続き、すべり弁35,
36をV5位置に切り換えると、共通流路40側
は閉塞され、共通流路41は吐出側流路28aに
連通され、蒸留水が吐出側流路28a、試薬退避
管26a、ノズル11aを経て廃液槽に吐出され
る。その後、すべり弁をV6〜V8に順次位置づ
けて吐出側流路28b,28c,28d内を洗浄
する。
Next, slide valves 35 and 36 are switched to the V2 position,
The suction side channel 27b, reagent evacuation tube 26b, and nozzle 11b are cleaned. Furthermore, the slide valves are switched to the V3 position and V4 position, and the nozzles 11c and 11d are
Clean the flow path system. Continuing, slide valve 35,
36 to the V5 position, the common flow path 40 side is closed, the common flow path 41 is communicated with the discharge side flow path 28a, and distilled water passes through the discharge side flow path 28a, the reagent evacuation pipe 26a, and the nozzle 11a, and is discharged as waste liquid. Discharged into a tank. Thereafter, the slide valves are sequentially positioned at V6 to V8 to clean the insides of the discharge-side channels 28b, 28c, and 28d.

試薬流路切換弁20a〜20dと共に保冷庫4
内に収納された試薬びん18a〜18d内の試薬
液は、低温に維持されているので、試薬の劣化が
防止される。洗浄水による流路系の洗浄のあと、
新しい試薬を流路系内に導入し、必要な反応容器
に試薬液を添加する。洗浄による旧試薬の排出の
あと、新試薬を流路内に導入する置換動作は、各
ノズル11a〜11dを廃液槽上に位置づけたま
まで行なう。
Cold storage 4 along with reagent flow path switching valves 20a to 20d
Since the reagent liquids in the reagent bottles 18a to 18d housed inside are maintained at low temperatures, deterioration of the reagents is prevented. After cleaning the flow path system with cleaning water,
New reagents are introduced into the flow path system and reagent solutions are added to the required reaction vessels. After the old reagent is discharged by cleaning, a replacement operation for introducing a new reagent into the flow path is performed while each nozzle 11a to 11d is positioned above the waste liquid tank.

流路系内に満たされている蒸留水を、必要な部
分だけ試薬液に置換しておくことにより、分注す
べき試薬液が水によつて希釈されることが防止さ
れる。まず、電磁弁34を閉じ、試薬流路切換弁
20a〜20dを破線側に切換え、すべり弁3
5,36をV1位置に停止し、試薬退避管26a
と共通流路40を連通する。この状態で所定パル
ス数だけパルスモータ15を駆動してシリンジ2
3を吸入動作し、試薬びん18aから所定量の試
薬液を試薬退避管26aおよび吸入側流路27a
内に吸入する。次にすべり弁35,36をV2位
置に切換えてシリンジ23にさらに吸入動作をさ
せ、試薬びん18bから所定量の試薬液を試薬退
避管26bおよび吸入側流路27b内に吸入す
る。続いてすべり弁35,36をV3,V4位置に
順次切換え、シリンジ23の吸入動作により対応
する各流路に試薬液を吸入する。これらの試薬吸
入動作に伴つて各流路内の切換29側にあつた各
流路内から吸入される蒸留水は、共通流路40内
に保持される。すなわち、共通流路40は吸入さ
れる液をすべて収容し得る容量を有するように充
分な長さを持つている。各流路内へのダミー試薬
液の吸入動作の間、ピストン13は所定ストロー
クずつ段階的に下降される。
By replacing only the necessary portion of the distilled water filling the channel system with the reagent liquid, the reagent liquid to be dispensed is prevented from being diluted by water. First, close the solenoid valve 34, switch the reagent flow path switching valves 20a to 20d to the dashed line side, and
5, 36 at the V1 position, and remove the reagent evacuation tube 26a.
The common flow path 40 is communicated with the common flow path 40 . In this state, the pulse motor 15 is driven by a predetermined number of pulses to drive the syringe 2.
3, and a predetermined amount of reagent liquid is drawn from the reagent bottle 18a into the reagent evacuation tube 26a and the suction side flow path 27a.
Inhale inside. Next, the slide valves 35 and 36 are switched to the V2 position to cause the syringe 23 to perform a further suction operation, and a predetermined amount of reagent liquid is aspirated from the reagent bottle 18b into the reagent evacuation pipe 26b and the suction side flow path 27b. Subsequently, the slide valves 35 and 36 are sequentially switched to the V3 and V4 positions, and the reagent solution is aspirated into the corresponding channels by the suction operation of the syringe 23. Distilled water sucked in from each channel on the switching 29 side in each channel as a result of these reagent suction operations is held in the common channel 40 . That is, the common flow path 40 has a sufficient length to have a capacity that can accommodate all the liquid to be drawn. During the suction operation of the dummy reagent liquid into each channel, the piston 13 is lowered step by step by a predetermined stroke.

ダミー試薬の吸入動作のあと、共通流路40内
に吸入した液を系外に排出する。電磁弁34を閉
じたまま、すべり弁35,36をV9位置に切換
え、排液管39に連通する。この状態でパルスモ
ータ15を駆動しピストン13を全ストローク上
昇する。これにより共通流路40内の液は排液管
39を通じて外部に排出される。
After the suction operation of the dummy reagent, the liquid sucked into the common flow path 40 is discharged to the outside of the system. While the solenoid valve 34 remains closed, the slide valves 35 and 36 are switched to the V9 position to communicate with the drain pipe 39. In this state, the pulse motor 15 is driven to move the piston 13 up the entire stroke. As a result, the liquid in the common flow path 40 is discharged to the outside through the drain pipe 39.

次に各ノズル11a〜11d内の蒸留水を試薬
液に置換する。電磁弁34を閉じたまま、すべり
弁35,36をV1位置に停止し、シリンジ23
に所定ストロークの吸入動作をさせ、試薬退避管
26a内に新しい試薬液をさらに吸入する。続い
て、すべり弁35,36をV2,V3,V4の各位置
に順次停止してシリンジ23にそれぞれ吸入動作
をさせ、各試薬退避管26b,26c,26d内
に試薬を吸入する。続いて、試薬流路切換弁20
a〜20dを実線側に切換え、すべり弁35,3
6をV5〜V8に順次位置づける。すべり弁がV5位
置で停止したとき、シリンジ23に第1の吐出動
作をさせ、共通流路41および吐出側流路28a
を通して液を押し出し、ノズル11aの吐出口か
ら廃液槽内へ試薬液を排出する。このようにして
ノルズ11a内を試薬液で満たした後、すべり弁
35,36を順次切換え、シリンジ23に第2〜
第4の吐出動作をさせて、各ノズル11b〜11
d内をも試薬液で満たす。各ノズルへの試薬液の
充填動作が終了したときでも、試薬退避管26a
〜26d内には試薬液が残されているから、後で
分注用試薬液を吸入したときに新しい試薬液は蒸
留水と接触することがないので希釈されない。
Next, the distilled water in each nozzle 11a to 11d is replaced with a reagent solution. With the solenoid valve 34 closed, the slide valves 35 and 36 are stopped at the V1 position, and the syringe 23
performs a suction operation of a predetermined stroke, and further sucks new reagent liquid into the reagent evacuation tube 26a. Subsequently, the slide valves 35 and 36 are sequentially stopped at positions V2, V3, and V4, and the syringe 23 is caused to perform a suction operation, thereby sucking the reagent into each of the reagent evacuation tubes 26b, 26c, and 26d. Next, the reagent flow path switching valve 20
Switch a to 20d to the solid line side, and slide valves 35, 3
6 is positioned sequentially from V5 to V8. When the slide valve stops at the V5 position, the syringe 23 is caused to perform the first discharge operation, and the common flow path 41 and the discharge side flow path 28a are
The liquid is pushed out through the nozzle 11a, and the reagent liquid is discharged into the waste liquid tank from the discharge port of the nozzle 11a. After filling the inside of the nozzle 11a with the reagent solution in this way, the slide valves 35 and 36 are sequentially switched, and the second to
The fourth discharge operation is performed, and each nozzle 11b to 11
Also fill the space d with the reagent solution. Even when the filling operation of reagent liquid into each nozzle is completed, the reagent evacuation tube 26a
Since the reagent solution remains in ~26d, when the reagent solution for dispensing is inhaled later, the new reagent solution will not come into contact with distilled water and will not be diluted.

以上で試薬の置換動作が終了する。このような
試薬置換動作は、通常分析装置の始動時に、実働
分析動作に先立つて実行される。
This completes the reagent replacement operation. Such a reagent replacement operation is normally performed when the analyzer is started up and prior to the actual analysis operation.

このあと、ノズル11a〜11dは、試薬ノズ
ル移動機構21によつて反応テーブル2の反応容
器3の列上に移動され、通常の分析動作が開始さ
れる。第1図の反応容器3の列に試料が分配さ
れ、それらの反応容器が第1の試薬液受入れ位置
に移送されると、R1試薬容器18からの第1試
薬液が添加され、第2の試薬液受入れ位置に移送
されるとR2試薬容器19からの第2試薬液が添
加される。
Thereafter, the nozzles 11a to 11d are moved by the reagent nozzle moving mechanism 21 onto the row of reaction vessels 3 on the reaction table 2, and normal analysis operation is started. Once the sample has been dispensed into the rows of reaction vessels 3 in FIG. 1 and the reaction vessels have been transferred to the first reagent receiving position, the first reagent liquid from the R1 reagent vessel 18 is added and the second When the second reagent solution is transferred to the reagent solution receiving position of R2, the second reagent solution from the R2 reagent container 19 is added.

第2図を参照して、反応容器への試薬添加動作
を説明する。試薬流路切換弁20a〜20dを破
線側に切換え、すべり弁36,36をV1〜V4に
順次位置づけ吸入動作をする。V1位置のときの
吸入動作により試薬退避管26a内に所定容量の
試薬液が吸入される。同様に試薬退避管26b〜
26dにも試薬液が吸入される。続いて試薬流路
切換弁20a〜20dを実線側に切換え、すべり
弁をV5〜V8に順次位置づけ、各位置において、
シリンジ23に所定ストロークずつ吐出動作をさ
せる。各ノズル11a〜11dの吐出口からそれ
ぞれ対応する反応容器3a〜3dへ各分析項目に
対応する試薬液が添加される。
Referring to FIG. 2, the operation of adding a reagent to a reaction container will be explained. The reagent flow path switching valves 20a to 20d are switched to the dotted line side, the slide valves 36 and 36 are sequentially positioned at V1 to V4, and an inhalation operation is performed. A predetermined volume of reagent liquid is sucked into the reagent evacuation tube 26a by the suction operation at the V1 position. Similarly, reagent evacuation tube 26b~
A reagent solution is also sucked into 26d. Next, the reagent flow path switching valves 20a to 20d are switched to the solid line side, and the slide valves are sequentially positioned at V5 to V8, and at each position,
The syringe 23 is caused to perform a discharging operation for each predetermined stroke. A reagent solution corresponding to each analysis item is added from the discharge port of each nozzle 11a to 11d to the corresponding reaction container 3a to 3d, respectively.

試薬吐出後、すべり弁36,36をV9位置に
停止し、電磁弁34を開き、蒸留水を送つて排液
管39から排出し、共通流路40内を洗浄する。
以上の試薬添加動作と共通流路洗浄動作を毎サイ
クル繰返し、分析項目に対応した試薬分注を実行
する。すべての試料への試薬添加が終了すれば、
流路系内は洗浄される。蒸留水による試薬退避管
26a〜26dおよびノズル11a〜11dの洗
浄動作は前述したのと同様である。
After discharging the reagent, the slide valves 36, 36 are stopped at the V9 position, the solenoid valve 34 is opened, and distilled water is sent and discharged from the drain pipe 39 to clean the inside of the common flow path 40.
The above reagent addition operation and common channel cleaning operation are repeated every cycle to execute reagent dispensing corresponding to the analysis item. After adding reagents to all samples,
The inside of the channel system is cleaned. The operation of cleaning the reagent evacuation tubes 26a to 26d and the nozzles 11a to 11d with distilled water is the same as described above.

ここで、分岐路の役割について説明する。試薬
液の吸入回数が進むにつれて各試薬は拡散現象に
より流路内を逆流する。だから、仮に分岐路を形
成せずに1つの切換弁だけを用いて吸入動作時お
よび吐出動作時の流路選択を行うと、拡散した試
薬がその切換弁まで到達し、切換弁摺動面で相互
に混合され、長時間の分析動作中に他の試薬の流
路系から吐出されることになる。この結果、各分
析項目の測定結果は異常値を示すことになる。一
般に試薬相互間の汚染率は100万分の一以下が適
正であると云われており、十分に配慮されねばな
らない。上述の実施例では、吸入側流路27a〜
27dと吐出側流路28a〜28dとに分岐さ
れ、吸入側流路27a〜27dは吸入専用に用い
られ、各サイクル毎に汚染液を待避させ得る共通
流路40を洗浄しているから、吐出側切換弁30
の流路系内は汚染液が混入されない。
Here, the role of branch roads will be explained. As the number of times the reagent solution is inhaled increases, each reagent flows backward through the channel due to a diffusion phenomenon. Therefore, if only one switching valve is used to select the flow path during suction and discharge operations without forming a branch path, the diffused reagent will reach the switching valve and reach the switching valve sliding surface. The reagents will be mixed with each other and discharged from the flow path system of other reagents during a long analysis operation. As a result, the measurement results for each analysis item will show abnormal values. Generally, it is said that an appropriate contamination rate between reagents is less than 1/1,000,000, and sufficient consideration must be given to this. In the above-mentioned embodiment, the suction side flow path 27a~
27d and discharge side flow paths 28a to 28d, the suction side flow paths 27a to 27d are used exclusively for suction, and the common flow path 40 that can evacuate contaminated liquid is cleaned in each cycle. Side switching valve 30
Contaminated liquid is not mixed into the flow path system.

第3図は第1図の実施例において各試薬液受入
位置へ試薬を供給する流路系を示した図で、第2
図の如き4項目分の添加機能の3倍の試薬数を添
加する機能を有する。吸入側切換弁29および吐
出側切換弁30には各々4試薬ずつの系列が3系
列接続され、これらの12の試薬系はノズル移動機
構21の移動と対応して吸引、吐出動作をする。
これら12種の試薬の吸入、吐出は1台のシリンジ
機構23により実行される。試薬ノズル移動機構
21は、多連流路切換弁32の切換動作と同期し
て、3列のノズル群を選択的に反応容器列上に位
置づけるように前後移動する。
FIG. 3 is a diagram showing the channel system for supplying reagents to each reagent liquid receiving position in the embodiment shown in FIG.
It has a function to add three times the number of reagents as shown in the figure for four items. Three series of four reagents each are connected to the suction side switching valve 29 and the discharge side switching valve 30, and these 12 reagent systems perform suction and discharge operations in response to movement of the nozzle moving mechanism 21.
Inhalation and ejection of these 12 types of reagents are performed by one syringe mechanism 23. The reagent nozzle moving mechanism 21 moves back and forth in synchronization with the switching operation of the multiple flow path switching valve 32 so as to selectively position the three rows of nozzle groups on the reaction container row.

第4図は第1図の実施例装置の各部のタイミン
グチヤートである。Aはサンプリング機構17、
Bは反応テーブル2、Cは試薬流路切換弁20,
60、Dは多連流路切換部32,62、Eは試薬
定量シリンジ23,24、Fは電磁弁34、Gは
試薬ノズル移動機構21,22の各々の動作タイ
ミングである。Aに示すサンプリング機構17の
動作は下降a、試料吸引b、上昇c、回転移動
e、試料吐出fの各動作時間を有し、Bにおける
gは反応テーブル2の停止時間である。Cの動作
中hは試薬流路切換弁20をノズル側に、iは試
薬びん側に切換えた状態を表わし、D中のj,k
は多連流路切換弁23,24の切換動作および停
止状態をそれぞれ示している。またEのタイミン
グにおいてはlが吐出動作を、mが吸入動作を示
す。F中のnは電磁弁34の開放時間を示し、G
中のrは試薬ノズル移動機構21,22の移動タ
イミングを表わす。
FIG. 4 is a timing chart of each part of the embodiment device of FIG. 1. A is a sampling mechanism 17;
B is the reaction table 2, C is the reagent flow path switching valve 20,
60 and D are the operation timings of the multiple flow path switching units 32 and 62, E the reagent metering syringes 23 and 24, F the electromagnetic valve 34, and G the reagent nozzle moving mechanisms 21 and 22, respectively. The operation of the sampling mechanism 17 shown in A has each operation time of descent a, sample suction b, rise c, rotational movement e, and sample discharge f, and g in B is the stop time of the reaction table 2. During the operation of C, h indicates the state where the reagent flow path switching valve 20 is switched to the nozzle side, i indicates the state where it is switched to the reagent bottle side, and j and k in D
1 shows the switching operation and stopped state of the multiple flow path switching valves 23 and 24, respectively. Further, at timing E, l indicates a discharge operation and m indicates an inhalation operation. n in F indicates the opening time of the solenoid valve 34, and G
The symbol r in the figure represents the movement timing of the reagent nozzle movement mechanisms 21 and 22.

第4図において、反応テーブル2が停止した状
態gのとき、試薬流路切換弁20,60はノズル
側に位置する。タイミングDの多連流路切換部3
2,62の切換動作jと、タイミングEのシリン
ジ23,24の吐出動作lとは、反応テーブルの
停止時gの間では同期している。
In FIG. 4, when the reaction table 2 is in a stopped state g, the reagent flow path switching valves 20 and 60 are located on the nozzle side. Multiple flow path switching unit 3 at timing D
The switching operation j of 2 and 62 and the discharging operation l of the syringes 23 and 24 at timing E are synchronized during the stop time g of the reaction table.

第5図は第1図の実施例の試薬ノズル移動機構
21,22付近の説明図である。3列のノズル群
11はベース42に取付けられており、反応容器
3の列と廃液槽12との間を移動される。ベース
42はホルダ43に固定され、ホルダ43にはラ
ツク44および位置検知板45が取付けており、
ピニオンギヤ46を介してパルスモータ48の回
転を伝達し、軸47を案内として往復動作を行な
う。ホルダ43の前後にはセンサ49,50が配
置してあり、ノズル11が停止すべき位置をコン
ピユータからの指令により検知して停止させる。
FIG. 5 is an explanatory diagram of the vicinity of the reagent nozzle moving mechanisms 21 and 22 of the embodiment shown in FIG. The three rows of nozzle groups 11 are attached to the base 42 and are moved between the rows of reaction vessels 3 and the waste liquid tank 12. The base 42 is fixed to a holder 43, and a rack 44 and a position detection plate 45 are attached to the holder 43.
The rotation of the pulse motor 48 is transmitted through the pinion gear 46, and reciprocating motion is performed using the shaft 47 as a guide. Sensors 49 and 50 are arranged before and after the holder 43, and detect the position at which the nozzle 11 should stop based on a command from a computer, and then stop the nozzle 11.

第6図は第1図の実施例の多連流路切換部の切
換弁29,30の構造を示す図である。前述した
吸入側切換弁と吐出側切換弁を弁座51に一体構
造に形成し、その左右に樹脂、セラミツク等から
なるすべり弁35,36を弁ホルダ52,53と
接合固定して配置してある。すべり弁35,36
は押しバネ54,54′により弁座51に対して
押しつけられ、切換摺動面が密閉可能な構造であ
る。両側に位置したすべり弁35,36はピン5
5,55′を介し回転軸56に連結され、モータ
31の回転により、同時に摺動、回転するよう構
成してある。また、回転軸56には流路位置検知
板58が取付けてあり、検知器59で各流路位置
をカウントし停止すべき位置を制御し駆動する。
弁座51には前述した吸入側流路27および吐出
側流路28が各々配管、接続され多連流路切換弁
を構成している。
FIG. 6 is a diagram showing the structure of the switching valves 29 and 30 of the multiple flow path switching section of the embodiment shown in FIG. The aforementioned suction side switching valve and discharge side switching valve are integrally formed on the valve seat 51, and slide valves 35 and 36 made of resin, ceramic, etc. are arranged on the left and right sides of the valve seat 51 by being joined and fixed to valve holders 52 and 53. be. Slip valve 35, 36
is pressed against the valve seat 51 by push springs 54, 54', and has a structure in which the switching sliding surface can be sealed. Slip valves 35 and 36 located on both sides are connected to pin 5.
5 and 55', and is configured to slide and rotate at the same time as the motor 31 rotates. Further, a flow path position detection plate 58 is attached to the rotating shaft 56, and a detector 59 counts the position of each flow path to control and drive the position at which the flow path should be stopped.
The above-mentioned suction side flow path 27 and discharge side flow path 28 are connected to the valve seat 51 by piping, respectively, thereby forming a multiple flow path switching valve.

上述した本発明の実施例によれば、圧縮空気、
モータ等を用いて多数の試薬を分注添加する多項
目多検体処理の大形装置においても、少数のシリ
ンジで試薬添加機構を構成可能であり、従つて小
形の装置が実現できる。また、試薬供給系を吸引
専用流路と吐出専用流路に分岐し、完全な独立2
流路を形成しているので、多数の試薬を1シリン
ジで分注する際の試薬相互間の汚染を防止でき
る。各試薬流路内の新試薬への置換に際し、ポン
プ機構や多連流路切換弁に試薬を導入する必要が
なく、接続流路に試薬を導入するだけでよいの
で、試薬流路系の容積を従来より非常に小さくす
ることができ試薬の無駄を少なくできる。ちなみ
に、新、旧試薬置換時の試薬量は従来方式に比べ
1/5〜1/8程度の少量試薬で可能となり、分析装置
のランニングコストを下げる上で大きく寄与す
る。さらに、試薬シリンジ数の大幅な減少により
装置の信頼性が向上され、保守も容易となる。
According to the embodiments of the invention described above, compressed air,
Even in a large device for processing multiple items and multiple samples in which a large number of reagents are dispensed and added using a motor or the like, the reagent addition mechanism can be configured with a small number of syringes, and therefore a small device can be realized. In addition, the reagent supply system is divided into a suction-only flow path and a discharge-only flow path, making it completely independent.
Since a flow path is formed, it is possible to prevent contamination between reagents when dispensing a large number of reagents with one syringe. When replacing a new reagent in each reagent flow path, there is no need to introduce the reagent into the pump mechanism or multiple flow path switching valve, and it is only necessary to introduce the reagent into the connecting flow path, which reduces the volume of the reagent flow path system. can be made much smaller than before, reducing waste of reagents. Incidentally, the amount of reagent used when replacing new and old reagents can be reduced to 1/5 to 1/8 compared to the conventional method, which greatly contributes to lowering the running cost of the analyzer. Furthermore, the reliability of the device is improved due to the significant reduction in the number of reagent syringes, and maintenance is also facilitated.

以上説明したように本発明によれば、吸入専用
路と吐出専用路を設けることにより、複数種の試
薬の供給のために試薬液送液機構を共用しても、
試薬相互間の汚染を防止できるので、分析項目の
測定誤差を小さくすることができる。
As explained above, according to the present invention, by providing an inhalation-only path and an ejection-only path, even if a reagent liquid feeding mechanism is shared for supplying multiple types of reagents,
Since contamination between reagents can be prevented, measurement errors in analysis items can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成を示す
図、第2図は第1図の実施例における試薬分注方
法を説明するための図、第3図は第1図の実施例
における試薬を供給する流路系を示す図、第4図
は第1図の実施例装置における各部のタイミング
チヤート、第5図は試薬ノズル移動機構付近の説
明図、第6図は多連流路切換弁の構造を示す断面
図である。 3……反応容器、11……ノズル、18,19
……試薬びん、20,60……試薬流路切換弁、
23,24……シリンジ、26……試薬退避管、
27……吸入側流路、28……吐出側流路、29
……吸入側切換弁、30……吐出側切換弁、3
2,62……多連流路切換部、35,36……す
べり弁、40,41……共通流路。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention, FIG. 2 is a diagram for explaining a reagent dispensing method in the embodiment of FIG. 1, and FIG. A diagram showing the flow path system for supplying reagents, FIG. 4 is a timing chart of each part in the embodiment device of FIG. 1, FIG. 5 is an explanatory diagram of the vicinity of the reagent nozzle moving mechanism, and FIG. It is a sectional view showing the structure of a valve. 3... Reaction container, 11... Nozzle, 18, 19
... Reagent bottle, 20, 60 ... Reagent flow path switching valve,
23, 24...Syringe, 26...Reagent evacuation tube,
27...Suction side flow path, 28...Discharge side flow path, 29
...Suction side switching valve, 30...Discharge side switching valve, 3
2, 62...Multiple flow path switching unit, 35, 36...Slip valve, 40, 41...Common flow path.

Claims (1)

【特許請求の範囲】[Claims] 1 反応容器列の反応容器内で試料と試薬液とを
反応せしめ、反応液を測定して試料の分析項目を
分析する液体試料分析装置において、液体の吸入
動作と排出動作を行う送液器と、上記送液器の吸
入動作にともなつて試薬液が導入され得る複数の
試薬退避流路と、それぞれが試薬容器から試薬液
を導入する試薬導入路と反応容器へ試薬液を吐出
する試薬液吐出管とのいずれかを対応する試薬退
避流路に選択的に連通する複数の接続選択手段
と、上記複数の試薬退避流路のそれぞれが分岐さ
れており、上記複数の試薬退避流路の各々の分岐
路の一方が接続された吸入側多流路切換器と、上
記複数の試薬退避流路の各々の分岐路の他方が接
続された吐出側多流路切換器と、上記吸入側多流
路切換器と上記吐出側多流路切換器とを上記送液
器に接続する共通流路とを備え、上記吸入側多流
路切換器と上記吐出側多流路切換器との内の一方
が上記共通流路を上記複数の試薬退避流路のいず
れかに連通しているときには、他方が上記共通流
路と上記複数の試薬退避流路との連通を遮断する
ように構成したことを特徴とする液体試料分析装
置。
1. In a liquid sample analyzer that reacts a sample and a reagent solution in the reaction containers of a reaction container row, measures the reaction solution, and analyzes the analysis items of the sample, , a plurality of reagent evacuation channels into which a reagent solution can be introduced in accordance with the suction operation of the liquid feeder, a reagent introduction channel each introducing a reagent solution from a reagent container, and a reagent solution discharging the reagent solution into the reaction container. a plurality of connection selection means for selectively communicating one of the discharge pipes with a corresponding reagent evacuation channel; each of the plurality of reagent evacuation channels is branched; each of the plurality of reagent evacuation channels is branched; a suction side multi-flow path switch to which one of the branch paths is connected; a discharge side multi-flow path switch to which the other branch of each of the plurality of reagent evacuation channels is connected; a common flow path connecting a path switching device and the discharge side multi-flow path switching device to the liquid feeder, one of the suction side multi-flow path switching device and the discharge side multi-flow path switching device; is configured such that when the common channel communicates with any of the plurality of reagent evacuation channels, the other one blocks communication between the common channel and the plurality of reagent evacuation channels. Liquid sample analyzer.
JP18531681A 1981-11-20 1981-11-20 Analyzing apparatus for liquid sample Granted JPS5887462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18531681A JPS5887462A (en) 1981-11-20 1981-11-20 Analyzing apparatus for liquid sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18531681A JPS5887462A (en) 1981-11-20 1981-11-20 Analyzing apparatus for liquid sample

Publications (2)

Publication Number Publication Date
JPS5887462A JPS5887462A (en) 1983-05-25
JPH0150859B2 true JPH0150859B2 (en) 1989-10-31

Family

ID=16168704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18531681A Granted JPS5887462A (en) 1981-11-20 1981-11-20 Analyzing apparatus for liquid sample

Country Status (1)

Country Link
JP (1) JPS5887462A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710355A (en) * 1984-06-14 1987-12-01 Olympus Optical Co., Ltd. Reagent delivery device
JPH0645255Y2 (en) * 1987-08-18 1994-11-16 オリンパス光学工業株式会社 Liquid dispensing device
JPS6433659U (en) * 1987-08-18 1989-03-02
DE102021121265B4 (en) * 2021-08-16 2024-03-07 Bluecatbio Gmbh Dispensing device, centrifuge with such a dispensing device and method for cleaning dispensing nozzles

Also Published As

Publication number Publication date
JPS5887462A (en) 1983-05-25

Similar Documents

Publication Publication Date Title
EP0360487B1 (en) Method and apparatus for analysis of particles contained in a liquid sample
US3901656A (en) Apparatus and method for preparing and presenting serum chemistries for analyzation
US4888998A (en) Sample handling system
EP0645631B1 (en) Apparatus for and method of automatic sample testing
US4647432A (en) Automatic analysis apparatus
US4323537A (en) Analysis system
US4366119A (en) Discrete type automated chemical analytic apparatus
US3753657A (en) Automatic test tube transporter and sample dispenser having solid state controls
EP0037079B1 (en) Discrete flow type automated chemical analytic apparatus
US11506678B2 (en) Automatic analysis apparatus and operating method therefor
NO135550B (en)
JPH03183947A (en) Doser for analyzer
US3401591A (en) Analytical cuvette and supply system wherein the cuvette inlet and outlet are located on the bottom of the cuvette
EP0253519B1 (en) Sample handling system
JPH0150859B2 (en)
US8899101B2 (en) Apparatus for sample handling
EP1335853B1 (en) Sample dispensing with liquid delivery without crossover
JPS6156785B2 (en)
JPH0150858B2 (en)
JPH05164761A (en) Automatic preprocessor for chemical analysis
EP0391746B1 (en) Apparatus for the separate injection of reagents
JP3665257B2 (en) Dispensing device
JPH0126509B2 (en)
JPS5951357A (en) Automatic biochemical analyzer
JPH0835917A (en) Autosampler for elution test