JPH0150806B2 - - Google Patents

Info

Publication number
JPH0150806B2
JPH0150806B2 JP8673285A JP8673285A JPH0150806B2 JP H0150806 B2 JPH0150806 B2 JP H0150806B2 JP 8673285 A JP8673285 A JP 8673285A JP 8673285 A JP8673285 A JP 8673285A JP H0150806 B2 JPH0150806 B2 JP H0150806B2
Authority
JP
Japan
Prior art keywords
combustion
temperature
air
oxygen deficiency
combustion body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8673285A
Other languages
Japanese (ja)
Other versions
JPS61246508A (en
Inventor
Masato Hosaka
Atsushi Nishino
Jiro Suzuki
Yasuhiro Takeuchi
Yukyoshi Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8673285A priority Critical patent/JPS61246508A/en
Publication of JPS61246508A publication Critical patent/JPS61246508A/en
Publication of JPH0150806B2 publication Critical patent/JPH0150806B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spray-Type Burners (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)
  • Gas Burners (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気体燃料及び気化装置を有する液体燃
料の触媒燃焼装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a catalytic combustion device for gaseous fuel and a liquid fuel having a vaporization device.

従来の技術 従来の燃焼装置は、酸欠状態を検知する手段と
して、火炎電流の変化を検出して酸欠状態を検知
するフレームロツド(例えば、神谷是行他2名
「平面状火炎から取り出し得る火炎電流の特性」
日本機械学会論文集46巻408号P1598)を用いた
り、SnO2のように酸化雰囲気と還元雰囲気での
抵抗値変化を検出して酸欠状態を検知する化学セ
ンサ(例えば、特公昭45−38200号公報)を用い
たりしていた。
BACKGROUND TECHNOLOGY Conventional combustion devices use flame rods (for example, Koreyuki Kamiya et al. ``Flame that can be extracted from a planar flame''), which detect oxygen deficiency conditions by detecting changes in flame current, as means for detecting oxygen deficiency conditions. "Characteristics of current"
(Transactions of the Japan Society of Mechanical Engineers Vol. 46, No. 408, P1598), or a chemical sensor that detects an oxygen-deficient state by detecting resistance changes in an oxidizing and reducing atmosphere, such as SnO 2 (No. Publication).

発明が解決しようとする問題点 しかし、火炎がほとんど存在しない面燃焼を行
なう触媒燃焼装置に酸欠検知手段として、フレー
ムロツドを用いた場合、火炎が燃焼面にほとんど
存在しないために、フレームロツドを燃焼面のご
く近傍に置いても、フレームロツドを流れるイオ
ン電流の大きさが非常に小さくなる。従つて酸欠
時のイオン電流の変化を検出することが難かし
く、またSN比も小さいので、信頼性に欠けてい
た。また化学センサを用いた場合、まだ化学セン
サ自身の耐久性が十分でないこと、酸欠検知を行
なう場合に酸欠雰囲気と還元雰囲気での物質変化
を利用しているために、使用できる空燃比が限ら
れることなど、あまり適していなかつた。
Problems to be Solved by the Invention However, when a flame rod is used as an oxygen deficiency detection means in a catalytic combustion device that performs surface combustion where there is almost no flame, the flame rod is used as an oxygen deficiency detection means because there is almost no flame on the combustion surface. Even when placed very close to the flame rod, the magnitude of the ion current flowing through the flame rod becomes very small. Therefore, it is difficult to detect changes in ionic current during oxygen deficiency, and the signal-to-noise ratio is low, resulting in lack of reliability. Furthermore, when using a chemical sensor, the durability of the chemical sensor itself is not yet sufficient, and when detecting oxygen deficiency, material changes in an oxygen-deficient atmosphere and a reducing atmosphere are used, so the air-fuel ratio that can be used is limited. I wasn't really suited for being limited.

そこで、本発明は触媒燃焼装置の酸欠状態を精
度よく検知できるようにするものである。
Therefore, the present invention makes it possible to accurately detect the oxygen deficiency state of a catalytic combustion device.

問題点を解決するための手段 そして上記問題点を解決する本発明の技術的な
手段は、触媒を担持した燃焼体を有する予混合室
の一側に、燃料と燃焼用空気の混合気の入口部を
設け、さらに予混合室の他側近傍に燃焼体の温度
を検出する温度検出装置を設けるものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to provide an inlet for the mixture of fuel and combustion air on one side of the premixing chamber having a combustion body carrying a catalyst. In addition, a temperature detection device for detecting the temperature of the combustion body is provided near the other side of the premixing chamber.

作 用 この技術的手段による作用は次のようになる。Effect The effect of this technical means is as follows.

予混合部より混合気の入口部を経て予混合室の
一端より予混合室へ供給された燃料と燃焼用空気
の混合気は、燃焼体に接触しながら予混合室の他
端へ流れていく。従つて、燃焼体での燃焼量は混
合気の入口部近傍が最も多く、燃焼体の他端へい
くに従い燃焼量は少なくなる。一方、混合気は、
予混合室内を流れる際に燃焼体の燃焼熱を受け予
熱されよ温度が高くなる。従つて混合気の温度
は、燃焼量の場合とは逆に混合気の入口部近傍が
最も低く、予混合室の他端へいくに従い温度が高
くなる。燃焼体の温度は、燃焼量と混合気の予熱
温度により決定され、この2つの要因がかかわり
あつて、燃焼体での温度を均一にしている。ここ
で、燃焼用空気として酸欠空気が予混合室へ供給
された場合を考えてみる。燃焼用空気が酸欠状態
になると燃焼温度が低下する。燃焼温度が低下す
ると、混合気が燃焼体の燃焼熱を受ける割合が少
なくなり、混合気の予熱温度が低くなる。混合気
入口部近傍では、混合気はほとんど予熱されてい
ないので、酸欠による燃焼温度の低下のみにより
燃焼体の温度が低下する。これに対し、燃焼体の
他端では、酸欠による燃焼温度の低下に加えて、
混合気の予熱温度が低下するために、酸欠時に燃
焼体温度の低下が他の部分に比べて大きくなる。
従つて、燃焼体のこの部分の温度を検出しておけ
ば、酸欠状態を精度よく検知することができる。
The mixture of fuel and combustion air is supplied from one end of the premixing chamber to the premixing chamber through the air-fuel mixture inlet from the premixing section, and flows to the other end of the premixing chamber while contacting the combustion body. . Therefore, the amount of combustion in the combustion body is greatest near the inlet of the air-fuel mixture, and decreases toward the other end of the combustion body. On the other hand, the mixture is
As it flows through the premixing chamber, it receives the combustion heat of the combustion body and is preheated, raising its temperature. Therefore, contrary to the combustion amount, the temperature of the air-fuel mixture is lowest near the inlet of the air-fuel mixture, and increases toward the other end of the premixing chamber. The temperature of the combustion body is determined by the amount of combustion and the preheating temperature of the air-fuel mixture, and these two factors work together to make the temperature in the combustion body uniform. Now, let us consider a case where oxygen-deficient air is supplied to the premixing chamber as combustion air. When the combustion air becomes oxygen deficient, the combustion temperature decreases. When the combustion temperature decreases, the proportion of the air-fuel mixture that receives the combustion heat of the combustion body decreases, and the preheating temperature of the air-fuel mixture becomes lower. In the vicinity of the air-fuel mixture inlet, the air-fuel mixture is hardly preheated, so the temperature of the combustion body is reduced only due to a reduction in combustion temperature due to oxygen deficiency. On the other hand, at the other end of the combustion body, in addition to the decrease in combustion temperature due to oxygen deficiency,
Since the preheating temperature of the air-fuel mixture decreases, the decrease in combustion body temperature during oxygen deficiency is greater than in other parts.
Therefore, by detecting the temperature of this part of the combustion body, the oxygen deficiency state can be detected with high accuracy.

実施例 以下、本発明の一実施例を添付図面にもとづい
て説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the accompanying drawings.

第2図において1は石油タンクで、石油タンク
1よりポンプ2で燃料は気化器3へ送られてい
る。気化器3で液体の燃料は電熱により気化し、
送風機4の空気と混合され予混合ガス5となる。
予混合ガス5は予混合経路6を通り、熱透過体7
と多数の燃焼孔8を有する燃焼体9からなる予混
合室10の一端にある混合気入口部11より予混
合室10へ供給される。燃焼体9は耐熱合金、セ
ラミツク、セメント系の金網、多孔体、ハニカム
等任意の材料や形状が考えられるもので、燃料の
種類、燃焼量、燃焼負荷率などの点を考慮して選
択すればよいものである。燃焼体9には白金族系
や鉄マンガン系などの触媒を担持してある。燃焼
体9の下流にある排気室12内にある点火ヒータ
13に通電すれば、燃焼体9の温度が高温にな
り、この時に予混合ガス5を燃焼体9に供給する
と燃焼体9の表面から燃焼を行なう。予混合室1
0の混合気入口部11と反対側の端に温度検出装
置14が設けてある。温度検出装置14には熱電
対や赤外線温度センサなどを用いることができ
る。温度検出装置14からの信号は判断回路15
に送られ、酸欠時には気化器3へ信号を送り、気
化を停止し、燃焼を停止する。
In FIG. 2, 1 is an oil tank, and fuel is sent from the oil tank 1 to a vaporizer 3 by a pump 2. The liquid fuel is vaporized by electric heat in the vaporizer 3,
It is mixed with air from the blower 4 to form a premixed gas 5.
The premixed gas 5 passes through the premixing path 6 and passes through the heat transmitting body 7
The mixture is supplied to the premixing chamber 10 from an inlet 11 located at one end of the premixing chamber 10, which includes a combustion body 9 having a large number of combustion holes 8. The combustion body 9 can be made of any material or shape such as heat-resistant alloy, ceramic, cement-based wire mesh, porous body, honeycomb, etc., and can be selected by considering the type of fuel, combustion amount, combustion load rate, etc. It's good. The combustion body 9 supports a platinum group catalyst, iron manganese catalyst, or the like. When the ignition heater 13 in the exhaust chamber 12 located downstream of the combustion body 9 is energized, the temperature of the combustion body 9 becomes high, and when the premixed gas 5 is supplied to the combustion body 9 at this time, it is heated from the surface of the combustion body 9. Perform combustion. Premixing chamber 1
A temperature detection device 14 is provided at the end opposite to the air-fuel mixture inlet section 11 of 0. A thermocouple, an infrared temperature sensor, or the like can be used as the temperature detection device 14. The signal from the temperature detection device 14 is sent to the judgment circuit 15.
When there is a lack of oxygen, a signal is sent to the vaporizer 3 to stop vaporization and combustion.

第1図を用いて酸欠検知の機構について説明す
る。正常空気中の燃焼(図中の実線)においては
次の事が言える。燃焼量は、混合気入口部11に
近いほど多く(第1図a)、予混合ガス5の温度
は混合気の入口部より遠いほど高く(第1図b)
なつている。
The mechanism of oxygen deficiency detection will be explained using FIG. Regarding combustion in normal air (solid line in the figure), the following can be said. The amount of combustion increases as it approaches the air-fuel mixture inlet 11 (Fig. 1a), and the temperature of the premixed gas 5 increases as it moves away from the air-fuel mixture inlet (Fig. 1b).
It's summery.

混合気入口部11より予混合室10へ流入した
予混合ガス5は燃焼体9に接触し、燃焼体9に担
持した触媒の作用で触媒燃焼を行なう。この触媒
燃焼は、混合気入口部11に近いところから遠い
ところへ順次行なわれていくので、混合気入口部
11に近いほど、燃焼体9での燃焼量が多くな
る。また、予混合ガス5は予混合室10内を燃焼
体9に沿つて流れるために、燃焼体9の燃焼熱を
受け、予熱されて温度が高くなる。このために予
混合ガス5の温度は混合気入口部11から遠いほ
ど高くなる。燃焼体9の温度は燃焼量と予混合気
11の予熱温度で決定され、この二つの要因がか
かわりあつて、燃焼体9での温度を均一にしてい
る(第1図c)。
The premixed gas 5 flowing into the premixing chamber 10 from the air-fuel mixture inlet 11 comes into contact with the combustion body 9, and catalytic combustion is performed by the action of the catalyst supported on the combustion body 9. This catalytic combustion is performed sequentially from a place close to the air-fuel mixture inlet 11 to a place far away from the air-fuel mixture inlet 11, so that the closer to the air-fuel mixture inlet 11, the larger the amount of combustion in the combustion body 9 becomes. Moreover, since the premixed gas 5 flows in the premixing chamber 10 along the combustion body 9, it receives the combustion heat of the combustion body 9, is preheated, and has a high temperature. For this reason, the temperature of the premixed gas 5 becomes higher as the distance from the air-fuel mixture inlet portion 11 increases. The temperature of the combustion body 9 is determined by the amount of combustion and the preheating temperature of the premixture 11, and these two factors work together to make the temperature in the combustion body 9 uniform (FIG. 1c).

これに対して酸欠空気中の燃焼(図中の破線)
については次のことが言える。一般に燃焼用空気
が酸欠状態になると燃焼温度が低下することが知
られている。従つて、燃焼温度が低下すると、予
混合ガス5が燃焼体9から受ける燃焼熱が少なく
なるために、予混合ガス5の予熱温度が低くなる
(第1図b)。混合気入口部11近傍の混合ガス5
はほとんど予熱されないために、酸欠による燃焼
温度の低下のみにより燃焼体9の温度が低下す
る。一方、予混合室10の他端では、酸欠による
燃焼温度の低下に加えて、予混合ガス5の予熱温
度が低下するために、酸欠時に燃焼体9の温度低
下が他の部分に比べて著しい(第1図c)。
In contrast, combustion in oxygen-deficient air (dashed line in the figure)
The following can be said about It is generally known that combustion temperature decreases when combustion air becomes oxygen deficient. Therefore, when the combustion temperature decreases, the premixed gas 5 receives less combustion heat from the combustion body 9, so that the preheating temperature of the premixed gas 5 decreases (FIG. 1b). Mixed gas 5 near the mixture inlet 11
Since the combustion body 9 is hardly preheated, the temperature of the combustion body 9 decreases only due to a decrease in combustion temperature due to oxygen deficiency. On the other hand, at the other end of the premixing chamber 10, in addition to the combustion temperature decreasing due to oxygen deficiency, the preheating temperature of the premixed gas 5 decreases, so the temperature of the combustion body 9 decreases compared to other parts during oxygen deficiency. (Fig. 1c).

従つて、燃焼体9の混合気入口部11とは反対
側の端の近傍での燃焼体9の温度を検出しておけ
ば、酸欠状態を精度よく検知することができる。
また、温度という物理量を検出して酸欠検知を行
なつているので、従来の方式よりも信頼性や耐久
性をなお一層向上することができる。
Therefore, by detecting the temperature of the combustion body 9 in the vicinity of the end opposite to the air-fuel mixture inlet portion 11 of the combustion body 9, the oxygen deficiency state can be detected with high accuracy.
Furthermore, since oxygen deficiency is detected by detecting a physical quantity called temperature, reliability and durability can be further improved compared to conventional methods.

次に本発明の他の実施例について説明する。 Next, other embodiments of the present invention will be described.

第3図は他の実施例を示しており、この実施例
では、燃焼体9の一端側と、他端側の温度を検出
する温度を検出する温度検出装置14,16が設
けられている。前述の実施例で説明したように、
酸欠時の燃焼体9の温度低下を利用すると酸欠状
態を検知することができる。また第1図cに示し
たように、混合気入口部11からの距離により酸
欠時の燃焼体9の温度低下が異なる。本実施例で
はこの事を利用したもので、温度検出装置14,
16を2個設け、両方の検出値の差を検出すれ
ば、酸欠状態を精度よく検知することができる。
加えて、検出値が絶対値ではなく、相対値である
ために、燃焼量や空燃比が変化した場合でも、酸
欠状態を精度よく検知することができる。
FIG. 3 shows another embodiment, in which temperature detection devices 14 and 16 are provided for detecting the temperature at one end of the combustion body 9 and the temperature at the other end. As explained in the previous example,
An oxygen deficiency state can be detected by utilizing the temperature drop of the combustion body 9 during oxygen deficiency. Further, as shown in FIG. 1c, the temperature drop of the combustion body 9 during oxygen deficiency differs depending on the distance from the air-fuel mixture inlet portion 11. In this embodiment, this fact is utilized, and the temperature detection device 14,
By providing two sensors 16 and detecting the difference between both detection values, it is possible to accurately detect an oxygen deficiency state.
In addition, since the detected value is not an absolute value but a relative value, even if the combustion amount or air-fuel ratio changes, the oxygen deficiency state can be detected with high accuracy.

発明の効果 本発明は、触媒を担持した燃焼体を有する予混
合室の一側に、燃料と燃焼用空気の混合気の入口
部を設け、さらに予混合室の他側近傍に温度検出
装置を設けるものであるので、酸欠状態を精度よ
く検知することができる。さらに酸欠検知を行な
う際に、温度という物理量を検出しているので、
従来の方式よりも信頼性や耐久性をなお一層向上
することができる。
Effects of the Invention The present invention provides an inlet portion for a mixture of fuel and combustion air on one side of a premixing chamber having a combustion body carrying a catalyst, and further includes a temperature detection device near the other side of the premixing chamber. Therefore, the oxygen deficiency state can be detected with high accuracy. Furthermore, when detecting oxygen deficiency, we are detecting a physical quantity called temperature.
Reliability and durability can be further improved compared to conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜cは本発明の一実施例の触媒燃焼装
置の燃焼体の温度特性図、第2図は同触媒燃焼装
置の縦断面図、第3図は本発明の他の実施例の触
媒燃焼装置の縦断面図である。 7……熱透過体、8……燃焼孔、9……燃焼
体、10……予混合室、11……混合気入口部、
14,16……温度検出装置。
Figures 1 a to c are temperature characteristic diagrams of the combustion body of a catalytic combustion device according to one embodiment of the present invention, Figure 2 is a longitudinal sectional view of the same catalytic combustion device, and Figure 3 is a diagram of another embodiment of the present invention. FIG. 2 is a longitudinal cross-sectional view of a catalytic combustion device. 7... Heat transmitting body, 8... Combustion hole, 9... Combustion body, 10... Premixing chamber, 11... Mixture inlet section,
14, 16...Temperature detection device.

Claims (1)

【特許請求の範囲】 1 触媒を担持した燃焼体を有する予混合室の一
側に、燃料と燃焼用空気の予混合気の入口部を設
け、さらに前記予混合室の他側近傍に、前記燃焼
体の温度を検出する温度検出装置を設けた触媒燃
焼装置。 2 燃焼体の一側と、他側に温度検出装置を設け
た特許請求の範囲第1項記載の触媒燃焼装置。
[Scope of Claims] 1. An inlet portion for a premixture of fuel and combustion air is provided on one side of a premixing chamber having a combustion body carrying a catalyst, and an inlet portion for a premixture of fuel and combustion air is provided near the other side of the premixing chamber. A catalytic combustion device equipped with a temperature detection device that detects the temperature of the combustion body. 2. The catalytic combustion device according to claim 1, wherein temperature detection devices are provided on one side and the other side of the combustion body.
JP8673285A 1985-04-23 1985-04-23 Catalyst burner Granted JPS61246508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8673285A JPS61246508A (en) 1985-04-23 1985-04-23 Catalyst burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8673285A JPS61246508A (en) 1985-04-23 1985-04-23 Catalyst burner

Publications (2)

Publication Number Publication Date
JPS61246508A JPS61246508A (en) 1986-11-01
JPH0150806B2 true JPH0150806B2 (en) 1989-10-31

Family

ID=13895008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8673285A Granted JPS61246508A (en) 1985-04-23 1985-04-23 Catalyst burner

Country Status (1)

Country Link
JP (1) JPS61246508A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297709A (en) * 1991-03-26 1992-10-21 Matsushita Electric Ind Co Ltd Catalyst combustion apparatus

Also Published As

Publication number Publication date
JPS61246508A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
JP3553073B2 (en) Sensor for measuring the concentration of gas components in the mixture
US4770760A (en) Electrochemical NOx sensor
JP5114453B2 (en) Air-fuel ratio sensor
JP2009511879A (en) Nitrogen oxide sensor and method for using the same
EP0874236A3 (en) Apparatus and sensor for sensing low concentration NOx
US4844788A (en) Wide-range air/fuel ratio sensor and detector using the same
EP0014091B1 (en) Ceramic sensor element
EP0227257B1 (en) Electrochemical device
JP3481344B2 (en) Method for detecting deterioration of exhaust gas purifying catalyst and system therefor
GB1593622A (en) Method of and means for controlling internal combustion engine air-to-fuel ratios
US6942772B1 (en) Measuring sensor for the determination of a concentration of gas constituents in gaseous mixtures
JPH11194055A (en) Decision method for exhaust-gas temperature and air fuel ratio number (lambda) and sensor device for execution of the same
JPH0150806B2 (en)
EP0962765A2 (en) Exhaust oxygen sensing
JPH09500959A (en) Method and apparatus for the detection of oxidizable substances in space
JP2847979B2 (en) Oxide semiconductor gas sensor
JPWO2005015191A1 (en) Gas sensor and gas detection method
JPS60205343A (en) Air-fuel ratio detector for lean burn
JPH11190709A (en) Method for monitoring functionality of catalyst
JPH03216546A (en) Activation treatment of oxygen sensor element
JPH0980019A (en) Method for measuring total nox content
JPS60253859A (en) Gas sensor
JP2628704B2 (en) Air-fuel ratio control method
JPS5817248Y2 (en) Air fuel ratio detection device
JPS60159517A (en) Device for detecting flame and combustion state

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term