JPH01502498A - template - Google Patents

template

Info

Publication number
JPH01502498A
JPH01502498A JP87501701A JP50170187A JPH01502498A JP H01502498 A JPH01502498 A JP H01502498A JP 87501701 A JP87501701 A JP 87501701A JP 50170187 A JP50170187 A JP 50170187A JP H01502498 A JPH01502498 A JP H01502498A
Authority
JP
Japan
Prior art keywords
sleeve
mold
copper
wall
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP87501701A
Other languages
Japanese (ja)
Inventor
ボロホンスキ レフ アブラモビチ
キスセルマン ミハイル アナトリエビチ
ツィケルマン アレキサンドル レオニドビチ
クルリキン ブラディミール ニコラエビチ
ペトルヒン ユリ ペトロビチ
グトキン ビクトル ボリソビチ
チェルニアク アレキサンドル イバノビチ
フラソフ ミハイル イバノビチ
アンドレエフ アレキサンドル レオニドビチ
ボビン バレリアン アナトリエビチ
スクレブトソフ アナトリ ミハイロビチ
ツィグロフ レオン ザハロビチ
Original Assignee
フセソユズニ ナウチノ―イススレドバテルスキ,プロエクトノ―コンストルクトルスキ イ テフノロギチェスキ インスティテュト エレクトロテルミチェスコゴ オボルドバニア(ベーエヌイーイーイェーテーオー)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フセソユズニ ナウチノ―イススレドバテルスキ,プロエクトノ―コンストルクトルスキ イ テフノロギチェスキ インスティテュト エレクトロテルミチェスコゴ オボルドバニア(ベーエヌイーイーイェーテーオー) filed Critical フセソユズニ ナウチノ―イススレドバテルスキ,プロエクトノ―コンストルクトルスキ イ テフノロギチェスキ インスティテュト エレクトロテルミチェスコゴ オボルドバニア(ベーエヌイーイーイェーテーオー)
Publication of JPH01502498A publication Critical patent/JPH01502498A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • B22D23/10Electroslag casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Continuous Casting (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 鋳 型 技術分野 本発明は冶金技術に関し、特に鋳型に関するものである。[Detailed description of the invention] mold Technical field The present invention relates to metallurgy, and in particular to molds.

背景技術 再融解工程に係る鋳型は公知であるが、この鋳型はスリーブが銅又はその合金で 形成され、且つ鋼ケーシングがスリーブと同軸状に配置されそれとともに密閉さ れた冷却室を区画して構成されている。Background technology Molds for the remelting process are known, but in this mold the sleeve is made of copper or its alloy. The steel casing is arranged coaxially with the sleeve and sealed therewith. The cooling room is divided into sections.

しかしながら、上記鋳型のこの構造は銅スリーブの低い剛性のために、換言すれ ば、鋳型の早急な欠損のために厨久性が十分でない。なぜならば、操業の間に嗣 スリーブの壁は高い熱負荷を受けるからである。5〜b 温度勾配が銅スリーブの壁を横断して形成される傾向にある。However, this structure of the above mold is difficult to translate due to the low stiffness of the copper sleeve. For example, the durability is not sufficient due to rapid chipping of the mold. Because during the operation This is because the walls of the sleeve are subjected to high thermal loads. 5-b Temperature gradients tend to form across the walls of the copper sleeve.

これが壁内の高温応力の原因となり、その結果、該壁の変形の原因となる。再融 解工程の鋳型の構造に緊急の要望がなされるのはこの理由のためである。This causes hot stresses within the wall, which in turn causes deformation of the wall. Remelting It is for this reason that there is an urgent need for the construction of molds in the melting process.

また、スリーブが銅で形成されると共に補強リブを有し、そして鋼ケーシングが スリーブと同軸状に配置されてその間に補強リブによって分割された冷却室が流 路を区画して構成された鋳型(例えば、米国特許Nα3.899. OL7、国 際分類B22D27/ 02.1975−8.12公開)は公知である。各リブ ははんだ付によってスリーブの外壁にそれらの長さを通じて接着される。この従 来技術の鋳型はむしろ銅スリーブの低い剛性を特徴づ°けており、これにより変 形の原因になる熱応力がスリーブの壁に生じる。なぜならば、リブとスリーブの 壁との間のはんだ付は部分はリブがスリーブの壁から離脱することを防ぐほど十 分強くないからである。従って、融解の工程で加熱されたとき、スリーブは熱的 拡張と変形を受け、これにより補強リブとスリーブ壁との間の接続が阻害される 傾向となる。Also, the sleeve is made of copper and has reinforcing ribs, and the steel casing is A cooling chamber arranged coaxially with the sleeve and divided by reinforcing ribs flows between them. A mold configured by dividing a channel (for example, U.S. Patent Nα3.899.OL7, International classification B22D27/02.1975-8.12 publication) is publicly known. each rib are bonded along their length to the outer wall of the sleeve by soldering. This servant The molds of the prior art are characterized by a rather low stiffness of the copper sleeve, which makes it difficult to Thermal stresses are created in the walls of the sleeve that cause the shape. Because the ribs and sleeves The solder joint to the wall should be sufficiently thick to prevent the rib from separating from the wall of the sleeve. This is because it is not strong. Therefore, when heated during the melting process, the sleeve undergoes expansion and deformation, which disrupts the connection between the reinforcing ribs and the sleeve wall It becomes a trend.

スリーブの変形は鋳型からインゴットの抜取りをじゃまし、これにより鋳型は改 修が必要となる。Deformation of the sleeve interferes with the removal of the ingot from the mold, which causes the mold to be modified. Repair is required.

発明の開示 本発明は銅スリーブと補強リブの接続の改良により高い信頼性と構造状の剛性の ある鋳型を提供することを目的とする。Disclosure of invention The present invention achieves high reliability and structural rigidity by improving the connection between the copper sleeve and reinforcing ribs. The purpose is to provide a certain mold.

上記問題は、銅スリーブが鋼補強リブを有し、且つ鋼ケーシングが銅スリーブと 同軸状に配置されてその間に鋼補強リブによって分割された冷却室が流路を形成 することより構成された鋳型において、本発明に基づき、=補強リブが銅スリー ブに埋込まれてそれとともに接触面を介して2種類の金属の接続を形成すること より成る鋳型において解決されるのである。The above problem is caused by the fact that the copper sleeve has steel reinforcing ribs, and the steel casing has a copper sleeve. Cooling chambers arranged coaxially and divided by steel reinforcement ribs form flow channels According to the present invention, the reinforcing rib is made of a copper sleeve. Embedded in a metal plate and thereby forming a connection between two metals through a contact surface. The problem is solved in a mold consisting of:

このような装置は強度を増加し、そしてスリーブと補強リブの間の接続の信頼性 を改善するのでこの結果、スリーブのそして一般に鋳型のより高い剛性と耐久性 を得ることができる。更に、鋳型の所望の構造はスリーブの薄い壁のおかげで銅 やクロム青銅のような稀少材料の節約を可能とする。Such a device increases the strength and reliability of the connection between the sleeve and reinforcing ribs This results in higher stiffness and durability of the sleeve and of the mold in general as it improves the can be obtained. Furthermore, the desired structure of the mold is made of copper thanks to the thin walls of the sleeve. This allows for the saving of rare materials such as steel and chrome bronze.

図面の簡単な説明 本発明は添付図面を通じて作図された特に好ましい装置を参照にして、より詳細 に説明されるであろう。Brief description of the drawing The invention will be described in more detail with reference to a particularly preferred apparatus illustrated in the accompanying drawings. will be explained.

第1図は所望鋳型のパイプに沿った縦断面図、第2図は本発明の鋳型の水平断面 図である。Fig. 1 is a longitudinal section along the pipe of the desired mold, and Fig. 2 is a horizontal section of the mold of the present invention. It is a diagram.

発明を実施するための最良の形態 本発明による鋳型は低酸素銅で構成されたスリーブ1 (第1図)と、そのリブ の軸の間の角度が3°から60”の範囲の非磁性鋼で構成された補強リブ2とを 有する。これらのリブ2は鋼ケーシング3に溶接されているが、前記鋼ケーシン グ3は銅スリーブ1と同軸状に配置されその間に補強リブ2によって分割された 冷却室4が冷媒を搬送する流路5を形成している。補強リブ2は第2図に示すよ うに、スリーブ1に埋込まれて全接触面を介して2種類の金属の接続を形成して いる。冷媒はバイブロ (第1図)を通して室4へ注入され、そしてパイプ7を 通して放出される。消耗電極の再融解はインゴット10の形成がうまくいくよう にスラグ浴9内で行われる。補強リブ2はスリーブ1に異なった深さで埋込むこ とができる。スリーブ1の最強の固定は上記リブ2がスリーブ1の最大厚さの壁 に埋込まれたときに達成される。しかしながら、成る再融解工程に関し、例えば チタニウムやジルコニウムのような高反応金属の真空−アーク融解時における鋼 成分の鋳型の作業空間の存在は最終製品の性質に影響を与えるので、望ましくな い。更に、リブ2が埋込まれる深さは融解工程と冷却条件の特別な熱的パラメー ターに依存する。従って、補強リブがスリーブ1の壁に埋込まれる深さは夫々の 特別な場合の為にあらかじめ選定されており、そして好ましくはスリーブ1の壁 の厚さの0.3から1.0の範囲にある。BEST MODE FOR CARRYING OUT THE INVENTION The mold according to the present invention includes a sleeve 1 (Fig. 1) made of low-oxygen copper and its ribs. reinforcing ribs 2 made of non-magnetic steel with an angle between the axes ranging from 3° to 60”; have These ribs 2 are welded to the steel casing 3; The sleeve 3 is arranged coaxially with the copper sleeve 1 and is divided by a reinforcing rib 2 between them. The cooling chamber 4 forms a flow path 5 for conveying a refrigerant. The reinforcing rib 2 is shown in Figure 2. is embedded in the sleeve 1 to form a connection between the two metals through all contact surfaces. There is. The refrigerant is injected into chamber 4 through the vibro (Fig. 1) and then through pipe 7. released through. Re-melting of the consumable electrode will result in successful formation of ingot 10. This is carried out in the slag bath 9. The reinforcing ribs 2 can be embedded in the sleeve 1 at different depths. I can do it. The strongest fixation of the sleeve 1 is that the rib 2 is the wall of the sleeve 1 with the maximum thickness. This is achieved when embedded in However, regarding the remelting step consisting of e.g. Steel during vacuum-arc melting of highly reactive metals such as titanium and zirconium The presence of a working space in the component mold is undesirable as it affects the properties of the final product. stomach. Furthermore, the depth to which the ribs 2 are embedded depends on the particular thermal parameters of the melting process and cooling conditions. Depends on the target. Therefore, the depth at which the reinforcing ribs are embedded in the wall of the sleeve 1 is different from each other. preselected for special cases and preferably on the wall of sleeve 1. The thickness ranges from 0.3 to 1.0.

スリーブ1とケーシング3の壁の厚さは、夫々、好ましくは20から60mと2 から6暉の範囲にあり、一方冷却室を構成するケーシング3とスリーブ10間の 間隔は好ましくは5から20−である。補強リブ2の厚さは好ましくは10〜3 0=であり、そしてスリーブ1の壁の厚さに依存してあらかじめ選定されている 。The wall thicknesses of the sleeve 1 and the casing 3 are preferably between 20 and 60 m and 2 m, respectively. to 6 hours, and on the other hand, between the casing 3 and the sleeve 10 forming the cooling chamber. The spacing is preferably from 5 to 20-. The thickness of the reinforcing rib 2 is preferably 10 to 3 0 = and is preselected depending on the wall thickness of sleeve 1 .

本発明による鋳型は次の状態で操作される。鋳型は枠台(図示せず)上に設けら れている。冷却液はバイブロを通して流路5へ注入され、そしてパイプ7から放 出される。スラグ浴9は枠台上に固定されたスリーブ1の底部へ供給され、そし て電極8が浴9内へ沈められる。電圧はスラグ浴9に印加され、消耗電極8を加 熱し、融解する。溶融金属はスラグ浴を通過し、ス、リー11の底部にインゴッ ト10を形成する。The mold according to the invention is operated under the following conditions. The mold is placed on a frame (not shown). It is. The coolant is injected into the flow path 5 through the vibro, and then released from the pipe 7. Served. The slag bath 9 is fed to the bottom of the sleeve 1 fixed on the frame and The electrode 8 is then submerged into the bath 9. A voltage is applied to the slag bath 9 and the consumable electrode 8 Heat and melt. The molten metal passes through the slag bath and the ingot is deposited at the bottom of the slag bath. A sheet 10 is formed.

エレクトロスラグ再融解の場合、鋳型の各要素は溶融スラグと金属によって(0 ,5〜1.5 ) X 10’ w / m”の高さに達する高い熱負荷が及ぶ ことがある。これは大体において熱応力をスリーブ1の壁の中に伴うのである。In the case of electroslag remelting, each element of the mold is heated by the molten slag and metal (0 , 5 to 1.5) x 10'w/m" high heat load is applied. Sometimes. This essentially involves thermal stresses in the wall of the sleeve 1.

この熱応力は改造できない変形の原因になる。銅スリーブ1の壁に埋込まれた補 強リブの設備とそれらが接続された2種類の金属の構成が鋳型を更に強固な構造 にすると共に鋳型の高い信頼度を保証するのである。鋳型が所望の鋳型構造に設 計されている従来技術において鋼ケーシング3とスリーブ1との間の無ゴムの密 閉要素は一般に急速な破損を生ずる。更に、補強リブ2とスリーブ102種類の 金属の接続は、鋳型の同一強度において、壁の厚さの薄い銅スリーブ1を使用可 能にし、換言すればこれがスリーブ1に使用される銅の量を減らすことを可能と し、そしてスリーブ1の浸蝕を防止することを可能にする。前述のように、再融 解装置の主要部分である鋳型の信頼度は改善されるのである。This thermal stress causes deformation that cannot be modified. The reinforcement embedded in the wall of copper sleeve 1 The structure of the strong rib equipment and the two types of metal that connect them makes the mold even stronger. At the same time, it guarantees high reliability of the mold. The mold is set to the desired mold structure. In the prior art, there is no rubber-free seal between the steel casing 3 and the sleeve 1. Closed elements generally experience rapid failure. In addition, 2 reinforcing ribs and 102 types of sleeves are available. For metal connections, copper sleeves 1 with thin walls can be used with the same strength of the mold. In other words, this makes it possible to reduce the amount of copper used in sleeve 1. This makes it possible to prevent erosion of the sleeve 1. As mentioned above, remelting The reliability of the mold, which is a key part of the solution equipment, is improved.

本発明はエレクトロスラグ、真空−アーク、そしてエレクトロンビーム再融解に 適用され、冶金学、機械工学、胱空学、そして造船業の種々の分野に用いられ、 あらかじめ決められた金属性質の高品質のインゴットを得ることができる。The present invention applies to electroslag, vacuum-arc, and electron beam remelting. It is used in various fields of metallurgy, mechanical engineering, cystopneutics, and shipbuilding. High quality ingots with predetermined metal properties can be obtained.

国際調査報告international search report

Claims (1)

【特許請求の範囲】 銅スリーブ(1)は鋼補強リブ(2)を有し、且つ鋼ケーシング(3)は銅スリ ーブ(1)と同軸状に配置されその間に鋼補強リブ(2)によって分割された冷 却室(4)が流路(5)を区画して構成した鋳型において、鋼補強リブ(2)は 銅スリーブ(1)に埋込まれてそれとともに接触面を介して2種類の金属の接続 を形成することを特徴とする鋳型。[Claims] The copper sleeve (1) has steel reinforcing ribs (2), and the steel casing (3) has copper slits. A cooling section arranged coaxially with the rib (1) and separated by a steel reinforcing rib (2) between them. In the mold in which the cooling chamber (4) partitions the flow path (5), the steel reinforcing rib (2) Embedded in the copper sleeve (1) and with it the connection of two metals through the contact surface A mold characterized by forming.
JP87501701A 1986-12-15 1986-12-15 template Pending JPH01502498A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1986/000127 WO1988004695A1 (en) 1986-12-15 1986-12-15 Crystallizer

Publications (1)

Publication Number Publication Date
JPH01502498A true JPH01502498A (en) 1989-08-31

Family

ID=21617067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP87501701A Pending JPH01502498A (en) 1986-12-15 1986-12-15 template

Country Status (6)

Country Link
JP (1) JPH01502498A (en)
DE (1) DE3690815T1 (en)
FR (1) FR2611525A1 (en)
GB (1) GB2207372B (en)
SE (1) SE462432B (en)
WO (1) WO1988004695A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2081724A (en) * 1936-06-29 1937-05-25 Scott M Abbott Cooky blank forming roll
US3129473A (en) * 1960-11-09 1964-04-21 Carpenter Steel Co Through-plug mold stool
DE1284052B (en) * 1966-05-10 1968-11-28 Mannesmann Ag Water-cooled plate mold for continuous casting
SU358940A1 (en) * 1970-07-20 1980-06-05 Институт Электросварки Им.Е.О. Патона Crystallizer
US3804150A (en) * 1971-03-18 1974-04-16 B Paton Apparatus for electroslag remelting
FR2196866A1 (en) * 1972-08-18 1974-03-22 Ass Elect Ind Electroslag casting moulds - not subject to deformation of the mould walls
LU66012A1 (en) * 1972-09-07 1973-01-17

Also Published As

Publication number Publication date
GB8818917D0 (en) 1988-10-12
SE462432B (en) 1990-06-25
GB2207372A (en) 1989-02-01
SE8802882L (en) 1988-08-12
DE3690815T1 (en) 1988-12-08
GB2207372B (en) 1989-11-01
FR2611525A1 (en) 1988-09-09
SE8802882D0 (en) 1988-08-12
WO1988004695A1 (en) 1988-06-30

Similar Documents

Publication Publication Date Title
RU2235798C2 (en) Products cast from special nickel-base alloys (versions), method for manufacture of products from special alloy and method for thermal processing of such products
Bomberger et al. The melting of titanium
RU2259529C2 (en) Cooling device
Chronister et al. Induction skull melting of titanium and other reactive alloys
Timelli et al. Reliability of a high-pressure die cast Al alloy radiator
US5533258A (en) Process for the manufacturing of a cooling unit
JPH01502498A (en) template
US3353585A (en) Method for controlling the cooling of cast metal
Breig et al. Induction skull melting of titanium aluminides
CN109852822A (en) A method of preparing copper and iron composite functional material
JPH06263B2 (en) Continuous casting method
Tuttle Experimental grain refiners for carbon steels
JPH09241767A (en) Consumable electrode type remelting method for superalloy
BR112021001244A2 (en) ultrasonic enhancement of cast materials by direct cooling
KR20080005248A (en) Method for the production of pigs and pigs
JPS609551A (en) Production of composite material
Thamboo Melt related defects in alloy 706 and their effects on mechanical properties
JPS62252638A (en) Production of molding tool
CA1263151A (en) Ceramic shoes for electroslag welding
JPH01500408A (en) template
JPH01500976A (en) template
EP1141427A2 (en) Die casttitanium alloy articles
Ponomarev et al. Increasing the strength of welded joints in thick plates
Huggett Production and analysis of alloy composites exhibiting improved bonding using a novel vacuum casting process
RU2231725C2 (en) A cool smelting hearth