JPH0150687B2 - - Google Patents

Info

Publication number
JPH0150687B2
JPH0150687B2 JP5040181A JP5040181A JPH0150687B2 JP H0150687 B2 JPH0150687 B2 JP H0150687B2 JP 5040181 A JP5040181 A JP 5040181A JP 5040181 A JP5040181 A JP 5040181A JP H0150687 B2 JPH0150687 B2 JP H0150687B2
Authority
JP
Japan
Prior art keywords
acetone
column
methanol
tower
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5040181A
Other languages
Japanese (ja)
Other versions
JPS57165338A (en
Inventor
Hiroaki Kai
Satoru Nezu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5040181A priority Critical patent/JPS57165338A/en
Publication of JPS57165338A publication Critical patent/JPS57165338A/en
Publication of JPH0150687B2 publication Critical patent/JPH0150687B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアセトンシアンヒドリンからメタクリ
ル酸メチルを合成するプロセスにおいて副生する
アセトン含有低沸点混合物からアセトンを効果的
に回収する方法に関する。 メタクリル酸メチルは、一般には、アセトン及
びシアン化水素からアセトンシアンヒドリンを合
成し、次いで硫酸を用いてメタクリルアミドとし
た後メタノールと反応させて合成している。とこ
ろが、このようにして合成したメタクリル酸メチ
ルを精製する工程において様々な不純物を除かな
ければならないが、なかでも副生するアセトンは
本プロセスの主要な原料物質として重要であるの
で一旦他の低沸点成分と共に低沸点混合物として
分離し、回収工程で回収して再びアセトンシアン
ヒドリンの合成に供されている。 このようにして回収されるアセトン中には、従
来、エステル化反応に使用した余剰メタノール、
アセトンシアンヒドリンの合成に際して使用する
硫酸及び重合防止剤に含まれている硫黄分に起因
する二酸化硫黄、アセトンシアンヒドリンの分解
及びシアン化水素の安定剤として用いられること
のある酢酸がエステル化された酢酸メチル並びに
メタクリル酸メチルなどが含まれている。このた
め、従来アセトン回収工程ではこれらの不純物を
十分な注意を払つて除去しているが、特に酢酸メ
チル及び二酸化硫黄の存在はプロセスにおいて次
のような不都合を生ぜしめるため徹底的に除去す
ることが必要である。 酢酸メチルは沸点(57.5℃)がアセトンの沸点
(56.13℃)ときわめて近いために蒸留による分離
が困難であり、そのためアセトンシアンヒドリン
合成工程において未反応アセトンと共にアセトン
シアンヒドリン精製塔やアセトン・シアン化水素
回収蒸留塔を循環し乍ら蓄積するので蒸留塔の負
荷が過重となり、ついには、アセトンやシアン化
水素を含んだまま酢酸メチルを系外へたびたび排
出させざるを得ない事態となる。このため廃液処
理コストの上昇や原料アセトン及びシアン化水素
の損失を招くことになる。一方、二酸化硫黄は、
アセトンとシアン化水素からアセトンシアンヒド
リンを合成する反応に一般的に用いられるアルカ
リ触媒を消費し中和塩を生成してアセトンシアン
ヒドリン精製工程の閉塞や濾過器負荷の増加の原
因となるなどの問題をひきおこす。 従来は例えば、 (1) 酢酸メチルを水と共に触媒(H型イオン交換
樹脂)層の上部へ送入し、抽出蒸留部を下部に
設けて底部から加熱し最上部に還流域を設けて
反応蒸留を行ない塔下部から酢酸およびメタノ
ールを水とともに取出す方法(特公昭43−6602
号公報参照); (2) メタノール、乳酸又は水を含有するか若しく
は含有しない乳酸メチルを連続的に蒸留塔に供
給し、酸性触媒またはイオン交換樹脂触媒の存
在下で棚段数及び滞留時間を加水分解速度定数
との関係から数値制限して連続的に加水分解す
る方法(特公昭55−45055号公報参照); (3) アセトンシアンヒドリンを出発原料として得
られた粗メタクリル酸メチルエステルの精製工
程における低沸点留出液を連続蒸留して不純物
を分離し、メタクリル酸メチルエステルおよび
メタノールを回収するに当り第3成分として水
を連続的に供給することで精製工程における低
沸点留出液から不純物を分離する方法(特公昭
39−24438号公報参照) などの方法が提案されている。しかしながら、こ
れらの方法には依然として問題があり、十分満足
なものとは言えない。すなわち、前記(1)及び(2)の
方法には、いずれも反応蒸留塔であり充填物に触
媒を詰めているため反応収率を蒸留塔の制限条件
(圧力、流量及び棚段数)の中で安定的に維持す
るのが極めて困難であることおよび我々の目的と
する二酸化硫黄および酢酸メチルを含まない回収
アセトンを得る方法については何ら示唆されてい
ないという問題がある。また前記(3)の方法は、塔
底からメタクリル酸メチルおよびメタノールを回
収することを意図したものであり、塔頂からは、
アセトン、エーテル、酢酸メチル及びその他の不
純物を除去している。つまり、この先行技術によ
れば、アセトンと共に、酢酸メチルその他の低沸
点不純物として明記されてはいないが、二酸化硫
黄は塔頂から留出してくるという問題がある。 従つて、本発明者等は前記した従来技術の問題
点を克服し、二酸化硫黄を含まずかつ酢酸メチル
からのメタノールを有効に回収しつつ酢酸メチル
を含まないアセトンを効果的に回収する方法を開
発すべく鋭意研究を進めた結果、本発明に到達し
た。 本発明のアセトン回収方法は、アセトンシアン
ヒドリン、硫酸およびメタノールからメタクリル
酸メチルを合成する際に副生するアセトン含有低
沸点混合物からアセトンを回収するにあたり、前
記低沸点混合物をアルカリ性に保ち乍ら蒸留して
アセトンを回収することを特徴とする。 本発明に従えば、例えばアルカリ性触媒の存在
下にシアン化水素とアセトンからアセトンシアン
ヒドリンを合成し、次いで硫酸及びメタノールを
反応せしめてメタクリル酸メチルを合成するプロ
セスにおいて、生成メタクリル酸メチルを蒸留し
て精製する際に蒸留塔塔頂から得られる、ジメチ
ルエーテル、メタノール、アセトン、水及び酢酸
メチルを含む低沸点混合物からアセトンを効果的
に蒸留回収することができる。かかる低沸点混合
物からアセトンを蒸留回収する際にはこの低沸点
混合物をアルカリ性に保ち乍ら蒸留することが必
要であり、さもなければ所期の目的は達成できな
い。低沸点混合物へのアルカリ添加量は、混合物
中に当初から含まれている酸性物質を中和するの
に必要な当量及び酢酸メチルの加水分解で発生す
る酢酸を中和するのに必要な当量の合計量以上の
量である。このようにしてアルカリ添加した混合
液は、必要なら、加温し、そして適当時間放置し
た後、アセトン回収蒸留塔に供給してアセトンを
回収する。アセトン回収塔では塔頂からメタノー
ル抽出水を送入し、塔底から加熱用蒸気を送入す
る。必要あれば、塔内を減圧にして塔内温度を低
く保ち、重合性物質の塔内での重合を抑制するこ
とができる。かくして塔頂から二酸化硫黄及び酢
酸メチルを実質上含まないアセトンを回収するこ
とができ、何の支障を来たすことなく、そのまま
アセトンシアンヒドリン合成工程へ送つて使用す
ることができる。一方アセトン回収塔塔底から
は、水及び亜硫酸アルカリ塩とともに、酢酸アル
カリ塩およびメタノールが抜き出される。この塔
底からの抜出し液は、必要あれば別の蒸留塔へ導
き、未回収のアセトン、アセトンから分離された
メタノールおよび酢酸メチルの加水分解によつて
派生したメタノール等の比較的低沸点有効成分を
塔頂から回収するとともに、酢酸および亜硫酸の
アルカリ塩および水等の比較的高沸点物を塔底か
ら抜き出すことができる。このようにすることに
より、有効成分を失うことなく有効に利用するこ
とができ経済的に有利である。 以下、本発明の実施の一例を示す添付工程図に
従つて本発明を更に具体的に説明する。 アルカリ触媒1、アセトン2及びシアン化水素
3をアセトンシアンヒドリン合成反応器4に送入
して反応させ、反応混合物を中和反応器5に導い
て中和用酸6で酸性にする。このようにして得ら
れた粗アセトンシアンヒドリン7はアセトンシア
ンヒドリン精製塔8に送り、塔頂から含有未反応
シアン化水素及びアセトン9を回収して合成反応
器4に返送し、塔底から精製アセトンシアンヒド
リン10を得る。このようにして得たアセトンシ
アンヒドリン10に硫酸11を添加し、メタクリ
ルアミド応器12に送入する。反応液はエステル
化反応器13に導びき、エステル化反応器13メ
タノール液14を添加する。生成した粗エステル
18は、加熱により反応器13から蒸発し、メタ
ノール抽出塔16でメタノール抽出水17を用い
て含有余剰メタノールの大部分を抽出分離した
後、低沸点物分離塔19へ送入する。反応器13
の底部からは廃液15を分離し、メタノール抽出
塔16の抽出メタノール液は反応器13へ供給し
て再使用する。 低沸点物分離塔19では水20を塔中央部から
抜き出すと共にその他の低沸点混合物21(例え
ばジメチルエーテル、二酸化硫黄、メタノール、
アセトン及び酢酸メチルなど)は塔頂から留出さ
せる。塔底からはこれらの低沸点物を分離した粗
エステル22を得、次にメタクリル酸メチル精製
塔23へ送つて精製メタクリル酸メチル34と高
沸点混合物35とに分離する。 低沸点混合物21は、アルカリ24を必要によ
りアルカリ添加槽25を設けて、添加してアルカ
リ性に調整した後、アセトン回収塔27に送入す
る。なお、アルカリ添加槽25においては、必要
により(例えば、アルカリ添加によつて液が2相
分離した場合)、槽底部より廃液26を分離除去
する。アセトン回収塔27では塔頂付近から水2
8を添加して低沸点混合物中のアセトンを塔頂か
ら回収し、回収アセトン29としてそのままアセ
トンシアンヒドリン合成反応器4へ送つて循環再
使用することができる。塔底からは廃液30を抜
き出し、所望なら、この中に含まれるメタノール
などの有効成分を回収するため、例えばメタノー
ル回収塔31に送つて回収メタノール32と廃液
33(水、酢酸アルカリ塩、亜硫酸アルカリ塩な
どの含有)とに分離することができる。この場
合、回収メタノール32はエステル化反応器13
に送つて再使用することができる。 以下に本発明の実施例を示し、本発明を更に具
体的に説明する。 実施例 1 アセトンシアンヒドリン566Kg/Hおよび濃硫酸
855Kg/Hを混合し、反応器にて温度150℃でメタ
クリルアミド硫酸塩を生成せしめ、39重量%メタ
ノール水溶液870Kg/Hとともに、加熱装置および
凝縮器を備えた容積3000の反応器を3槽直列に
使用したエステル化反応及び蒸発工程へ連続的に
送入し、メタクリル酸メチルを主成分とする粗エ
ステル753Kg/Hを収得した。次いで、この粗エス
テルを回転円盤式抽出塔(内径43cm、32段)の下
部へ供給し、塔上部から195Kg/Hの抽出水を加え
て粗エステル中に含まれるメタノールを抽出し、
塔底部から得たメタノール水溶液は再びメタノー
ル濃度を調整したのちエステル化反応に再使用し
た。一方、塔頂からは粗エステル636Kg/Hを得、
これを塔径45cm、棚段40段からなる低沸点物分離
蒸留塔の上から11段目の位置へ送入し、この蒸留
塔の塔下部から低沸点物質を実質的に含まない粗
メタクリル酸メチル610Kg/Hを得た。この粗メタ
クリル酸メチルは更に精製塔に送り、精製塔塔頂
から精製メタクリル酸メチル550Kg/Hを得た。一
方低沸点物分離蒸留塔の中央部付近から液を抜き
出し、静置した後、水に富む下相50Kg/Hを排出
し、残りは塔に戻した。低沸点物分離蒸留塔の塔
頂温度は30℃、圧力は260mmHgを示し、塔頂から
下記組成の留分275Kg/Hを得、このうち11Kg/H
を系外へ抜き出し残りは塔頂部へ還流した。 低沸点物分離蒸留塔塔頂留分の組成 組 成 重量% アセトン 68.8 メタノール 4.7 酢酸メチル 8.6 ジメチルエーテル 5.0 メタクリル酸メチル 9.5 二酸化イオウ 2.4 その他 1.0 系外へ抜出した留分11Kg/Hは容量100の加熱
器及び撹拌機付き反応器に送入し、温度を60℃に
保ち乍ら、25重量%カセイソーダ水溶液5Kg/H
を添加した。この反応器からPH約13.5の白濁した
混合物16Kg/Hを抜き出し、これを内径12.6cm及
び段数28段のアセトン回収蒸留塔の上から14段目
の位置へ送入し、塔頂部から水25Kg/Hを加え、
塔頂圧力を250torrに保つて塔頂および塔底から
以下の組成の留分を得た。
The present invention relates to a method for effectively recovering acetone from an acetone-containing low-boiling mixture produced as a by-product in the process of synthesizing methyl methacrylate from acetone cyanohydrin. Methyl methacrylate is generally synthesized by synthesizing acetone cyanohydrin from acetone and hydrogen cyanide, converting it into methacrylamide using sulfuric acid, and then reacting it with methanol. However, in the process of purifying the methyl methacrylate synthesized in this way, various impurities must be removed, and the by-product acetone is particularly important as a main raw material in this process, so it must be removed first from other impurities. It is separated together with boiling point components as a low boiling point mixture, recovered in a recovery step, and used again for the synthesis of acetone cyanohydrin. The acetone recovered in this way contains excess methanol used in the esterification reaction,
Sulfur dioxide is caused by the sulfur content contained in the sulfuric acid and polymerization inhibitor used in the synthesis of acetone cyanhydrin, and acetic acid, which is sometimes used as a stabilizer for decomposition of acetone cyanhydrin and hydrogen cyanide, is esterified. Contains methyl acetate and methyl methacrylate. For this reason, in the conventional acetone recovery process, these impurities are removed with great care, but in particular the presence of methyl acetate and sulfur dioxide causes the following inconveniences in the process, so they must be thoroughly removed. is necessary. Methyl acetate is difficult to separate by distillation because its boiling point (57.5°C) is very close to that of acetone (56.13°C). Therefore, in the acetone cyanohydrin synthesis process, it is used in an acetone cyanohydrin purification tower or acetone cyanohydrin together with unreacted acetone. As it circulates through the hydrogen cyanide recovery distillation column, it accumulates, resulting in an excessive load on the distillation column, and eventually, methyl acetate still containing acetone and hydrogen cyanide has to be frequently discharged from the system. This results in an increase in waste liquid treatment costs and loss of raw materials acetone and hydrogen cyanide. On the other hand, sulfur dioxide
The alkaline catalyst commonly used in the reaction to synthesize acetone cyanhydrin from acetone and hydrogen cyanide is consumed and neutralized salts are produced, which can clog the acetone cyanhydrin purification process and increase the load on filters. cause problems. Conventionally, for example, (1) Methyl acetate was fed together with water to the top of the catalyst (H-type ion exchange resin) layer, an extractive distillation section was installed at the bottom to heat it from the bottom, and a reflux section was installed at the top to perform reactive distillation. A method for extracting acetic acid and methanol together with water from the lower part of the tower (Special Publication No. 43-6602
(2) Methyl lactate containing or not containing methanol, lactic acid, or water is continuously fed to a distillation column, and the number of plates and residence time are adjusted in the presence of an acidic catalyst or an ion exchange resin catalyst. A method of continuous hydrolysis with numerical limitations in view of the relationship with the decomposition rate constant (see Japanese Patent Publication No. 55-45055); (3) Purification of crude methyl methacrylate obtained using acetone cyanohydrin as a starting material The low boiling point distillate in the process is continuously distilled to separate impurities, and water is continuously supplied as a third component when recovering methacrylic acid methyl ester and methanol. Method of separating impurities (Tokukosho
39-24438)) have been proposed. However, these methods still have problems and are not fully satisfactory. In other words, in methods (1) and (2) above, since both are reactive distillation columns and the catalyst is packed in the packing, the reaction yield cannot be controlled within the limiting conditions of the distillation column (pressure, flow rate, and number of plates). The problem is that it is extremely difficult to maintain stable conditions at high temperatures, and there is no suggestion of a method for obtaining recovered acetone that does not contain sulfur dioxide and methyl acetate, which is our objective. In addition, the method (3) above is intended to recover methyl methacrylate and methanol from the bottom of the tower, and from the top of the tower,
Acetone, ether, methyl acetate and other impurities are removed. In other words, according to this prior art, sulfur dioxide is distilled out from the top of the column along with acetone, although this is not specified as methyl acetate and other low-boiling impurities. Therefore, the present inventors have overcome the problems of the prior art described above, and have developed a method for effectively recovering acetone that does not contain sulfur dioxide and that does not contain methyl acetate while effectively recovering methanol from methyl acetate. As a result of intensive research for development, we have arrived at the present invention. The acetone recovery method of the present invention recovers acetone from an acetone-containing low-boiling mixture that is produced as a by-product when synthesizing methyl methacrylate from acetone cyanohydrin, sulfuric acid, and methanol, while keeping the low-boiling mixture alkaline. It is characterized by recovering acetone by distillation. According to the present invention, for example, in the process of synthesizing acetone cyanohydrin from hydrogen cyanide and acetone in the presence of an alkaline catalyst, and then reacting sulfuric acid and methanol to synthesize methyl methacrylate, the produced methyl methacrylate is distilled. Acetone can be effectively distilled and recovered from a low boiling point mixture containing dimethyl ether, methanol, acetone, water and methyl acetate obtained from the top of the distillation column during purification. When acetone is recovered by distillation from such a low-boiling point mixture, it is necessary to distill the low-boiling point mixture while keeping it alkaline, otherwise the intended purpose cannot be achieved. The amount of alkali added to the low boiling point mixture is equal to the equivalent amount necessary to neutralize the acidic substances originally contained in the mixture and the equivalent amount necessary to neutralize the acetic acid generated by hydrolysis of methyl acetate. The amount is more than the total amount. The mixture to which alkali has been added is heated, if necessary, and allowed to stand for a suitable period of time, and then fed to an acetone recovery distillation column to recover acetone. In the acetone recovery tower, methanol-extracted water is introduced from the top of the column, and heating steam is introduced from the bottom of the column. If necessary, the pressure inside the tower can be reduced to keep the temperature inside the tower low to suppress polymerization of the polymerizable substance inside the tower. In this way, acetone substantially free of sulfur dioxide and methyl acetate can be recovered from the top of the column, and can be directly sent to the acetone cyanohydrin synthesis step for use without any hindrance. On the other hand, from the bottom of the acetone recovery tower, alkali acetate and methanol are extracted along with water and alkali sulfite. The liquid extracted from the bottom of the column is, if necessary, led to another distillation column to contain relatively low-boiling active components such as unrecovered acetone, methanol separated from acetone, and methanol derived by hydrolysis of methyl acetate. can be recovered from the top of the tower, and relatively high-boiling substances such as acetic acid and alkali salts of sulfite and water can be extracted from the bottom of the tower. By doing so, it is possible to effectively utilize the active ingredients without losing them, which is economically advantageous. Hereinafter, the present invention will be described in more detail with reference to the attached process diagrams showing an example of the implementation of the present invention. An alkali catalyst 1, acetone 2, and hydrogen cyanide 3 are fed into an acetone cyanohydrin synthesis reactor 4 for reaction, and the reaction mixture is led to a neutralization reactor 5 and made acidic with a neutralizing acid 6. The crude acetone cyanohydrin 7 thus obtained is sent to an acetone cyanohydrin purification tower 8, and unreacted hydrogen cyanide and acetone 9 are recovered from the top of the tower and returned to the synthesis reactor 4, and purified from the bottom of the tower. Acetone cyanohydrin 10 is obtained. Sulfuric acid 11 is added to the acetone cyanohydrin 10 thus obtained, and the mixture is fed into a methacrylamide reactor 12. The reaction solution is led to an esterification reactor 13, and a methanol solution 14 is added to the esterification reactor 13. The generated crude ester 18 is evaporated from the reactor 13 by heating, and after extracting and separating most of the excess methanol contained in the methanol extraction tower 16 using methanol extraction water 17, it is sent to the low boiling point separation tower 19. . Reactor 13
A waste liquid 15 is separated from the bottom of the methanol extraction column 16, and the extracted methanol liquid from the methanol extraction column 16 is supplied to the reactor 13 for reuse. In the low-boiling point separation column 19, water 20 is extracted from the center of the column, and other low-boiling point mixtures 21 (for example, dimethyl ether, sulfur dioxide, methanol,
acetone and methyl acetate) are distilled off from the top of the column. From the bottom of the column, crude ester 22 is obtained from which these low-boiling substances are separated, and then sent to a methyl methacrylate purification column 23 where it is separated into purified methyl methacrylate 34 and a high-boiling mixture 35. The low boiling point mixture 21 is adjusted to be alkaline by adding an alkali 24 to the alkali addition tank 25 if necessary, and then sent to the acetone recovery column 27 . In addition, in the alkali addition tank 25, the waste liquid 26 is separated and removed from the bottom of the tank if necessary (for example, when the liquid is separated into two phases due to the addition of the alkali). In the acetone recovery tower 27, water 2 is collected from near the top of the tower.
8 is added to recover the acetone in the low boiling point mixture from the top of the column, and the recovered acetone 29 can be directly sent to the acetone cyanohydrin synthesis reactor 4 for circulation and reuse. A waste liquid 30 is extracted from the bottom of the column, and if desired, in order to recover active ingredients such as methanol contained therein, it is sent to, for example, a methanol recovery column 31, where recovered methanol 32 and waste liquid 33 (water, alkali acetate, alkali sulfite, etc.) are collected. (contains salts, etc.) and can be separated into In this case, the recovered methanol 32 is transferred to the esterification reactor 13.
can be sent to and reused. Examples of the present invention will be shown below to further specifically explain the present invention. Example 1 Acetone cyanohydrin 566Kg/H and concentrated sulfuric acid
855Kg/H is mixed to produce methacrylamide sulfate at a temperature of 150℃ in a reactor, and 3 reactors with a capacity of 3000 equipped with a heating device and a condenser are connected in series together with 870Kg/H of a 39% methanol aqueous solution. The raw material was continuously fed to the esterification reaction and evaporation steps used in the above, and 753 kg/h of crude ester containing methyl methacrylate as the main component was obtained. Next, this crude ester was supplied to the lower part of a rotating disk type extraction tower (inner diameter 43 cm, 32 stages), and 195 kg/H of extraction water was added from the upper part of the tower to extract methanol contained in the crude ester.
The methanol aqueous solution obtained from the bottom of the column was reused for the esterification reaction after adjusting the methanol concentration again. Meanwhile, 636Kg/H of crude ester was obtained from the top of the column.
This is sent to the 11th stage from the top of a low-boiling point separation distillation column with a column diameter of 45 cm and 40 plates, and from the bottom of this distillation column, crude methacrylic acid that is substantially free of low-boiling substances is fed. 610Kg/H of methyl was obtained. This crude methyl methacrylate was further sent to a purification column, and purified methyl methacrylate (550 kg/h) was obtained from the top of the purification column. On the other hand, the liquid was extracted from near the center of the low-boiling point separation distillation column, left to stand, and then 50 kg/h of the water-rich lower phase was discharged, and the remainder was returned to the column. The top temperature of the low boiling point separation distillation column was 30℃ and the pressure was 260mmHg, and a fraction of 275Kg/H with the following composition was obtained from the top of the column, of which 11Kg/H
was extracted from the system, and the remainder was refluxed to the top of the column. Composition of the overhead fraction of the low-boiling point separation distillation column Weight % Acetone 68.8 Methanol 4.7 Methyl acetate 8.6 Dimethyl ether 5.0 Methyl methacrylate 9.5 Sulfur dioxide 2.4 Others 1.0 The fraction 11 kg/H extracted from the system was heated in a heater with a capacity of 100 25% by weight caustic soda aqueous solution 5Kg/H while maintaining the temperature at 60℃.
was added. 16 kg/h of a cloudy mixture with a pH of approximately 13.5 was extracted from this reactor and fed to the 14th stage from the top of an acetone recovery distillation column with an inner diameter of 12.6 cm and 28 plates. Add H,
The pressure at the top of the column was maintained at 250 torr, and a fraction with the following composition was obtained from the top and bottom of the column.

【表】 上記塔頂留分のうち7.9Kg/Hを系外に抜出し
(残部は塔へ還流)、液化シアン化水素3.3Kg/Hと
共に、容積650の反応器2槽を直列に使用した
アセトンシアンヒドリン合成反応系へ送入した。
この反応系には、更にアセトン379Kg/H、シアン
化水素176Kg/Hを送入して、温度を第1槽15℃、
第2槽5℃に保ち、またPHを8.5に保つよう、50
%カセイカリ水溶液を第1槽に添加した。つぎ
に、濃硫酸を添加して、酸性に保ち乍ら減圧蒸留
塔にて蒸留し、塔底から純度99.5重量%のアセト
ンシアンヒドリン566Kg/Hを得た。この減圧蒸留
塔塔頂留分は、合成反応器へ戻した。このように
して得たアセトンシアンヒドリンは、再びメタク
リル酸メチルの製造に用いたが、酢酸メチルの蓄
積や二酸化イオウによる触媒アルカリ消費量の増
大は起らず、アセトンシアンヒドリン合成工程に
おいて、前記した従来のアセトン回収法における
ような問題は全く発生しなかつた。 アセトン回収塔塔底から抜出した液は、内径12
cm及び高さ6mの3/8インチラシヒリング充填塔塔
頂部へ送入し、下部から水蒸気を送り、下記組成
の留分9.1Kg/Hを得た。この留分はエステル化反
応用メタノール水の一部として利用することがで
きた。 組 成 重量% アセトン 4.2 メタノール 10.2 メタクリル酸メチル 11.3 その他(主として水分) 74.5
[Table] 7.9Kg/H of the above column top fraction was extracted outside the system (the rest was refluxed to the column), and along with 3.3Kg/H of liquefied hydrogen cyanide, acetone cyanide was produced using two reactors with a capacity of 650 in series. It was sent to the phosphorus synthesis reaction system.
Further, 379 kg/h of acetone and 176 kg/h of hydrogen cyanide were fed into this reaction system, and the temperature was adjusted to 15°C in the first tank.
The temperature of the second tank was kept at 5℃, and the pH was kept at 8.5.
% caustic potash aqueous solution was added to the first tank. Next, concentrated sulfuric acid was added and the mixture was distilled in a vacuum distillation column while maintaining acidity, and 566 kg/h of acetone cyanohydrin with a purity of 99.5% by weight was obtained from the bottom of the column. This vacuum distillation column overhead fraction was returned to the synthesis reactor. The acetone cyanohydrin thus obtained was used again for the production of methyl methacrylate, but there was no accumulation of methyl acetate or an increase in catalyst alkali consumption due to sulfur dioxide, and in the acetone cyanohydrin synthesis process, The problems encountered in the conventional acetone recovery method described above did not occur at all. The liquid extracted from the bottom of the acetone recovery tower has an inner diameter of 12
The mixture was fed into the top of a 3/8-inch Raschig ring packed column with a height of 6 m, and steam was sent from the bottom to obtain a fraction of 9.1 kg/h with the following composition. This fraction could be used as part of the methanol water for the esterification reaction. Composition Weight% Acetone 4.2 Methanol 10.2 Methyl methacrylate 11.3 Others (mainly water) 74.5

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明方法の実施の一例を示す工程
図である。 1……アルカリ触媒、2……アセトン、3……
シアン化水素、4……アセトンシアンヒドリン合
成反応器、5……中和反応器、8……アセトシア
ンヒドリン精製塔、13……エステル化反応器、
16……メタノール抽出塔、19……低沸点物分
離塔、21……低沸点混合物、23……メタクリ
ル酸メチル精製塔、24……アルカリ、25……
アルカリ添加槽、27……アセトン回収塔、29
……回収アセトン。
The accompanying drawings are process diagrams showing an example of implementing the method of the present invention. 1... Alkali catalyst, 2... Acetone, 3...
Hydrogen cyanide, 4... Acetone cyanohydrin synthesis reactor, 5... Neutralization reactor, 8... Acetocyanhydrin purification tower, 13... Esterification reactor,
16... Methanol extraction column, 19... Low boiling point separation column, 21... Low boiling point mixture, 23... Methyl methacrylate purification column, 24... Alkali, 25...
Alkali addition tank, 27...Acetone recovery tower, 29
...Recovered acetone.

Claims (1)

【特許請求の範囲】[Claims] 1 アセトンシアンヒドリン、硫酸およびメタノ
ールからメタクリル酸メチルを合成する際に副生
するアセトン含有低沸点混合物からアセトンを回
収するにあたり、前記低沸点混合物をアルカリ性
に保ち乍ら蒸留してアセトンを回収することを特
徴とするアセトン回収方法。
1. To recover acetone from an acetone-containing low-boiling mixture that is produced as a by-product during the synthesis of methyl methacrylate from acetone cyanohydrin, sulfuric acid, and methanol, the low-boiling mixture is kept alkaline and distilled to recover acetone. An acetone recovery method characterized by the following.
JP5040181A 1981-04-03 1981-04-03 Recovering method of acetone Granted JPS57165338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5040181A JPS57165338A (en) 1981-04-03 1981-04-03 Recovering method of acetone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5040181A JPS57165338A (en) 1981-04-03 1981-04-03 Recovering method of acetone

Publications (2)

Publication Number Publication Date
JPS57165338A JPS57165338A (en) 1982-10-12
JPH0150687B2 true JPH0150687B2 (en) 1989-10-31

Family

ID=12857840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5040181A Granted JPS57165338A (en) 1981-04-03 1981-04-03 Recovering method of acetone

Country Status (1)

Country Link
JP (1) JPS57165338A (en)

Also Published As

Publication number Publication date
JPS57165338A (en) 1982-10-12

Similar Documents

Publication Publication Date Title
US4280010A (en) Continuous production of alkyl acrylates free from ether
EP0786444B1 (en) Process for producing acetaldehyde dimethylacetal
KR100278059B1 (en) Process for producing acrylic ester or methacrylic ester
US4326073A (en) Production of anhydrous or substantially anhydrous formic acid
JP3934163B2 (en) Purification method of butyl acrylate
US3404175A (en) Process for forming and separating ethers or esters by plural stage distillation with removal of water as an azeotrope
US5028735A (en) Purification and preparation processes for methyl methacrylate
US4262140A (en) Production of anhydrous or substantially anhydrous formic acid
JPS61291545A (en) Production of carbonic acid ester
US3972955A (en) Process for preparation of isoprene
JPS5914018B2 (en) Method for producing methacrylic acid ester
JPH02292231A (en) Post treatment method of reaction product obtained by reacting c3-c4 monoalkanol with hydrogen chloride
JPH0239496B2 (en)
JP2012515751A (en) Method for purifying azeotropic fraction generated during synthesis of N, N-dimethylaminoethyl acrylate
JPH0150687B2 (en)
JPH0528694B2 (en)
US3067241A (en) Process and device for the manufacture and isolation of acrylic acid alkyl esters
US4283579A (en) Process for producing diol
JP2588581B2 (en) Method for producing methacrylate
US4089892A (en) Process for the preparation of percarboxylic acid solutions
JP2754216B2 (en) Method for producing acetaldehyde dimethyl acetal
JPS6320415B2 (en)
JP3174406B2 (en) Method for producing ethyl alcohol
JP4240771B2 (en) Method for producing (meth) acrylic acid ester
US3957730A (en) Recovery of pure 2-methyl-2-hydroxy-heptanone-6