JPH0150562B2 - - Google Patents

Info

Publication number
JPH0150562B2
JPH0150562B2 JP58108143A JP10814383A JPH0150562B2 JP H0150562 B2 JPH0150562 B2 JP H0150562B2 JP 58108143 A JP58108143 A JP 58108143A JP 10814383 A JP10814383 A JP 10814383A JP H0150562 B2 JPH0150562 B2 JP H0150562B2
Authority
JP
Japan
Prior art keywords
fiber
weight
asbestos
slurry
reinforced cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58108143A
Other languages
Japanese (ja)
Other versions
JPS59232805A (en
Inventor
Kenichi Matsui
Takeshi Murakami
Tamotsu Akasaka
Takashi Soda
Koji Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10814383A priority Critical patent/JPS59232805A/en
Publication of JPS59232805A publication Critical patent/JPS59232805A/en
Publication of JPH0150562B2 publication Critical patent/JPH0150562B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 この発明は、従来からアスベストセメント製品
を製造する時に広く用いられてきたハチエツク抄
造機をそのまま使用して、アスベストを全く含ま
ない繊維補強セメント製品をつくることのできる
製法に関する。 〔背景技術〕 従来より、水硬化セメントを結合材とし、アス
ベストを補強材とする無機硬化体が広く使用され
てきた。しかし、近年、アスベストが発ガン性物
質として疑われるようになり、各国でアスベスト
を含まない無機硬化体が検討され、その一部は既
に商品化されている。 アスベストセメント板の用途は極めて多いの
で、早くから、ノンアスベストセメント板の研究
がなされたが、アスベストの有する長所が非常に
優れているため、今までのアスベストセメント板
と同等の品質、生産性、コストを全て兼ねそなえ
たノンアスベストセメント板は、全世界中で末だ
一つも出現していないといえる。 この理由として最も大きなものは、次の点にあ
る。すなわち、補強繊維として使用されてきたア
スベストは、セメントと物理的かつ化学的に親和
性が高いために優れた補強効果を持つとともに、
ハチエツク抄造機にセメント等の微細な粒状物を
効果的に捕獲して、金網からのこれらの粒状物の
逃げをおさえると同時に水分のみを効果的に金網
から逃がす効果が非常に大きいという生産性面で
の特徴をもあわせ持つ。ところが、従来は、アス
ベストが持つこれら二つの特性のうち、前者の面
のみに目を向け、後者をあまり重要視していなか
つた。これが最大の理由である。 つまり、従来は、アスベストを全く使用しなく
ても製品物性上アスベストセメント板と同等のレ
ベルにすることが可能なアスベスト代替繊維をま
ず第1に選出し、その後、生産できる様な抄造条
件を見い出すというステツプで研究が行われるパ
ターンが多かつた。そのため、実験室規模で得た
ノンアスベストセメント板と生産規模で得たノン
アスベスト板との間に、性能上大きな開きが生じ
た。たとえば、現在一部で商品化されているノン
アスベストセメント板にみるように、その強度が
アスベストセメント板のそれの70〜80%程度にし
かすぎないというようなことが起きるのである。
これは、アスベストを含まない配合で抄造したと
きには、使用しているパルプや補強繊維が水中で
充分にセメント粒子を捕獲することができないの
で、金網からセメント粒子や他のフイラーが流出
することが多く、当初設定した配合とは全く違う
組成の硬化体になつてしまうからであり、スラリ
ーの条件を考慮に入れずに設備的なコントロール
のみで生産に頼つてしまうからである。 〔発明の目的〕 この発明は、従来のハチエツク抄造機により、
アスベストを使用しなくても従来のアスベストセ
メント板その他のアスベストセメント製品と同レ
ベル以上の物性を持つ繊維補強セメント製品を効
率良くつくることのできる繊維補強セメント製品
の製法を提供することを目的としている。 〔発明の開示〕 前記のような目的を達成するため、この発明
は、全固形分重量当り重量%で、パルプ質繊維を
1〜5重量%、有機合成繊維を0.5〜2.0重量%お
よび/またはアスベスト以外の無機質繊維を0.5
〜10重量%、および水硬性セメントを含む固形分
濃度3.0〜13.0重量%のスラリーからハチエツク
抄造機を用いて抄造体をつくり、この抄造体を用
いて繊維補強セメント製品を製造するにあたり、
シーブシリンダで抄き上げる時の前記スラリーが
つぎの二つの条件を同時に満足するものを用いる
ことを特徴とする繊維補強セメント製品の製法を
その要旨としている。 A スラリー濾過係数(単位面積当りの濾過係
数)K(cm4/sec)が0.5≦K≦5.0 B 前記濾過係数の測定時の濾液固形分濃度C
(重量%)がC≦0.5 以下、この発明を詳しく説明する。 ここで、スラリー濾過係数Kとは、つぎのよう
な値である。まず、実際に生産で使用するハチエ
ツク抄造機のシーブシリンダの金網と同一の目開
き(通常は48〜65メツシユ)の金網が設置された
容器内に、スラリーを0.5〜1投入し、直ちに
濾液量V(cm3)と濾過時間θ(sec)をVが100cm2
至るまで測定する。つぎに、測定値より得られる
濾過曲線V(θ)から(dθ/dV)を算出し、グラ
フの(dθ/dV)を縦軸に、Vを横軸にとる。こ
の時に得られた下記の(a)直線 dθ/dV=2/K′(V+α) …(a) のV≦50cm3の範囲における勾配の平均値(2/
K′)から算出したK′を金網の有効面積S(cm2)で
除した値をKとする。また、Cは、この時に得ら
れた濾液の固形分濃度とする。実際にハチエツク
抄造機を使用した場合の濾液(白水)濃度は濾過
係数測定時の濾液固形分濃度Cの値とは異なり、
シーブシリンダの目開きのほか機械の大きさ等で
も変わる性質のものであるが、Cの約5〜10倍の
値をとることが発明者らの経験で判明している。 アスベスト代替繊維として、パルプ質繊維や合
成繊維を使用する例が既に特開昭55―121918号公
報、同56―37268号公報、同56―114857号公報等
にも記載されている。発明者らはこのような繊維
を使用するのが最も一般的であり、性能の高いセ
メント製品の得られる可能性が高いと考えて従来
から検討を重ねてきた。しかし、セメントの補強
材料としてすでに公知の材料を組合せるだけで
は、実験室レベルでは、現行アスベストセメント
製品に性能がわりと近いものが出来ることは確認
したが、生産スピードの大きい実際の製造ライン
では最初の原材料混合時に準備した配合通りのも
のが出来ず、セメント分が少なく繊維分が多い、
すなわち、補強理論の基本であるバインダに均一
に繊維が分散されたものとは程遠い硬化体しか出
来なかつた。 そこで、発明者らは、アスベストセメント製品
に使用されている従来の配合系について、スラリ
ー濃度8%における濾過係数Kおよび同時点での
濾液固形分濃度Cを測定した結果、第1図および
第2図に示されているように、アスベスト量が減
少すると共にKおよびCがいずれも増大すること
を確認した。このことから、アスベストを含まな
い系の場合でも、スラリーのKとCを従来のアス
ベストセメント製品製造用スラリーの抄造時と同
程度に低くすることができれば、好ましい結果が
得られるのではないかとの推測を得た。そこで、
固形分規準でパルプを1〜5重量%、補強用の繊
維としてピニロンを1重量%、残りをポルトラン
ドセメント(パルプをx重量%とすると(99―
x)重量%〕とし、濃度が10%のスラリーに付い
てKおよびCを測定した。ところが、測定結果を
あらわす第3図および第4図に示されているよう
に、この配合系では、ノンアスベストスラリーの
KおよびCをアスベストセメントスラリーのKお
よびCと同等に低くすることがきわめて困難であ
ることがわかつた。第3図および第4図中、○は
パルプとして針葉樹未さらしクラフトパルプ
〔NUKP(CSF700c.c.)〕を用いたスラリー、△は
パルプとして新聞故紙を用いたスラリーである。 第3図および第4図にみるかぎり、ノンアスベ
ストセメント製品の物性を従来のアスベストセメ
ント製品が有する物性とできるかぎり同等にしよ
うとすれば、必然的にパルプ量、補強繊維量を多
くするのが好ましいということになる。しかし、
ノンアスベストセメント製品といえどもやはり不
燃材料でなければならないため、可燃物であるパ
ルプや合成繊維を無制限に多く使用することはで
きない。そこで、日本国内で不燃材料試験の1つ
として実施される基材試験をパルプおよび合成繊
維の合計量が異なる種々のノンアスベストセメン
ト製品(板体)について実施した。パルプおよび
合成繊維の配合量と基材試験による炉内上昇温度
の関係を第5図に示す。炉内上昇温度が50℃を超
える場合を不合格、50℃以下の場合を合格とする
と、第5図に示されているように、パルプと合成
繊維の合計量が概ね60重量%を越えない範囲でな
ければならないことがわかつた。また、ノンアス
ベスト系に使用するアスベスト代替材料の価格を
も考慮すると、やはり、できるだけ少量の補強繊
維を用いて最大の補強効果をいかにして発現させ
るかが、ノンアスベスト化の大きな課題である。 発明者らは、以上の点を考慮して、全固形分重
量当りの重量%で、パルプ質繊維を1〜5重量
%、有機合成繊維を0.5〜2.0重量%および/また
は無機質繊維を0.5〜10重量%および水硬性セメ
ントを含むノンアスベスト系スラリーにつき、前
記課題の解決を、別の面から図ることとした。す
なわち、KとCをアスベスト使用品のそれらに完
全に一致させるという考え方を捨て、KおよびC
と強度との関係を調べ、あるいはその他の面から
の考慮も加えて、好ましいK値およびC値を設定
することによつて解決を図ることとしたのであ
る。そこで、上記のような構成のスラリーを多種
類使用し、つぎのような実験を行つた。まず、水
硬化セメントとしてポルトランドセメントを使用
し、固形分濃度を7〜9重量%程度に調整するこ
ととして第1表に示されているようなスラリーを
つくつた。
[Technical Field] The present invention relates to a production method that can produce fiber-reinforced cement products that do not contain asbestos at all, using a Hachietsu paper machine that has been widely used in the past to produce asbestos cement products. [Background Art] Conventionally, inorganic hardened bodies using hydraulic cement as a binder and asbestos as a reinforcing material have been widely used. However, in recent years, asbestos has come to be suspected of being a carcinogen, and various countries are investigating inorganic hardened materials that do not contain asbestos, and some of these have already been commercialized. Since asbestos cement boards have an extremely large number of uses, research into non-asbestos cement boards was carried out from an early stage, but because asbestos has such excellent advantages, it has not been possible to achieve the same quality, productivity, and cost as conventional asbestos cement boards. It can be said that there is not even a single non-asbestos cement board that has all of these features in the world. The biggest reason for this is the following. In other words, asbestos, which has been used as a reinforcing fiber, has an excellent reinforcing effect due to its high physical and chemical affinity with cement.
In terms of productivity, the Hachietsu paper machine effectively captures fine particles such as cement, suppresses the escape of these particles from the wire mesh, and at the same time effectively allows only moisture to escape from the wire mesh. It also has the characteristics of However, of these two properties of asbestos, conventional research focused only on the former and did not place much importance on the latter. This is the biggest reason. In other words, in the past, the first step was to select an asbestos alternative fiber that could make the product's physical properties equivalent to those of asbestos cement boards without using asbestos at all, and then find the paper-forming conditions that would allow production. There were many patterns in which research was conducted in these steps. As a result, there was a large difference in performance between non-asbestos cement boards obtained on a laboratory scale and non-asbestos boards obtained on a production scale. For example, as seen in some non-asbestos cement boards currently on the market, their strength is only about 70 to 80% of that of asbestos cement boards.
This is because when paper is made with a formulation that does not contain asbestos, the pulp and reinforcing fibers used cannot sufficiently capture cement particles in water, so cement particles and other fillers often flow out from the wire mesh. This is because the cured product will have a composition completely different from the initially set composition, and production will rely solely on equipment control without taking into account the conditions of the slurry. [Purpose of the invention] This invention provides the ability to
The purpose of the present invention is to provide a manufacturing method for fiber-reinforced cement products that can efficiently produce fiber-reinforced cement products that have physical properties at or above the same level as conventional asbestos cement boards and other asbestos cement products without using asbestos. . [Disclosure of the Invention] In order to achieve the above-mentioned objects, the present invention provides pulp fibers of 1 to 5% by weight, organic synthetic fibers of 0.5 to 2.0% by weight, and/or 0.5 inorganic fibers other than asbestos
~ 10% by weight, and a slurry with a solid content concentration of 3.0 to 13.0% by weight containing hydraulic cement, using a Hachietsu paper making machine to make a paper product, and use this paper product to manufacture a fiber reinforced cement product.
The gist of the present invention is a method for manufacturing a fiber-reinforced cement product, which is characterized in that the slurry used in making the slurry in a sieve cylinder satisfies the following two conditions at the same time. A Slurry filtration coefficient (filtration coefficient per unit area) K (cm 4 /sec) is 0.5≦K≦5.0 B Filtrate solid content concentration C at the time of measurement of the filtration coefficient
(% by weight) is C≦0.5 or less.The present invention will be described in detail below. Here, the slurry filtration coefficient K is the following value. First, 0.5 to 1 part of the slurry is poured into a container equipped with a wire mesh with the same mesh size as the wire mesh of the sieve cylinder of the Hachietsu paper machine actually used in production (usually 48 to 65 mesh), and immediately the filtrate volume is Measure V (cm 3 ) and filtration time θ (sec) until V reaches 100 cm 2 . Next, (dθ/dV) is calculated from the filtration curve V(θ) obtained from the measured values, and (dθ/dV) is taken as the vertical axis and V is taken as the horizontal axis of the graph. At this time, the following (a) straight line dθ/dV=2/K'(V+α)...The average value of the slope (2/
Let K be the value obtained by dividing K′ calculated from K′) by the effective area S (cm 2 ) of the wire mesh. Further, C is the solid content concentration of the filtrate obtained at this time. The filtrate (white water) concentration when actually using the Hachietsu papermaking machine is different from the value of the filtrate solids concentration C when measuring the filtration coefficient.
Although the property varies depending on the size of the machine as well as the opening of the sheave cylinder, it has been found by the inventors' experience that the value is about 5 to 10 times as large as C. Examples of using pulp fibers and synthetic fibers as asbestos substitute fibers have already been described in JP-A-55-121918, JP-A-56-37268, and JP-A-56-114857. The inventors have been conducting repeated studies in the past, believing that the use of such fibers is the most common and has a high possibility of producing cement products with high performance. However, it has been confirmed that by simply combining materials already known as reinforcing materials for cement, it is possible to create products with performance relatively similar to current asbestos cement products at the laboratory level, but it is difficult to produce products on actual production lines where production speeds are high. When mixing the raw materials, the mixture could not be the same as the one prepared, and the cement content was low and the fiber content was high.
In other words, the resulting cured product was far from having fibers uniformly dispersed in the binder, which is the basis of reinforcement theory. Therefore, the inventors measured the filtration coefficient K at a slurry concentration of 8% and the filtrate solid content concentration C at the same time for the conventional compounding system used in asbestos cement products. As shown in the figure, it was confirmed that both K and C increased as the amount of asbestos decreased. This suggests that even in the case of a system that does not contain asbestos, if the K and C of the slurry can be made as low as in the case of paper making of conventional slurry for manufacturing asbestos cement products, favorable results may be obtained. Got a guess. Therefore,
Based on solid content, pulp is 1 to 5% by weight, pinylon is 1% by weight as reinforcing fiber, and the rest is Portland cement (assuming pulp is x weight% (99-
x) weight %], and K and C were measured for a slurry with a concentration of 10%. However, as shown in Figures 3 and 4, which show the measurement results, with this blending system, it is extremely difficult to lower the K and C of the non-asbestos slurry to the same level as the K and C of the asbestos cement slurry. It turns out that it is. In FIGS. 3 and 4, ○ indicates a slurry using unbleached softwood kraft pulp [NUKP (CSF700c.c.)] as the pulp, and Δ indicates a slurry using waste newspaper as the pulp. As can be seen in Figures 3 and 4, in order to make the physical properties of non-asbestos cement products as similar as possible to those of conventional asbestos cement products, it is necessary to increase the amount of pulp and reinforcing fibers. This means that it is preferable. but,
Even non-asbestos cement products must be made of noncombustible materials, so combustible pulp and synthetic fibers cannot be used indefinitely. Therefore, a base material test, which is conducted as one of the noncombustible material tests in Japan, was conducted on various non-asbestos cement products (plates) with different total amounts of pulp and synthetic fibers. Figure 5 shows the relationship between the blending amounts of pulp and synthetic fibers and the temperature rise in the furnace according to the base material test. If the temperature rise in the furnace exceeds 50℃, it will be rejected, and if it is below 50℃, it will be passed.As shown in Figure 5, the total amount of pulp and synthetic fibers will not exceed approximately 60% by weight. It turns out that it has to be within the range. Furthermore, considering the price of asbestos substitute materials used in non-asbestos systems, a major challenge in making non-asbestos systems is how to achieve the maximum reinforcing effect using as little reinforcing fiber as possible. Considering the above points, the inventors have determined that pulp fibers are 1 to 5 weight %, organic synthetic fibers are 0.5 to 2.0 weight %, and/or inorganic fibers are 0.5 to 2.0 weight % based on the total solid weight. Regarding a non-asbestos slurry containing 10% by weight and hydraulic cement, we decided to solve the above problem from a different perspective. In other words, we abandon the concept of completely matching K and C with those of asbestos-containing products, and instead
They decided to solve the problem by setting preferable K and C values, by examining the relationship between and strength and by taking into consideration other aspects. Therefore, the following experiments were conducted using various kinds of slurries having the above-mentioned compositions. First, a slurry as shown in Table 1 was prepared by using Portland cement as a hydraulic cement and adjusting the solid content concentration to about 7 to 9% by weight.

【表】【table】

Claims (1)

【特許請求の範囲】 1 全固形分重量当り重量%で、パルプ繊維を1
〜5重量%、有機合成繊維を0.5〜2.0重量%およ
び/またはアスベスト以外の無機質繊維を0.5〜
10重量%、および水硬性セメントを含む固形分濃
度3.0〜13.0重量%のスラリーからハチエツク抄
造機を用いて抄造体をつくり、この抄造体を用い
て繊維補強セメント製品を製造するにあたり、シ
ーブシリンダで抄き上げる時の前記スラリーがつ
ぎの二つの条件を同時に満足するものを用いるこ
とを特徴とする繊維補強セメント製品の製法。 A スラリー濾過係数(単位面積当りの濾過係
数)K(cm4/sec)が0.5≦K≦5.0 B 前記濾過係数の測定時の濾液固形分濃度C
(重量%)がC≦0.5 2 有機合成繊維が、繊度0.5〜10デニール、繊
維長が12mm以下のポリビニルアルコール系合成繊
維である特許請求の範囲第1項記載の繊維補強セ
メント製品の製法。 3 有機合成繊維が、繊度0.5〜20デニール、繊
維長が15mm以下のアクリル繊維である特許請求の
範囲第1項記載の繊維補強セメント製品の製法。 4 無機質繊維が、平均径5〜30μm、繊維長が
15mm以下のピツチ系炭素繊維である特許請求の範
囲第1項記載の繊維補強セメント製品の製法。 5 繊維補強セメント製品が板体である特許請求
の範囲第1項ないし第4項のいずれかに記載の繊
維補強セメント製品の製法。
[Claims] 1. Pulp fibers are 1% by weight based on the total solid weight.
~5% by weight, 0.5~2.0% by weight of organic synthetic fibers and/or 0.5~2.0% of inorganic fibers other than asbestos
A paper product is made from a slurry with a solid content concentration of 10% by weight and 3.0 to 13.0% by weight, including hydraulic cement, using a Hachietsu paper making machine. A method for manufacturing a fiber-reinforced cement product, characterized in that the slurry used for making the slurry satisfies the following two conditions at the same time. A Slurry filtration coefficient (filtration coefficient per unit area) K (cm 4 /sec) is 0.5≦K≦5.0 B Filtrate solid content concentration C at the time of measurement of the filtration coefficient
(% by weight) is C≦0.5 2. The method for producing a fiber-reinforced cement product according to claim 1, wherein the organic synthetic fiber is a polyvinyl alcohol synthetic fiber having a fineness of 0.5 to 10 deniers and a fiber length of 12 mm or less. 3. The method for producing a fiber-reinforced cement product according to claim 1, wherein the organic synthetic fiber is an acrylic fiber with a fineness of 0.5 to 20 deniers and a fiber length of 15 mm or less. 4 The inorganic fibers have an average diameter of 5 to 30 μm and a fiber length of
A method for producing a fiber-reinforced cement product according to claim 1, wherein the fiber-reinforced cement product is made of pitch-based carbon fiber of 15 mm or less. 5. The method for producing a fiber-reinforced cement product according to any one of claims 1 to 4, wherein the fiber-reinforced cement product is a plate.
JP10814383A 1983-06-15 1983-06-15 Manufacture of fiber reinforced cement board Granted JPS59232805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10814383A JPS59232805A (en) 1983-06-15 1983-06-15 Manufacture of fiber reinforced cement board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10814383A JPS59232805A (en) 1983-06-15 1983-06-15 Manufacture of fiber reinforced cement board

Publications (2)

Publication Number Publication Date
JPS59232805A JPS59232805A (en) 1984-12-27
JPH0150562B2 true JPH0150562B2 (en) 1989-10-30

Family

ID=14477021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10814383A Granted JPS59232805A (en) 1983-06-15 1983-06-15 Manufacture of fiber reinforced cement board

Country Status (1)

Country Link
JP (1) JPS59232805A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735290B2 (en) * 1988-12-10 1995-04-19 松下電工株式会社 Manufacturing method of fiber-reinforced inorganic cured product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431419A (en) * 1977-05-26 1979-03-08 Kubota Ltd Method of making fiberrreinforced cement sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431419A (en) * 1977-05-26 1979-03-08 Kubota Ltd Method of making fiberrreinforced cement sheet

Also Published As

Publication number Publication date
JPS59232805A (en) 1984-12-27

Similar Documents

Publication Publication Date Title
RU2036886C1 (en) Method for preparation of mixture for production of composite material products from composite materials
EP0127960B1 (en) A process for the manufacture of autoclaved fibre-reinforced shaped articles
CH645605A5 (en) METHOD FOR PRODUCING A FIBER REINFORCED, HYDRAULICALLY BINDING COMPOSITION, THE COMPOSITION AND USE THEREOF PRODUCED BY THIS METHOD.
DE69115975T2 (en) Use of sepiolite in processes for the manufacture of fiber reinforced products
CH661006A5 (en) PLASTER WALL PANEL.
EP0263723A2 (en) A process for manufacture of fibre-reinforced shaped articles
DE29925011U1 (en) Foundry core binder system
NL8102974A (en) FIBER-BASED PRODUCT MADE WITH HYDRAULIC BINDERS.
EP0331666B1 (en) Process for treating cellulosic fibres, as well as fibrous cement products and compositions for their production
IE45447B1 (en) Improvements relating to asbestos-free fibre reinforced cementitious products
EP0155520B1 (en) Fibre mixture for reinforcing materials such as hydraulic binders, use of this mixture and formed objects obtained by using this mixture
DE2461781A1 (en) Fibre reinforced fire-resistant building board - contg. organic fibres and free of asbestos
JPH0150562B2 (en)
JPS6319465B2 (en)
JPH07267708A (en) Production of cement composition
DE2463044C2 (en) Fireproof building panel and process for its manufacture
JP2721563B2 (en) Hydraulic molding composition
DE3878542T2 (en) MOLDED CALCIUM SILICATE SHEET AND METHOD FOR PRODUCING THE SAME.
JP2582834B2 (en) Papermaking method of non-asbestos calcium silicate plate
JPH0323248A (en) Manufacture of inorganic building material
JPH07286401A (en) Hydraulic setting inorganic papermaking product
DE3225707A1 (en) Moulding composition comprising hydraulic binders and polymer fibrils
JPH04100993A (en) Non-flammable paper
KR100263949B1 (en) A gypsum cement plate without asbestos
RU2181820C2 (en) Peat slab