JPH0150829B2 - - Google Patents

Info

Publication number
JPH0150829B2
JPH0150829B2 JP62024842A JP2484287A JPH0150829B2 JP H0150829 B2 JPH0150829 B2 JP H0150829B2 JP 62024842 A JP62024842 A JP 62024842A JP 2484287 A JP2484287 A JP 2484287A JP H0150829 B2 JPH0150829 B2 JP H0150829B2
Authority
JP
Japan
Prior art keywords
low
potential
condenser
solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP62024842A
Other languages
Japanese (ja)
Other versions
JPS62272068A (en
Inventor
Shozo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2484287A priority Critical patent/JPS62272068A/en
Publication of JPS62272068A publication Critical patent/JPS62272068A/en
Publication of JPH0150829B2 publication Critical patent/JPH0150829B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸収冷凍システムを用いて、低ポテ
ンシヤルエネルギ及び高ポテンシヤルエネルギを
利用して、冷温熱源を製造する吸収冷凍装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an absorption refrigeration apparatus that uses an absorption refrigeration system to produce a cold and hot heat source by utilizing low potential energy and high potential energy.

〔従来の技術〕[Conventional technology]

冷温熱源を製造するためには加熱エネルギを要
し、従来は石油、石炭などの化石燃料及びその誘
導体としての燃料(重油、都市ガス)の燃焼熱、
又はこの燃焼熱を用いて生成した高圧蒸気、高温
水などの高温の高ポテンシヤルエネルギが用いら
れて来ている。
Heating energy is required to produce a cold/hot heat source, and conventionally, the combustion heat of fossil fuels such as oil and coal and their derivative fuels (heavy oil, city gas),
Alternatively, high-temperature high-potential energy such as high-pressure steam and high-temperature water generated using this combustion heat has been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし高ポテンシヤルエネルギは高価であり、
また、将来の化石燃料の涸渇を防止するために化
石燃料の使用量の抑制が望まれている。
However, high potential energy is expensive;
Furthermore, in order to prevent future depletion of fossil fuels, it is desired to reduce the amount of fossil fuels used.

一方、太陽熱を利用した温水、工場などの排温
水、蒸気原動機より排出される低圧蒸気などの低
ポテンシヤルエネルギは量も豊富であり安価であ
るにも拘らず、例えば100℃以下の低温であるた
め、また常温必要量を安定した得ることが困難な
ため利用されず、従来はそのまま環境に無駄に廃
却されていた。
On the other hand, although low-potential energy such as hot water using solar heat, hot water discharged from factories, and low-pressure steam discharged from steam engines is abundant and inexpensive, it has a low temperature of, for example, 100 degrees Celsius or less. Furthermore, because it is difficult to stably obtain the required amount at room temperature, it has not been used and has conventionally been wasted into the environment.

しかしてこの低ポテンシヤルエネルギを有効に
利用するため、吸収冷凍システムを用いて冷温水
を製造する設備が見られるが、利用される低ポテ
ンシヤルエネルギの温度はもともと低い上に、例
えば太陽熱利用の場合であるならば、季節的な変
化、天候の変化などからその集熱温度は負荷側の
使用状態に関係なく温度が下がることがあり、低
温の場合には低ポテンシヤルエネルギを有効に用
いることが困難であつた。
However, in order to effectively utilize the low potential energy of levers, there are facilities that use absorption refrigeration systems to produce cold and hot water, but the temperature of the low potential energy used is low to begin with, and, for example, when using solar heat, If so, the temperature at which the heat is collected may drop due to seasonal changes or changes in the weather, regardless of the usage conditions on the load side, making it difficult to use low potential energy effectively at low temperatures. It was hot.

また、従来の高、低ポテンシヤルエネルギを利
用する吸収冷凍装置においては、溶液が最も高温
の状態で最大濃度に濃縮されるため、機器、管路
の腐食が激しく、保守が容易でなかつた。
In addition, in conventional absorption refrigeration equipment that utilizes high and low potential energy, the solution is concentrated to its maximum concentration at the highest temperature, so equipment and pipes are severely corroded and maintenance is not easy.

本発明は、従来のものの上記の欠点を除き、低
温度の低ポテンシヤルエネルギの有効利用をはか
ることができ、かつ、機器、管路の腐食を防止す
ることができる吸収冷凍装置を提供することを目
的とするものである。
It is an object of the present invention to provide an absorption refrigeration system that eliminates the above-mentioned drawbacks of conventional systems, can effectively utilize low-temperature, low-potential energy, and can prevent corrosion of equipment and pipes. This is the purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の問題点を解決するための手段
として、吸収器、低温発生器、高温発生器、凝縮
器、蒸発器、低温溶液熱交換器、高温溶液交換
器、溶液ポンプ、冷媒ポンプ及びこれらの機器を
接続する溶液流路と冷媒流路とを備え、熱源とし
て低ポテンシヤルエネルギ及び高ポテンシヤルエ
ネルギを用いるようにした吸収冷凍装置におい
て、前記低温発生器は、低ポテンシヤルエネルギ
により溶液を加熱する低ポテンシヤル低温発生器
と、前記高温発生器において高ポテンシヤルエネ
ルギにより発生した冷媒蒸気及び/又は該冷媒蒸
気の凝縮液を導いて溶液を加熱する加熱機構を備
えた高ポテンシヤル低温発生器とを有し、前記凝
縮器は、前記低ポテンシヤル低温発生器にて発生
した冷媒蒸気を導入して凝縮せしめる低ポテンシ
ヤル凝縮器と、前記高ポテンシヤル低温発生器に
て発生した冷媒蒸気を導入して凝縮せしめる高ポ
テンシヤル凝縮器とより成り、前記低ポテンシヤ
ル凝縮器及び前記高ポテンシヤル凝縮器にそれぞ
れ冷却媒体を通して冷媒を冷却凝縮せしめる冷却
機構を備え、前記低ポテンシヤル凝縮器の冷却機
構に導かれる冷却媒体は、前記高ポテンシヤル凝
縮器の冷却機構に導かれる冷却媒体よりも低温と
なし、前記溶液経路は、溶液が、前記吸収器、前
記低ポテンシヤル低温発生器、前記高温発生器、
前記高ポテンシヤル低温発生器の順に機器を通過
して順次濃縮され、前記吸収器に戻り、循環する
経路であることを特徴とした吸収冷凍装置を提供
せんとするものである。
The present invention provides an absorber, a low temperature generator, a high temperature generator, a condenser, an evaporator, a low temperature solution heat exchanger, a high temperature solution exchanger, a solution pump, a refrigerant pump and In an absorption refrigeration apparatus that includes a solution flow path and a refrigerant flow path that connect these devices and uses low potential energy and high potential energy as a heat source, the low temperature generator heats the solution using low potential energy. A high-potential low-temperature generator comprising a low-potential low-temperature generator and a heating mechanism that heats a solution by guiding refrigerant vapor generated by high-potential energy in the high-temperature generator and/or a condensate of the refrigerant vapor. , the condenser includes a low-potential condenser that introduces and condenses refrigerant vapor generated in the low-potential low-temperature generator, and a high-potential condenser that introduces and condenses refrigerant vapor generated in the high-potential low-temperature generator. a cooling mechanism that cools and condenses the refrigerant by passing a cooling medium through the low-potential condenser and the high-potential condenser, respectively, and the cooling medium guided to the cooling mechanism of the low-potential condenser is the solution path is at a lower temperature than the cooling medium introduced into the cooling mechanism of the condenser, and the solution path includes the absorber, the low potential low temperature generator, the high temperature generator,
It is an object of the present invention to provide an absorption refrigeration system characterized by a path in which the liquid passes through devices in the order of the high potential low temperature generator, is concentrated in sequence, returns to the absorber, and circulates.

〔作用〕[Effect]

本発明は、上記の如く構成されているので、次
の如き作用効果を有する。
Since the present invention is configured as described above, it has the following effects.

(1) 低ポテンシヤル凝縮器の冷却機構に導かれる
冷却媒体を、高ポテンシヤル凝縮器の冷却機構
に導かれる冷却媒体よりも低温としたことによ
り、低ポテンシヤル低温発生器内の圧力を低下
せしめて沸点を下降せしめ、低温度の低ポテン
シヤルエネルギを有効に利用することができ、
その利用範囲を広げ、貴重で高価な高ポテンシ
ヤルエネルギの消費を節約することができる。
(1) By making the cooling medium led to the cooling mechanism of the low-potential condenser lower than that of the cooling medium led to the cooling mechanism of the high-potential condenser, the pressure inside the low-potential low temperature generator is lowered and the boiling point is lowered. It is possible to lower the temperature and effectively utilize the low potential energy at low temperature.
It can widen its range of use and save consumption of valuable and expensive high potential energy.

(2) また、吸収器を出たあとの溶液経路が、三つ
の発生器のうち、最初に低ポテンシヤル低温発
生器に導かれることにより、最も蒸気圧が低い
ポテンシヤル低温発生器に吸収器から導かれた
最も濃度の低いξ1溶液を供給すれば(1)の低圧に
よる作用のほかに、濃度が小なることによる沸
点上昇度の低下作用が働いて、低い沸点で沸騰
を行うことができ、(1)の効果を一層助長するこ
とができる。
(2) Also, since the solution path after leaving the absorber is first led to the low-potential low-temperature generator among the three generators, the solution is led from the absorber to the potential low-temperature generator with the lowest vapor pressure. If the ξ 1 solution with the lowest concentration is supplied, in addition to the effect of the low pressure in (1), the boiling point can be boiled at a low boiling point due to the effect of lowering the boiling point rise due to the small concentration. The effect of (1) can be further promoted.

(3) また、溶液経路が、次に高温発生器を通り、
最後に高ポテンシヤル低温発生器に導かれてい
ることにより、溶液は、比較的低い圧力PL2
において最大濃度ξ4にまで濃縮されるため最大
濃度ξ4における温度T4は、従来の如き高温発
生器で最大濃度の濃縮が行われる場合のS点の
温度Tsよりも低く、また最高温度T3よりもTs
よりも低く、そのときの濃度ξ3もξ4より小であ
るので、機器や管路の腐食を防止することがで
きる。
(3) Also, if the solution path then passes through a high temperature generator,
Finally, by being led to a high-potential low temperature generator, the solution is concentrated to a maximum concentration ξ 4 under a relatively low pressure P L2 , so that the temperature T 4 at the maximum concentration ξ 4 is lower than the conventional high temperature T s lower than the temperature at point S when maximum concentration occurs in the generator T s and lower than the maximum temperature T 3
Since the concentration ξ 3 at that time is also smaller than ξ 4 , corrosion of equipment and pipes can be prevented.

〔実施例〕〔Example〕

本発明を実施例につき図面を用いて説明すれ
ば、第1図に示す如く、吸収器A、蒸発器E、低
ポテンシヤル低温発生器GL1、高ポテンシヤル
低温発生器GL2、高温発生器GH、低ポテンシ
ヤル凝縮器C1、高ポテンシヤル凝縮器C2、低温
溶液熱交換器HEL、高温溶液熱交換器HEHが備
えられ、これらの機器を接続して溶液流路及び冷
媒流路が配備されている。
The present invention will be described with reference to the drawings in accordance with embodiments. As shown in FIG. A condenser C 1 , a high potential condenser C 2 , a low temperature solution heat exchanger HEL, and a high temperature solution heat exchanger HEH are provided, and a solution flow path and a refrigerant flow path are provided to connect these devices.

溶液流路としては、低濃度ξ1溶液流路として低
温側溶液ポンプSPL、管路1,2,3が吸収器A
と低ポテンシヤル低温発生器GL1を接続し、中
濃度ξ2溶液流路として高温側溶液ポンプSPH、
管路4,5が低ポテンシヤル低温発生器GL1と
高温発生器GHを接続し、中濃度ξ3戻り溶液流路
として管路6,7が高温発生器GHと高ポテンシ
ヤル低温発生器GL2を接続し、高濃度ξ4戻り溶
液流路として管路8,9が高ポテンシヤル低温発
生器GL2と吸収器Aを接続している。
As the solution flow path, the low concentration ξ 1 solution flow path is the low temperature side solution pump SPL, and the pipes 1, 2, and 3 are the absorber A.
and the low-potential low-temperature generator GL1 are connected, and the high-temperature side solution pump SPH is used as a medium concentration ξ 2 solution flow path.
Pipes 4 and 5 connect the low-potential low-temperature generator GL1 and the high-temperature generator GH, and pipes 6 and 7, as medium concentration ξ 3 return solution flow paths, connect the high-temperature generator GH and the high-potential low-temperature generator GL2. , high concentration ξ 4 As return solution flow paths, pipes 8 and 9 connect the high potential low temperature generator GL2 and the absorber A.

冷媒流路としては、蒸発器E内に冷媒を循環せ
しめ、冷水管16にて蒸発せしめるため冷媒ポン
プRP、管路10,11が備えられ、高温発生器
GHにて発生した冷媒蒸気又はその冷媒蒸気が途
中で凝縮した冷媒液を高ポテンシヤル低温発生器
GL2の加熱管17に導いて二重効用の作用をせ
しめる管路12、及び加熱管17を出たあとの液
状および気体状の冷媒を高ポテンシヤル凝縮器
C2に導く管路13を備えている。さらに、高ポ
テンシヤル凝縮器C2にて得られた冷媒液を低ポ
テンシヤル凝縮器C1に導く管路14、及び低ポ
テンシヤル凝縮器C1にて得られた冷媒液を蒸発
器Eに導く管路15が備えられている。
The refrigerant flow path includes a refrigerant pump RP and pipes 10 and 11 for circulating the refrigerant in the evaporator E and evaporating it in the cold water pipe 16.
The refrigerant vapor generated in the GH or the refrigerant liquid that is condensed on the way is used as a high-potential low-temperature generator.
A conduit 12 that leads to the heating pipe 17 of GL2 to have a double effect, and a high-potential condenser for the liquid and gaseous refrigerant after exiting the heating pipe 17.
A conduit 13 leading to C2 is provided. Furthermore, a pipe line 14 leads the refrigerant liquid obtained in the high potential condenser C 2 to the low potential condenser C 1 , and a pipe line leads the refrigerant liquid obtained in the low potential condenser C 1 to the evaporator E. 15 are provided.

18及び19は凝縮用の冷却管であり、管路2
0,21,22により冷却水などの冷却媒体が流
される。低ポテンシヤル凝縮器C1の冷却管18
は、高ポテンシヤル凝縮器C2の冷却管19より
も冷却媒体の流れについて上流側にあり、従つて
冷却管19におけるよりも低温の冷却水が通る。
18 and 19 are cooling pipes for condensation, and pipe line 2
0, 21, and 22 cause a cooling medium such as cooling water to flow. Cooling pipe 18 of low potential condenser C 1
is located upstream of the cooling pipe 19 of the high potential condenser C 2 in terms of the flow of the cooling medium, and therefore the cooling water at a lower temperature than in the cooling pipe 19 passes therethrough.

29は吸収器A内の冷却管である。23は、太
陽熱を利用した温水、工場などの排温水、蒸気原
動機より排出される低圧蒸気などの低ポテンシヤ
ルエネルギの熱媒流体が導かれて溶液を加熱する
ところの低ポテンシヤル加熱機構としての加熱管
であり、24は加熱量を制御する流量制御弁であ
る。
29 is a cooling pipe within the absorber A. 23 is a heating tube as a low-potential heating mechanism in which a low-potential energy heat medium fluid such as hot water using solar heat, waste hot water from a factory, or low-pressure steam discharged from a steam engine is guided to heat the solution. 24 is a flow control valve that controls the amount of heating.

高ポテンシヤルエネルギによる高ポテンシヤル
加熱機構として燃料管25、流量制御弁26、バ
ーナ27、炉筒28が備えられ、都市ガス、灯油
などの燃料を燃焼せしめて高温加熱を行う。
A fuel pipe 25, a flow control valve 26, a burner 27, and a furnace tube 28 are provided as a high-potential heating mechanism using high-potential energy, and high-temperature heating is performed by burning fuel such as city gas or kerosene.

運転時の溶液サイクルをlogP−Tグラフにて
第2図に示す。
The solution cycle during operation is shown in Figure 2 as a logP-T graph.

冷却管18内の冷却媒体温度は、冷却管19内
のものより低いので、低ポテンシヤル凝縮器C1
内の凝縮温度及び飽和蒸気圧は、高ポテンシヤル
凝縮器C2内の凝縮温度及び飽和蒸気圧よりも低
い。従つて第2図における低ポテンシヤル低温発
生器GL1内の蒸気圧PL1は、高ポテンシヤル低
温発生器GL2内の蒸気圧PL2よりも低く、従つ
て蒸気温度も前者の内部の方が低い。
Since the coolant temperature in the cooling pipe 18 is lower than that in the cooling pipe 19, the low potential condenser C 1
The condensing temperature and saturated vapor pressure within the high potential condenser C2 are lower than those within the high potential condenser C2. Therefore, the steam pressure PL1 in the low-potential low-temperature generator GL1 in FIG. 2 is lower than the steam pressure PL2 in the high-potential low-temperature generator GL2, and therefore the steam temperature is also lower inside the former.

一方、溶液の沸点は濃度が低い方が低い。 On the other hand, the lower the concentration, the lower the boiling point of the solution.

従つて、最も蒸気圧が低い低ポテンシヤル低温
発生器GL1に、吸収器Aから導かれた最も濃度
の低い低濃度(ξ1)溶液を供給すれば最も低い沸
点にて沸騰を行うことができる。即ち低い温度の
低ポテンシヤルエネルギにても溶液を濃縮せしめ
ることができる。
Therefore, if the lowest concentration (ξ 1 ) solution derived from the absorber A is supplied to the low potential low temperature generator GL1, which has the lowest vapor pressure, boiling can be performed at the lowest boiling point. That is, the solution can be concentrated even at low temperature and low potential energy.

しかる後溶液は高温発生器GH及び高ポテンシ
ヤル低温発生器GL2において高ポテンシヤルの
補助熱源により二重効用吸収冷凍サイクルを行
う。このように、溶液経路が、次に高温発生器
GHを通り、最後に高ポテンシヤル低温発生器
GL2に導かれることにより、溶液は、比較的低
い圧力PL2下において最大濃度ξ4にまで濃縮さ
れるため最大濃度ξ4における温度T4は、従来の
如き高温発生器で最大濃度の濃縮が行われる場合
のS点の温度Tsよりも低く、また最高温度T3
Tsよりも低く、そのときの濃度ξ3もξ4より小で
あるので、機器や管路の腐食を防止することがで
きる。
Thereafter, the solution undergoes a dual effect absorption refrigeration cycle with a high potential auxiliary heat source in a high temperature generator GH and a high potential low temperature generator GL2. In this way, the solution path is then
Pass through GH and finally high potential low temperature generator
By being led to GL2, the solution is concentrated to the maximum concentration ξ 4 under a relatively low pressure PL2, so the temperature T 4 at the maximum concentration ξ 4 is the same as that at which concentration to the maximum concentration can be achieved with a conventional high temperature generator. lower than the temperature T s at point S when
Since it is lower than Ts and the concentration ξ 3 at that time is also smaller than ξ 4 , corrosion of equipment and pipes can be prevented.

しかして、熱源としては低ポテンシヤルエネル
ギを優先的に使用し、不足分を高いポテンシヤル
エネルギにて補うよう制御する。例えば冷水出口
温度が一定となるように流量制御弁24及び26
を制御する場合に、流量制御弁24の開度が最大
値に達するまでは流量制御弁26は開かず、流量
制御弁24が最大開度に達し、なおかつ熱源が不
足する時のみ流量制御弁26を開いて高ポテンシ
ヤルエネルギを補うようにする。
Therefore, low potential energy is preferentially used as a heat source, and control is performed to compensate for the deficiency with high potential energy. For example, the flow control valves 24 and 26
When controlling the flow rate control valve 24, the flow rate control valve 26 does not open until the opening degree of the flow rate control valve 24 reaches the maximum value, and the flow rate control valve 26 does not open until the flow rate control valve 24 reaches the maximum opening degree and the heat source is insufficient. to compensate for high potential energy.

なお管路4と管路8を連結する配管30と弁3
1を設け、低ポテンシヤルエネルギだけで足りて
いる場合には、この連絡配管30に溶液を流し、
吸収器Aへ送り、単効用のサイクルとすることも
できる。
Note that the pipe 30 and valve 3 connecting the pipe 4 and the pipe 8
1, and if only low potential energy is sufficient, pour the solution into this connecting pipe 30,
It can also be sent to absorber A to create a single-effect cycle.

本実施例のものは、以上の如く構成され作用す
るので、低温の低ポテンシヤルエネルギを有効利
用することができ、高ポテンシヤルエネルギの消
費を節減することができる。
Since the device of this embodiment is constructed and operates as described above, low-temperature low-potential energy can be effectively utilized, and consumption of high-potential energy can be reduced.

また、前記の如く蒸気圧PL1をPL2よりも低
くすることができるので、蒸発器Eに戻す冷媒液
の温度は、冷媒サイクルに最終通路を低ポテンシ
ヤル凝縮器C1とすることにより低くすることが
できるので、冷媒循環量の単位重量当たりの冷媒
能力が増すことにより効率の向上が得られる。
Furthermore, since the vapor pressure PL1 can be made lower than PL2 as described above, the temperature of the refrigerant liquid returned to the evaporator E can be lowered by providing the final passage in the refrigerant cycle with the low potential condenser C1 . Therefore, efficiency can be improved by increasing the refrigerant capacity per unit weight of refrigerant circulation.

また、低ポテンシヤルエネルギの温度は、低温
溶液熱交換器HELの低濃度溶液出口(第2図の
点)温度よりやや高い程度の温度のものが利用
可能である。この場合、低ポテンシヤルエネルギ
の熱量又は温度が低く、点の状態までかろうじ
て加熱ができる程度である場合でも、この低ポテ
ンシヤルエネルギは吸収溶液サイクルの予熱とし
て利用できることになる。点の状態以上の状態
まで利用できる場合は、単効用サイクルとして利
用できることになる。
Moreover, the temperature of the low potential energy can be slightly higher than the low concentration solution outlet (point in FIG. 2) temperature of the low temperature solution heat exchanger HEL. In this case, the low potential energy can be used as a preheat for the absorption solution cycle even though the amount of heat or temperature of the low potential energy is low enough to barely heat up to a point. If it can be used to a point state or higher, it can be used as a single-effect cycle.

蒸気圧PL1は低ければ低い程点の状態を定
める低濃度溶液の温度を低くすることができるの
でできるだけ低温の冷却水を低ポテンシヤル凝縮
器C1の冷却管18に通すことが好ましい。
The lower the vapor pressure PL1 is, the lower the temperature of the low-concentration solution that determines the point state can be lowered, so it is preferable to pass cooling water as low as possible through the cooling pipe 18 of the low-potential condenser C1 .

吸収器Aにも冷却管29が備えられており、こ
れに共通の冷却媒体を用いることもできる。その
場合でも低ポテンシヤル凝縮器C1には常に最初
に冷却媒体を通すことが好ましいので、冷却媒体
の流れの順序は次の如き組み合わせが用いられ
る。
The absorber A is also equipped with a cooling pipe 29, and a common cooling medium can be used for this. Even in that case, it is preferable to always pass the cooling medium through the low potential condenser C1 first, so the following combinations of cooling medium flow orders are used.

() →C1→A→C2→ () →C1→C2→A→ 本発明は、吸収器、低温発生器、高温発生器、
凝縮器、蒸発器、低温溶液熱交換器、高温溶液交
換器、溶液ポンプ、冷媒ポンプ及びこれらの機器
を接続する溶液流路と冷媒流路とを備え、熱源と
して低ポテンシヤルエネルギ及び高ポテンシヤル
エネルギを用いるようにした吸収冷凍装置におい
て、前記低温発生器は、低ポテンシヤルエネルギ
により溶液を加熱する低ポテンシヤル低温発生器
と、前記高温発生器において高ポテンシヤルエネ
ルギにより発生した冷媒蒸気及び/又は該冷媒蒸
気の凝縮液を導いて溶液を加熱する加熱機構を備
えた高ポテンシヤル低温発生器とを有し、前記凝
縮器は、前記低ポテンシヤル低温発生器にて発生
した冷媒蒸気を導入して凝縮せしめる低ポテンシ
ヤル凝縮器と、前記高ポテンシヤル低温発生器に
て発生した冷媒蒸気を導入して凝縮せしめる高ポ
テンシヤル凝縮器とより成り、前記低ポテンシヤ
ル凝縮器及び前記高ポテンシヤル凝縮器にそれぞ
れ冷却媒体を通して冷媒を冷却凝縮せしめる冷却
機構を備え、前記低ポテンシヤル凝縮器の冷却機
構に導かれる冷却媒体は、前記高ポテンシヤル凝
縮器の冷却機構に導かれる冷却媒体よりも低温と
なし、前記溶液経路は、溶液が、前記吸収器、前
記低ポテンシヤル低温発生器、前記高温発生器、
前記高ポテンシヤル低温発生器の順に機器を通過
して順次濃縮され、前記吸収器に戻り、循環する
経路であることにより、次の如き特別顕著な効果
を奏する。
() →C 1 →A→C 2 → () →C 1 →C 2 →A→ The present invention provides an absorber, a low temperature generator, a high temperature generator,
It is equipped with a condenser, an evaporator, a low temperature solution heat exchanger, a high temperature solution exchanger, a solution pump, a refrigerant pump, and a solution flow path and a refrigerant flow path that connect these devices, and uses low potential energy and high potential energy as a heat source. In the absorption refrigeration apparatus used, the low-temperature generator includes a low-potential low-temperature generator that heats a solution with low-potential energy, and a refrigerant vapor generated by high-potential energy in the high-temperature generator and/or the refrigerant vapor. a high-potential low-temperature generator equipped with a heating mechanism that guides the condensate and heats the solution; and a high-potential condenser that introduces and condenses refrigerant vapor generated in the high-potential low-temperature generator, and cools and condenses the refrigerant by passing a cooling medium through the low-potential condenser and the high-potential condenser, respectively. a cooling mechanism, the cooling medium guided to the cooling mechanism of the low-potential condenser is lower temperature than the cooling medium guided to the cooling mechanism of the high-potential condenser, and the solution path is configured such that the solution passes through the absorber. , the low potential low temperature generator, the high temperature generator,
By passing through equipment in the order of the high-potential low-temperature generator, being concentrated in sequence, and returning to the absorber for circulation, the following particularly remarkable effects can be achieved.

(1) 低ポテンシヤル低温発生器内の温度を低下せ
しめて圧力を低下せしめる作用、及び同発生器
に濃度の小なる溶液を導くことにより沸点上昇
度を低下せしめる作用により、溶液が、低い沸
点で沸騰するようにして、低温の低ポテンシヤ
ルエネルギも有効に利用することができ、該エ
ネルギの利用範囲を広げ、貴重で高価な高ポテ
ンシヤルエネルギの消費を節減することができ
る。
(1) A low-potential low-temperature generator that lowers the temperature and pressure, and introduces a solution with a lower concentration into the generator to reduce the rise in boiling point. By boiling, low-temperature low-potential energy can also be effectively used, expanding the range of use of this energy and reducing the consumption of valuable and expensive high-potential energy.

(2) 高温発生器における濃縮のあと、溶液の最後
の濃縮段階を、高ポテンシヤル低温発生器で行
うことにより、最大濃度における溶液の温度を
低下せしめて、機器、管路の腐食を防止するこ
とができる。
(2) After concentration in the high-temperature generator, the final concentration step of the solution is performed in a high-potential low-temperature generator to lower the temperature of the solution at maximum concentration and prevent corrosion of equipment and pipes. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のフロー図、第2図は
その溶液サイクル線図である。 A……吸収器、E……蒸発器、GH……高温発
生器、GL1……低ポテンシヤル低温発生器、GL
2……高ポテンシヤル低温発生器、C1……低ポ
テンシヤル凝縮器、C2……高ポテンシヤル凝縮
器、SPH……高温側溶液ポンプ、SPL……低温
側溶液ポンプ、RP……冷媒ポンプ、HEH……高
温溶液熱交換器、HEL……低温溶液熱交換器、
1,2,3,4,5,6,7,8,9,10,1
1,12,13,14,15……管路、16……
冷水管、17……加熱管、18,19……冷却
管、20,21,22……管路、23……加熱
管、24……流量制御弁、25……燃料管、26
……流量制御弁、27……バーナ、28……炉
筒、29……冷却管、30……配管、31……
弁。
FIG. 1 is a flow diagram of an embodiment of the present invention, and FIG. 2 is a solution cycle diagram thereof. A...Absorber, E...Evaporator, GH...High temperature generator, GL1...Low potential low temperature generator, GL
2... High potential low temperature generator, C 1 ... Low potential condenser, C 2 ... High potential condenser, SPH... High temperature side solution pump, SPL... Low temperature side solution pump, RP... Refrigerant pump, HEH ...High temperature solution heat exchanger, HEL...Low temperature solution heat exchanger,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1
1, 12, 13, 14, 15... pipe, 16...
Cold water pipe, 17... Heating pipe, 18, 19... Cooling pipe, 20, 21, 22... Pipe line, 23... Heating pipe, 24... Flow rate control valve, 25... Fuel pipe, 26
...flow control valve, 27 ... burner, 28 ... furnace tube, 29 ... cooling pipe, 30 ... piping, 31 ...
valve.

Claims (1)

【特許請求の範囲】 1 吸収器、低温発生器、高温発生器、凝縮器、
蒸発器、低温溶液熱交換器、高温溶液交換器、溶
液ポンプ、冷媒ポンプ及びこれらの機器を接続す
る溶液流路と冷媒流路とを備え、熱源として低ポ
テンシヤルエネルギ及び高ポテンシヤルエネルギ
を用いるようにした吸収冷凍装置において、 前記低温発生器は、低ポテンシヤルエネルギに
より溶液を加熱する低ポテンシヤル低温発生器
と、前記高温発生器において高ポテンシヤルエネ
ルギにより発生した冷媒蒸気及び/又は該冷媒蒸
気の凝縮液を導いて溶液を加熱する加熱機構を備
えた高ポテンシヤル低温発生器とを有し、 前記凝縮器は、前記低ポテンシヤル低温発生器
にて発生した冷媒蒸気を導入して凝縮せしめる低
ポテンシヤル凝縮器と、前記高ポテンシヤル低温
発生器にて発生した冷媒蒸気を導入して凝縮せし
める高ポテンシヤル凝縮器とより成り、 前記低ポテンシヤル凝縮器及び前記高ポテンシ
ヤル凝縮器にそれぞれ冷却媒体を通して冷媒を冷
却凝縮せしめる冷却機構を備え、前記低ポテンシ
ヤル凝縮器の冷却機構に導かれる冷却媒体は、前
記高ポテンシヤル凝縮器の冷却機構に導かれる冷
却媒体よりも低温となし、 前記溶液経路は、溶液が、前記吸収器、前記低
ポテンシヤル低温発生器、前記高温発生器、前記
高ポテンシヤル低温発生器の順に機器を通過して
順次濃縮され、前記吸収器に戻り、循環する経路
である ことを特徴とした吸収冷凍装置。 2 前記低ポテンシヤル凝縮器の冷却機構を通過
した冷却媒体が、その下流において前記高ポテン
シヤル凝縮器の冷却機構を通過するよう構成され
ている特許請求の範囲第1項記載の装置。 3 前記高ポテンシヤル凝縮器で凝縮した冷媒液
を、前記低ポテンシヤル凝縮器に導くよう構成さ
れている特許請求の範囲第1項又は第2項記載の
装置。 4 前記吸収器冷却機構が備えられ、前記低ポテ
ンシヤル凝縮器の冷却機構を通過した冷却媒体
が、その下流において前記吸収器の冷却機構を通
過するよう構成されている特許請求の範囲第1
項、第2項又は第3項記載の装置。 5 前記吸収器に冷却機構が備えられ、前記低ポ
テンシヤル凝縮器の冷却機構、続いて前記高ポテ
ンシヤル凝縮器の冷却機構を通過した冷却媒体
が、その下流において前記の吸収器の冷却機構を
通過するよう構成されている特許請求の範囲第1
項、第2項、第3項又は第4項記載の装置。
[Claims] 1. Absorber, low temperature generator, high temperature generator, condenser,
It is equipped with an evaporator, a low temperature solution heat exchanger, a high temperature solution exchanger, a solution pump, a refrigerant pump, and a solution flow path and a refrigerant flow path that connect these devices, and uses low potential energy and high potential energy as a heat source. In the absorption refrigeration apparatus, the low-temperature generator includes a low-potential low-temperature generator that heats a solution with low-potential energy, and a refrigerant vapor generated by high-potential energy in the high-temperature generator and/or a condensate of the refrigerant vapor. a high-potential low-temperature generator equipped with a heating mechanism that heats the solution by introducing the refrigerant vapor generated in the low-potential low-temperature generator into the condenser; A cooling mechanism comprising a high-potential condenser that introduces and condenses refrigerant vapor generated in the high-potential low-temperature generator, and that cools and condenses the refrigerant by passing a cooling medium through the low-potential condenser and the high-potential condenser, respectively. the cooling medium guided to the cooling mechanism of the low potential condenser is lower temperature than the cooling medium guided to the cooling mechanism of the high potential condenser, and the solution path is configured such that the solution flows between the absorber and the low potential condenser. An absorption refrigeration system characterized in that the path passes through equipment in the order of a potential low temperature generator, the high temperature generator, and the high potential low temperature generator, is sequentially concentrated, returns to the absorber, and circulates. 2. The apparatus of claim 1, wherein the cooling medium that has passed through the cooling mechanism of the low potential condenser passes through the cooling mechanism of the high potential condenser downstream thereof. 3. The apparatus according to claim 1 or 2, wherein the apparatus is configured to guide the refrigerant liquid condensed in the high potential condenser to the low potential condenser. 4. The absorber cooling mechanism is provided, and the cooling medium that has passed through the low-potential condenser cooling mechanism is configured to pass through the absorber cooling mechanism downstream thereof.
2. The device according to item 2, item 3, or item 3. 5. The absorber is provided with a cooling mechanism, and the cooling medium that has passed through the low-potential condenser cooling mechanism and then the high-potential condenser cooling mechanism passes through the absorber cooling mechanism downstream thereof. Claim 1 constructed as follows:
3. The device according to item 2, item 3, or item 4.
JP2484287A 1987-02-06 1987-02-06 Absorption refrigerator Granted JPS62272068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2484287A JPS62272068A (en) 1987-02-06 1987-02-06 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2484287A JPS62272068A (en) 1987-02-06 1987-02-06 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS62272068A JPS62272068A (en) 1987-11-26
JPH0150829B2 true JPH0150829B2 (en) 1989-10-31

Family

ID=12149467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2484287A Granted JPS62272068A (en) 1987-02-06 1987-02-06 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS62272068A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1364228A (en) * 2000-08-29 2002-08-14 川重冷热工业株式会社 Absorbing refrigerator
JP4557468B2 (en) * 2001-08-07 2010-10-06 三洋電機株式会社 Absorption refrigerator
JP6264636B2 (en) * 2013-08-30 2018-01-24 パナソニックIpマネジメント株式会社 Absorption refrigerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56962A (en) * 1979-06-14 1981-01-08 Sanyo Electric Co Exhaust gas absorption refrigerating machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56962A (en) * 1979-06-14 1981-01-08 Sanyo Electric Co Exhaust gas absorption refrigerating machine

Also Published As

Publication number Publication date
JPS62272068A (en) 1987-11-26

Similar Documents

Publication Publication Date Title
EA011442B1 (en) Boiler condensation module
KR101225843B1 (en) Absorption Type Cooler and Heater
JP2782555B2 (en) Absorption heat pump
JP2005009754A (en) Single/double effect absorption refrigerating machine, and its operation control method
JP2006266633A (en) Cooling and heating operation method by absorption heat pump, and absorption heat pump
JPH0150829B2 (en)
KR101167800B1 (en) Absorption type refrigerating machine
JPS6115341B2 (en)
KR100512827B1 (en) Absorption type refrigerator
JP7390186B2 (en) Vacuum water heater
CN219367989U (en) Photo-thermal auxiliary crude oil heating system
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JPS5829424Y2 (en) absorption cold water machine
WO2020224286A1 (en) Combined cycle power device
JP2003075010A (en) Exhaust gas-driven absorption water cooling and warming machine
JP4334319B2 (en) Operation method of absorption refrigerator
JP2005326088A (en) Absorption refrigerating machine
SU47874A1 (en) The method of operation of heat engines
CN115217554A (en) Dual-fuel combined cycle steam power plant
JPS5849869A (en) Absorption refrigerator
NO129418B (en)
JPS6113546B2 (en)
JPS6149586B2 (en)
DE2625666A1 (en) Cooling system for remote unit - is connected to heat pump with remote extractor and absorber at medium temp.
CN115217547A (en) Double-fuel steam power device