JPH0150064B2 - - Google Patents

Info

Publication number
JPH0150064B2
JPH0150064B2 JP56047916A JP4791681A JPH0150064B2 JP H0150064 B2 JPH0150064 B2 JP H0150064B2 JP 56047916 A JP56047916 A JP 56047916A JP 4791681 A JP4791681 A JP 4791681A JP H0150064 B2 JPH0150064 B2 JP H0150064B2
Authority
JP
Japan
Prior art keywords
alloy
weight
added
amount
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56047916A
Other languages
Japanese (ja)
Other versions
JPS57162266A (en
Inventor
Takumi Hayakawa
Shiro Iijima
Mizuaki Kurosawa
Seiichi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP56047916A priority Critical patent/JPS57162266A/en
Publication of JPS57162266A publication Critical patent/JPS57162266A/en
Publication of JPH0150064B2 publication Critical patent/JPH0150064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 本発明は鉛蓄電池に用いるPb合金電極材の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a Pb alloy electrode material for use in lead-acid batteries.

鉛蓄電池用電極材は現在迄種々のものが提案さ
れているが広く用いられているものはPbに4〜
8重量%程度のSbを添加し、必要に応じてAsの
少量を添加したものである。一方、鉛蓄電池用電
極材に要求される性質としては適当な強さと耐食
性が挙げられ、格子などへの適用については鋳造
性あるいは加工性もまた要求される。上記Pb−
Sb合金あるいはPb−Sb−As合金は以上の要求を
ほぼ満足するものとして賞用されてきた。一方、
鉛蓄電池の硫酸液中での耐食性は純Pbが最もす
ぐれるが強さが不足である。Pb−Sb合金あるい
はPb−Sb−As合金は強さを十分に保証したもの
ではあるが、Sb又はAs添加による耐食性低下は
現状許容し得るものとは云え、その改善は望まし
いものである。
Various electrode materials for lead-acid batteries have been proposed to date, but the most widely used ones are Pb containing 4 to 4
Approximately 8% by weight of Sb is added, and if necessary, a small amount of As is added. On the other hand, properties required for electrode materials for lead-acid batteries include appropriate strength and corrosion resistance, and for application to grids, etc., castability or workability is also required. Above Pb−
Sb alloys or Pb-Sb-As alloys have been widely used as they meet the above requirements. on the other hand,
Pure Pb has the best corrosion resistance in sulfuric acid solutions for lead-acid batteries, but it lacks strength. Although the Pb-Sb alloy or the Pb-Sb-As alloy has sufficient strength, the reduction in corrosion resistance due to the addition of Sb or As is currently tolerable, and improvement thereof is desirable.

そこで、本発明者らがPb−Sb合金あるいはPb
−Sb−As合金が硫酸液中での腐食の進行を金相
学的手法によつて解析した結果、第1図に示すよ
うにPb−Sb共晶と呼ばれる晶出組織を選択的に
腐食が進行することが判明した。すなわち第1図
はPb−Sb合金極柱の顕微鏡写真(X100)で、黒
色の網状となつているのが腐食の進行している部
分を示している。
Therefore, the present inventors developed a Pb-Sb alloy or a Pb-Sb alloy.
-As a result of analyzing the progress of corrosion of Sb-As alloy in sulfuric acid solution using metallurgical methods, it was found that corrosion selectively progresses in the crystallized structure called Pb-Sb eutectic, as shown in Figure 1. It has been found. In other words, Figure 1 is a micrograph (X100) of a Pb-Sb alloy pole column, and the black net-like area shows the areas where corrosion is progressing.

Pb−Sb共晶組織を分断あるいは微細化する方
法として最も簡単な方法はSb含有量を多くとも
3.5重量%以下にすることがPb−Sb合金系平衡状
態図から考えられるが、現実の非平衡状態での凝
固条件下ではSbを3.5重量%以下にしてもなお共
晶組織は発生する。Sb量を2重量%程度までも
低下すれば共晶組織は一応消滅するが、かわつて
コアード組織(CoredStructure)と呼ばれるSb
偏析をともなつた組織が生成するようになり、耐
食性の改善は十分に図り得ない。またSb量の減
少はそれだけPb合金の強さを減じる。圧延のよ
うな塑性加工によつて共晶組織あるいはコアード
組織を消滅させることは可能であり、この場合強
さの低下もともなわずに処置することが可能であ
るが、製造工程の増加はまず経済的ではない。
The easiest way to split or refine the Pb-Sb eutectic structure is to reduce the Sb content to at least
Although it is conceivable from the equilibrium phase diagram of the Pb-Sb alloy system that the Sb content should be 3.5% by weight or less, under actual non-equilibrium solidification conditions, a eutectic structure still occurs even if the Sb content is 3.5% by weight or less. If the amount of Sb is reduced to about 2% by weight, the eutectic structure will disappear, but the Sb
A structure with segregation is generated, and corrosion resistance cannot be sufficiently improved. Also, the decrease in the amount of Sb reduces the strength of the Pb alloy. It is possible to eliminate the eutectic structure or cored structure by plastic working such as rolling, and in this case it is possible to do it without reducing the strength, but the increase in the manufacturing process is first of all an economic issue. Not the point.

本発明はこうした製造工程の増加や複雑化を伴
わずに強度と耐食性にすぐれたPb合金の鉛蓄電
池用電極材を製造する方法を提供することを目的
とする。
An object of the present invention is to provide a method for manufacturing a Pb alloy lead-acid battery electrode material that has excellent strength and corrosion resistance without increasing or complicating the manufacturing process.

本発明での要点を一言で述べればPb−Sb合金
の凝固過程にいわゆる過冷却現象を人為的に導入
して共晶組織あるいはコアード組織の分断、微細
化をはかるものである。過冷却を生ぜしめる方法
も理論的にはいくつか挙げられるが、本発明にお
いて特に見出した方法はアルカリ金属の微量添加
による過冷却現象の誘発である。アルカリ金属と
してLi、K、Na、Rb、Csが挙げられるが、実験
的検討の結果からしてこれらのうち組織の微細化
に最も有効であつたのはLi、K、Naの3種で
Rb、Csについては元来融点が室温に近く、添加
上不都合とするところがあつた。また、Li、K、
Naの添加は溶融Pb合金の表面から直接挿入添加
するだけで良く、何れも期待するところの微細組
織を重量比にして0.1%以下の添加で得ることが
できる。また、この処理によつて強さの低下は全
く認められず、耐食性は改善される。
In short, the main point of the present invention is to artificially introduce a so-called supercooling phenomenon into the solidification process of a Pb--Sb alloy to divide and refine the eutectic structure or cored structure. Although there are several theoretical methods for causing supercooling, the method specifically discovered in the present invention is to induce the supercooling phenomenon by adding a small amount of alkali metal. Alkali metals include Li, K, Na, Rb, and Cs, but according to the results of experimental studies, Li, K, and Na were the three most effective for microstructural refinement.
Rb and Cs originally had melting points close to room temperature, which made them inconvenient to add. Also, Li, K.
Na can be added by directly inserting it into the surface of the molten Pb alloy, and the desired microstructure can be obtained by adding 0.1% or less by weight. Moreover, no decrease in strength is observed due to this treatment, and corrosion resistance is improved.

なお、Li、K、Naの添加量は本発明において
は0.1重量%以下、0.02重量%以上であることを
指定する。
In the present invention, the amounts of Li, K, and Na added are specified to be 0.1% by weight or less and 0.02% by weight or more.

ここで上限を0.1重量%としたのはこれ以上の
添加は組織の微細化や性質の改善をさらに進行さ
せるものではなく、むしろ鋳造性を低下させるか
らである。下限を0.02重量%としたのは、これ以
下では添加効果が乏しくなるからである。また、
以上の添加処理の対象とするPb−Sb合金はSb量
として0.5重量%以上4重量%以下であることを
指定する。ここで、Sb量の下限を0.5重量%とす
るのはこれ以下ではLi、K、Na添加をしたとし
てもなお強さに不足のあること、上限を4重量%
としたのはこれ以上のSb添加は発明の目的を達
成するのに不必要かつ耐食性において多少の低下
をもたらすからである。
The reason why the upper limit was set at 0.1% by weight is that addition of more than this does not further refine the structure or improve properties, but rather deteriorates castability. The reason why the lower limit is set to 0.02% by weight is that below this, the effect of addition becomes poor. Also,
The Pb-Sb alloy to be subjected to the above addition treatment is specified to have an Sb content of 0.5% by weight or more and 4% by weight or less. Here, the lower limit of the amount of Sb is set at 0.5% by weight because if it is less than this, even if Li, K, and Na are added, the strength will still be insufficient, and the upper limit is set at 4% by weight.
This is because adding more Sb than this is unnecessary to achieve the purpose of the invention and causes a slight decrease in corrosion resistance.

実施例 溶融Pb−Sb合金(Sb0.5〜4.0重量%)1中に
Li、K、Naを添加混合2した後凝固3させてPb
−Sb合金の組織の微細化状態を調べ、添加前の
組織の状態と比べて見た。第2図はPb−Sb合金
の組織の変化の顕微鏡写真(X100)を示すもの
で、aは無添加、bはLi0.05重量%添加、cは
K0.02重量%添加、dはNa0.05重量%添加の状態
を示す。第2図より明らかなように、aの無添加
のものに比べてb,c,dの添加したものの組織
が微細化していることが判る。
Example: Molten Pb-Sb alloy (Sb0.5-4.0% by weight) in 1
After adding and mixing 2 Li, K, and Na, solidify 3 and Pb
-The refined state of the structure of the Sb alloy was investigated and compared with the state of the structure before addition. Figure 2 shows micrographs (X100) of changes in the structure of the Pb-Sb alloy.
0.02% by weight of K is added, and d shows the state of 0.05% by weight of Na added. As is clear from FIG. 2, it can be seen that the structure of the specimens with additions b, c, and d is finer than that of the specimen without addition of a.

次にPb−Sb合金(Sb0.5〜4.0重量%)にLi、
K、Naを添加したものの引張強さを測定した。
図3はその測定結果を示すもので、添加による引
張強さ向上の効果は添加量0.02重量%以下では小
さく、0.10重量%添加によつて飽和に達し以上添
加しても引張強さが大きくならない。
Next, Li was added to the Pb-Sb alloy (Sb0.5-4.0% by weight).
The tensile strength of the material to which K and Na were added was measured.
Figure 3 shows the measurement results.The effect of improving tensile strength due to addition is small when the amount added is less than 0.02% by weight, and reaches saturation when added at 0.10% by weight, and the tensile strength does not increase even if it is added more than 0.10% by weight. .

またPb−Sb合金(Sb0.5〜4.0重量%)にLi、
K、Naを添加したものを100℃のH2SO4液〔比重
1.200(20℃)〕に60分間浸漬してその耐食性を調
べた。図4はその結果を示すもので、添加による
腐食量減少の効果は添加量0.02重量%以下では小
さく0.10重量%添加によつて飽和に達し以上添加
しても腐食量が減らず一定している。
In addition, Li,
Added K and Na to 4 H 2 SO solution at 100℃ [specific gravity
1.200 (20℃)] for 60 minutes to examine its corrosion resistance. Figure 4 shows the results.The effect of reducing the amount of corrosion due to addition is small when the addition amount is less than 0.02% by weight, reaching saturation when adding 0.10% by weight, and the amount of corrosion does not decrease and remains constant even if more than 0.10% is added. .

このような結果はPb−Sb合金の組織を微細均
一にしたことによるものと思われる。
This result is thought to be due to the fine and uniform structure of the Pb-Sb alloy.

以上説明したように、本発明は耐食性、強度お
よび鋳造性にすぐれる鉛蓄電池用電極材を簡単に
製造できる点工業的価値極めて大なるものであ
る。
As explained above, the present invention has extremely great industrial value in that it allows easy production of electrode materials for lead-acid batteries that have excellent corrosion resistance, strength, and castability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はPb−Sb合金極柱の断面の顕微鏡写真、
第2図は本発明の実施例を示すPb−Sb合金組織
の変化状態を示す顕微鏡写真で、aは無添加、b
はLi添加、cはK添加、dはNa添加のものであ
る。第3図は本実施例におけるPb−Sb合金への
Li、K、Naの添加量に対する引張強さの関係曲
線図、第4図は本実施例におけるPb−Sb合金へ
のLi、K、Naの添加量に対する腐食量関係曲線
図、第5図は本実施例における工程フロー図であ
る。 1は溶融Pb−Sb合金、2はLi、K、Na添加混
合工程、3は凝固工程。
Figure 1 is a micrograph of a cross section of a Pb-Sb alloy pole column.
Figure 2 is a micrograph showing the state of change in the Pb-Sb alloy structure showing an example of the present invention, where a is no additives and b
is the one with Li added, c with K added, and d with Na added. Figure 3 shows the Pb-Sb alloy in this example.
Figure 4 is a graph showing the relationship between tensile strength and the amount of Li, K, and Na added. Figure 4 is a graph showing the relationship between the amount of corrosion and the amount of Li, K, and Na added to the Pb-Sb alloy in this example. It is a process flow diagram in this example. 1 is a molten Pb-Sb alloy, 2 is a Li, K, and Na addition and mixing process, and 3 is a solidification process.

Claims (1)

【特許請求の範囲】 1 Sbを0.5〜4.0重量%含む溶融Pb合金1中に、
Li、K、Naの内から選ばれたアルカリ金属の1
種を0.02〜0.1重量%の範囲内で添加し2、 次いで、これを凝固3する、ことを特徴とす
る、 鉛蓄電池用電極材の製造法。
[Claims] 1 In the molten Pb alloy 1 containing 0.5 to 4.0% by weight of Sb,
An alkali metal selected from Li, K, and Na
A method for producing an electrode material for a lead-acid battery, characterized by adding seeds in a range of 0.02 to 0.1% by weight (2), and then solidifying (3) this.
JP56047916A 1981-03-31 1981-03-31 Electrode material for lead-acid battery Granted JPS57162266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56047916A JPS57162266A (en) 1981-03-31 1981-03-31 Electrode material for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56047916A JPS57162266A (en) 1981-03-31 1981-03-31 Electrode material for lead-acid battery

Publications (2)

Publication Number Publication Date
JPS57162266A JPS57162266A (en) 1982-10-06
JPH0150064B2 true JPH0150064B2 (en) 1989-10-27

Family

ID=12788682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56047916A Granted JPS57162266A (en) 1981-03-31 1981-03-31 Electrode material for lead-acid battery

Country Status (1)

Country Link
JP (1) JPS57162266A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177864A (en) * 1983-03-29 1984-10-08 Shin Kobe Electric Mach Co Ltd Electrode material for lead-acid battery
JPS63207057A (en) * 1987-02-24 1988-08-26 Shin Kobe Electric Mach Co Ltd Lead storage battery
US6059900A (en) * 1998-02-18 2000-05-09 Indium Corporation Of America Lead-based solders for high temperature applications

Also Published As

Publication number Publication date
JPS57162266A (en) 1982-10-06

Similar Documents

Publication Publication Date Title
JP2012524837A5 (en)
US4246026A (en) Manufacturing process of vermicular graphic cast-irons through double modification
CN106521274A (en) High-strength Mg-Li-Al-Y-Ca alloy and preparation method thereof
US6861040B1 (en) Refining of metallurgical grade silicon
US2964397A (en) Copper-boron alloys
US2453444A (en) Magnesium base lithium alloys
US3459541A (en) Process for making nodular iron
JPH0150064B2 (en)
JPS609061A (en) Manufacture of lead alloy plate for lead storage battery substrate
US2837422A (en) Addition agents for the treatment of molten cast iron
CN114000020A (en) Ingot for large-size die forging and preparation method thereof
US2850381A (en) Process and alloy for adding rare earth elements and boron to molten metal baths
US2620270A (en) Method of improving magnesium and the binary magnesium-base alloy of magnesium and manganese
US3471286A (en) Aluminium base alloy
CN106498252A (en) A kind of high-strength magnesium neodymium zinc zirconium lithium alloy and preparation method thereof
Bagshaw Lead—strontium alloys for battery grids
Mao et al. The microstructure of lead-base alloys
JPH0420972B2 (en)
US1556953A (en) Alloy
DE363130C (en) Aluminum alloy
JP2639751B2 (en) Lead-based alloy for storage batteries
US1847044A (en) Process for the improvement of nickel
RU2188873C1 (en) Method of production of magnesium alloy
JPS5935421B2 (en) Zinc-based iron alloy for plated shot lumps and zinc-based iron alloy plated shot lumps
US3157494A (en) Method of producing an aluminum alloy