JPH0149641B2 - - Google Patents

Info

Publication number
JPH0149641B2
JPH0149641B2 JP60075533A JP7553385A JPH0149641B2 JP H0149641 B2 JPH0149641 B2 JP H0149641B2 JP 60075533 A JP60075533 A JP 60075533A JP 7553385 A JP7553385 A JP 7553385A JP H0149641 B2 JPH0149641 B2 JP H0149641B2
Authority
JP
Japan
Prior art keywords
pitch
carbonaceous mesophase
graphite
heat
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60075533A
Other languages
Japanese (ja)
Other versions
JPS61236605A (en
Inventor
Yasuhiro Yamada
Shigeji Hagiwara
Shigeki Tomono
Hidemasa Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Kasei Corp filed Critical Agency of Industrial Science and Technology
Priority to JP60075533A priority Critical patent/JPS61236605A/en
Publication of JPS61236605A publication Critical patent/JPS61236605A/en
Publication of JPH0149641B2 publication Critical patent/JPH0149641B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は膨張黒鉛の製造方法に関するものであ
り、より詳しくは原料ピツチを加熱処理した際、
熱処理ピツチ中に生成する炭素質メソフエーズを
用いて膨張黒鉛を製造する方法に関するものであ
る。 (従来の技術) 一般に膨張黒鉛は黒鉛を酸化処理し、焼成する
ことにより製造されている。黒鉛としては天然黒
鉛であるリン片状黒鉛等が用いられ、特に黒鉛結
晶構造が著しく発達したリン片状黒鉛を用いると
上記の処理により体積が数百倍程度膨張すること
が知られている。 また黒鉛単結晶に類する構造を有する黒鉛とし
て、溶融した銑鉄等に過剰に含有された炭素が冷
却時に析出して得られるキツシユ黒鉛あるいは炭
化水素を気相で約2000℃に加熱した基板上に通し
熱分解させて析出する熱分解黒鉛等が知られてお
り、これらの黒鉛も上記処理により膨張すること
が知られている。 (発明が解決しようとする問題点) しかしながら、天然黒鉛、特にリン片状黒鉛は
その主産地が偏在しており、その埋蔵量にも限り
があり、また通常天然黒鉛には灰分が含有されて
おり灰分含有量が多いと膨張率が小さく、かつ得
られた膨張黒鉛の成形性及び品質等が低下するた
め、予じめフツ酸処理等による灰分除去操作を必
要とするか、あるいはかかる灰分除去操作を必要
としない低灰分含有の天然黒鉛の場合は非常に高
価であつた。 キツシユ黒鉛を用いる場合は結晶内に鉄等の不
純物を多量に含有しており、かかる不純物の除去
が使用上の問題となつており、熱分解黒鉛の場合
には炭素の析出速度、収率の点から多量かつ安価
に製造できない点に問題がある。 更には、石炭あるいは石油工業の副産物として
得られる重質油、すなわちコールタールや残渣油
を用いて、これをコークス化し次いで黒鉛化処理
することにより得られるいわゆる人造黒鉛の場合
は、原料であるコールタール、石油系残渣油は灰
分等の不純物含量は小さく、かつ灰分等の除去操
作においては液相となるため除去操作自体は容易
となるものの、黒鉛結晶の発達度合が天然黒鉛等
の黒鉛結晶と比較して小さいため、天然黒鉛を用
いる場合と同様の酸化処理を行なつてもほとんど
膨張せず、目的とする膨張黒鉛を得ることができ
ない。 (問題点を解決するための手段) 本発明者等は、上記の問題点を解決するために
鋭意検討した結果、原料ピツチを加熱処理して該
ピツチ中に生成する光学的異方性を示す炭素質メ
ソフエーズが擬似黒鉛結晶を有していることに注
目して、かかる炭素質メソフエーズを膨張黒鉛の
原料として用いることにより灰分等の除去操作手
段を必要とせず、かつ容易に製造することができ
ることを見出し、本発明に到達した。 すなわち、本発明の目的は容易にかつ多量に黒
鉛シート等の製造に有用な軟質黒鉛である膨張黒
鉛を製造する方法を提供することにある。そし
て、かかる目的は原料ピツチを350〜500℃で加熱
処理して炭素質メソフエーズを生成させた熱処理
ピツチを得、該炭素質メソフエーズを溶解しない
有機溶剤を用いて該熱処理ピツチを溶剤処理する
ことにより、該炭素質メソフエーズを分離取得
し、得られた該炭素質メソフエーズを2400℃〜
3100℃の温度範囲で黒鉛化処理し、次いで得られ
た黒鉛化物を湿式酸化処理することにより達成さ
れる。 以下、本発明を詳細に説明する。 原料ピツチとしては石炭系のコールタールピツ
チ、あるいは石油系ピツチ、例えば流動接触分解
副生タールからのピツチあるいは原油の直留残渣
油、ナフサ熱分解副生タールからのピツチ等が用
いられるが、好ましくはコールタールピツチを用
いるのがよい。 また、これら原料ピツチには若干量ながらフリ
ーカーボン等の不純物が含有されているので、公
知の方法により予め原料から除去しておくのがよ
く、更には原料ピツチを水素化処理したものを用
いてもよい。 上記の原料ピツチを不活性気体雰囲気下、350
〜500℃、好ましくは400〜450℃の温度範囲で0.5
〜20時間加熱処理する。該加熱処理により該原料
ピツチ中に光学的異方性の炭素質メソフエーズが
生成する。 次いで得られた炭素質メソフエーズを含有する
熱処理ピツチを炭素質メソフエーズ以外のピツチ
成分は溶解するが、炭素質メソフエーズは溶解し
ないような有機溶剤により溶剤処理することによ
り炭素質メソフエーズのみを分離取得する。炭素
質メソフエーズの分離に用いられる有機溶剤とし
てはメソカーボンマイクロビーズを製造する際に
用いられる公知の有機溶剤例えばキノリンもしく
はアントラセン油、クレオソート油等の芳香族炭
化水素の混合油等を用いることができる。 かかる分離操作は炭素質メソフエーズ以外のピ
ツチ成分を極力除去することを目的として行なう
ものであり、具体的には熱処理ピツチ1重量部に
対して有機溶剤を0.3重量部以上、好ましくは1
〜5重量部の割合で混合撹拌し炭素質メソフエー
ズを分離取得するが、炭素質メソフエーズ以外の
ピツチ成分を極力除去するためには、上記分離操
作を少なくとも2回繰り返すのが好ましい。 なお、ピツチ自体複雑な化学構造を有する分子
の多成分系であるので、溶剤に対するピツチの溶
解量は温度に依存するため、可能な限り高温で炭
素質メソフエーズを分離するのが好ましい。ま
た、得られた炭素質メソフエーズを水素化処理し
て得られる水素化炭素質メソフエーズも本発明の
炭素質メソフエーズとして用いられる。上記の分
離操作により得られた炭素質メソフエーズは2400
℃〜3100℃、好ましくは2800℃〜3000℃の温度範
囲で黒鉛化処理して黒鉛化物を得る。 次いで該黒鉛化物を湿式酸化処理するが、この
酸化処理は公知の方法で行なうことができ、具体
的には硫酸と硝酸との混酸あるいは過酸化ハロゲ
ン酸を用いて行なう。 なお、硫酸と硝酸の混酸における各酸の配合割
合、処理時間、処理温度等の酸化条件に関しては
適宜選択決定されるが、具体的には硫酸9部と硝
酸1部からなる混酸を黒鉛化物に対し、少なくと
も同量以上用い、2時間以上、50℃以上の条件で
酸化処理を行なう。黒鉛化処理を施した炭素質メ
ソフエーズは上記酸化処理により膨張し製品であ
る膨張黒鉛が得られる。天然黒鉛の場合は酸化処
理では十分に膨張せず、更に約1000℃で加熱処理
することにより膨張するが、本発明の炭素質メソ
フエーズを黒鉛化処理を行なつたものは、酸化処
理後更に加熱処理を行なつても膨張率には特に変
化はない。しかしながら、酸化処理により導入さ
れた酸性基を除去する必要がある場合には、加熱
処理により除去してもよい。 (効果) 本発明によれば、黒鉛フイルム、あるいは黒鉛
シート等の製造原料として有用な膨張黒鉛を天然
黒鉛等を出発原料とした場合と比較して安価にか
つ多量に製造することができるので、本発明は工
業的に非常に有用なものである。 (実施例) 以下、実施例にて本発明をより具体的に説明す
るが、本発明の要旨を超えない限り、下記実施例
に限定されるものではない。 実施例 1〜6 コールタールピツチ(軟化点78℃、キノリン不
溶分4.5重量%)に約3倍量のキノリンを加え、
約90℃に加熱、溶解した。これをガラスフイルタ
ーにて過した後、液を減圧蒸留し、キノリン
を除去して、フリーカーボンを含まないピツチを
得た。このピツチ約400gを500mlの円筒状ガラス
容器に入れ、約300℃に加熱した炉中で溶融した
後、かくはんしながら窒素ガス中、毎分3℃の昇
温速度で所定温度まで加熱し、この温度で所定時
間保持した。 このようにして熱処理したピツチを粉砕し、キ
ノリンを約3倍量加え、約90℃で加熱、溶解し
た。これを遠心沈殿器にかけ、上澄を除いた後、
新たなキノリンを加え、加熱した後、遠心沈殿さ
せた。この操作を5回くり返した後、沈殿物にベ
ンゼンを加え、約1時間還流させた後、ガラスフ
イルターにて過した。ついで過後をアセトン
で十分洗浄し、乾燥させて、キノリン不溶分を採
取し、これを炭素質メソフエーズとした。 表1に原料ピツチの熱処理温度、時間、更に得
られた炭素質メソフエーズ30gとキノリン60gを
300mlのオートクレープに入れ、内部をアルゴン
で置換した後、かくはんしながら、毎分5℃の昇
温速度で440℃まで加熱し、60分間保持した。つ
いで室温まで冷却した後内容物を全量キノリンで
洗い出し、ガラスフイルターで過した。過物
をキノリンで十分洗浄し、ついでベンゼン、アセ
トンで洗浄した後乾燥した。これをキノリン処理
メソフエーズとした。この処理によるメソフエー
ズに対する収率を表1に合わせて記した。 以上のようにして得た炭素質メソフエーズを24
〜42タイラーメツシユのフルイで分け、24〜42メ
ツシユの粒度にそろえた。これを窒素ガス中800
℃で焼成した後、タンマン炉で3000℃まで加熱し
30分間黒鉛化した。得られた黒鉛化物約3gを精
秤し、20mlメスシリンダーに入れ、よく充てんさ
せた後、体積を測定した。ついで、300mlの三角
フラスコに入れ、濃硫酸(濃度99.8%)9部、濃
硝酸(濃度64%)1部の割合の混酸30mlを加え、
100℃の油浴中で60分間酸化させた後、約500mlの
水中に投入して反応を停止させた。これをガラス
フイルターで過し、約100℃で乾燥した後、重
量と20mlメスシリンダーによつて体積を測定し
た。この操作を3回くり返し、全体で100℃、180
分間酸化した。重量と体積から充てん密度を求
め、次式で示したように、酸化前後の充てん密度
の比を見掛けの膨張率として膨張の程度を表し
た。 見掛けの膨張率=酸化処理前の充填密度/酸化処理後
の充填密度 得られた結果を表2に示した。 実施例 7 実施例1〜6と同様のコールタールピツチ500
g、アントラセン油500g及び触媒として
Fe2O325gを容積2のオートクレーブに注入
し、水素圧100Kg/cm2Gとして温度450℃、10分間
水素化処理した後、内容物を減圧蒸留して水素化
ピツチを得た。得られた水素化ピツチを実施例3
と同様にして熱処理及び溶剤処理してキノリン不
溶分として炭素質メソフエーズを得た。その結果
を表1に示す。次いで得られた炭素質メソフエー
ズを実施例1〜6と同様の方法で黒鉛化処理及び
湿式酸化処理として本発明の膨張黒鉛を得た。そ
の結果を表2に示す。 実施例 8 実施例3で得られた炭素質メソフエーズ10gと
テトラヒドロキノリン20gを容積300mlのオート
クレーブに注入し、アルゴン雰囲気、自生圧下
440℃、60分間加熱処理(昇温速度5℃/分)し、
得られた内容物を過・洗浄を行ない水素化炭素
質メソフエーズを得た。尚、加熱処理後テトラヒ
ドロキノリンの濃度減少量を測定するとともに発
生ガス中の水素量から水素消費量を算出した。そ
の結果を表3に示す。得られた水素化炭素質メソ
フエーズを実施例1〜6と同様の方法で黒鉛化処
理及び湿式酸化処理を行ない、本発明の膨張黒鉛
を得た。その結果を表2に示す。 比較例 1〜2 市販の黒鉛材及び石油コークスを3000℃、30分
間黒鉛化処理したものをそれぞれ24〜42メツシユ
の粒度としたものを実施例1〜6と同様に湿式酸
化処理した。その結果を表−2に示す。 尚、表2からわかるように、膨張率は約90℃で
採取したメソフエーズよりもキノリン処理メソフ
エーズの方が大きくなり、キノリンに可溶な成分
をより多く除去したものの方が膨張に対してより
効果を与えることがわかる。
(Industrial Application Field) The present invention relates to a method for producing expanded graphite, and more specifically, when a raw material pitch is heat-treated,
The present invention relates to a method for producing expanded graphite using carbonaceous mesophase produced in a heat treatment pitch. (Prior Art) Expanded graphite is generally produced by oxidizing graphite and firing it. As the graphite, flaky graphite, which is natural graphite, is used, and it is known that when flaky graphite, which has a particularly developed graphite crystal structure, is used, its volume expands several hundred times due to the above-mentioned treatment. Graphite, which has a structure similar to single crystal graphite, is produced by precipitating carbon excessively contained in molten pig iron, etc. during cooling. Pyrolytic graphite and the like that are precipitated by thermal decomposition are known, and these graphites are also known to expand by the above-mentioned treatment. (Problems to be solved by the invention) However, natural graphite, especially flaky graphite, is mainly produced in uneven locations and its reserves are limited, and natural graphite usually contains ash. If the ash content is high, the expansion coefficient will be low and the formability and quality of the obtained expanded graphite will deteriorate. Natural graphite with low ash content, which does not require any manipulation, is very expensive. When using Kitshu graphite, the crystals contain a large amount of impurities such as iron, and removal of these impurities poses a problem in use, and in the case of pyrolytic graphite, the rate of carbon precipitation and yield are affected. The problem is that it cannot be manufactured in large quantities and at low cost. Furthermore, in the case of so-called artificial graphite, which is obtained by coking the heavy oil obtained as a by-product of the coal or petroleum industry, such as coal tar or residual oil, and then graphitizing it, the raw material coal Tar and petroleum-based residual oils have a small content of impurities such as ash, and when removing ash, they turn into a liquid phase, making the removal process easy, but the degree of development of graphite crystals is different from that of natural graphite. Since it is comparatively small, it hardly expands even if it is subjected to the same oxidation treatment as when using natural graphite, making it impossible to obtain the desired expanded graphite. (Means for Solving the Problems) As a result of intensive studies to solve the above problems, the present inventors have determined that the optical anisotropy produced in the raw material pitch by heat treating the raw material pitch is Focusing on the fact that carbonaceous mesophase has pseudographite crystals, by using such carbonaceous mesophase as a raw material for expanded graphite, there is no need for a means for removing ash, etc., and it can be easily produced. They discovered this and arrived at the present invention. That is, an object of the present invention is to provide a method for easily and in large quantities producing expanded graphite, which is a soft graphite useful for producing graphite sheets and the like. This purpose is achieved by heat-treating the raw material pitch at 350 to 500°C to obtain a heat-treated pitch in which carbonaceous mesophase is produced, and then solvent-treating the heat-treated pitch using an organic solvent that does not dissolve the carbonaceous mesophase. , the carbonaceous mesophase is separated and obtained, and the obtained carbonaceous mesophase is heated at 2400℃~
This is achieved by graphitizing in a temperature range of 3100°C and then subjecting the obtained graphitized product to wet oxidation. The present invention will be explained in detail below. As the raw material pitch, coal-based coal tar pitch or petroleum-based pitch, such as pitch from fluidized catalytic cracking by-product tar, direct distillation residue oil of crude oil, pitch from naphtha pyrolysis by-product tar, etc., is used, but preferably. It is best to use coal tar pitch. In addition, these raw material pitches contain a small amount of impurities such as free carbon, so it is best to remove them from the raw materials in advance using a known method, and even use hydrogenated raw material pitches. Good too. Pitch the above raw materials under an inert gas atmosphere for 350 min.
0.5 in the temperature range of ~500℃, preferably 400-450℃
Heat treat for ~20 hours. By this heat treatment, optically anisotropic carbonaceous mesophase is produced in the raw material pitch. The resulting heat-treated pitch containing carbonaceous mesophase is then treated with an organic solvent that dissolves pitch components other than the carbonaceous mesophase but does not dissolve the carbonaceous mesophase, thereby separating and obtaining only the carbonaceous mesophase. As the organic solvent used for separating the carbonaceous mesophase, it is possible to use known organic solvents used in producing mesocarbon microbeads, such as quinoline or mixed oils of aromatic hydrocarbons such as anthracene oil and creosote oil. can. This separation operation is carried out with the aim of removing pitch components other than carbonaceous mesophase as much as possible, and specifically, 0.3 parts by weight or more, preferably 1 part by weight, of an organic solvent is added to 1 part by weight of the heat-treated pitch.
The carbonaceous mesophase is separated and obtained by mixing and stirring at a ratio of ~5 parts by weight. In order to remove pitch components other than the carbonaceous mesophase as much as possible, it is preferable to repeat the above separation operation at least twice. Since pitch itself is a multi-component system of molecules having a complex chemical structure, the amount of pitch dissolved in the solvent depends on the temperature, so it is preferable to separate the carbonaceous mesophase at as high a temperature as possible. Further, hydrogenated carbonaceous mesophase obtained by hydrogenating the obtained carbonaceous mesophase can also be used as the carbonaceous mesophase of the present invention. The carbonaceous mesophase obtained by the above separation procedure is 2400
A graphitized product is obtained by graphitization treatment at a temperature range of .degree. C. to 3100.degree. C., preferably 2800.degree. C. to 3000.degree. The graphitized product is then subjected to a wet oxidation treatment, which can be carried out by a known method, specifically using a mixed acid of sulfuric acid and nitric acid or a peroxyhalogen acid. The oxidation conditions, such as the blending ratio of each acid in the mixed acid of sulfuric acid and nitric acid, treatment time, and treatment temperature, are selected and determined as appropriate. On the other hand, oxidation treatment is carried out using at least the same amount or more for 2 hours or more at 50°C or more. The graphitized carbonaceous mesophase is expanded by the above oxidation treatment to obtain expanded graphite as a product. In the case of natural graphite, it does not expand sufficiently with oxidation treatment, and expands with further heat treatment at approximately 1000°C, but the carbonaceous mesophase of the present invention subjected to graphitization treatment can be further heated after oxidation treatment. There is no particular change in the expansion rate even after the treatment. However, if it is necessary to remove the acidic groups introduced by oxidation treatment, they may be removed by heat treatment. (Effects) According to the present invention, expanded graphite, which is useful as a raw material for producing graphite films, graphite sheets, etc., can be produced at a lower cost and in larger quantities than when natural graphite or the like is used as a starting material. The present invention is industrially very useful. (Examples) Hereinafter, the present invention will be explained in more detail using Examples, but the present invention is not limited to the following Examples unless the gist of the present invention is exceeded. Examples 1 to 6 Approximately three times the amount of quinoline was added to coal tar pitch (softening point 78°C, quinoline insoluble content 4.5% by weight),
It was heated to about 90°C and dissolved. After passing this through a glass filter, the liquid was distilled under reduced pressure to remove quinoline and obtain pitch free of free carbon. Approximately 400 g of this pitch was placed in a 500 ml cylindrical glass container, melted in a furnace heated to approximately 300°C, and then heated to a specified temperature in nitrogen gas with stirring at a rate of 3°C per minute. The temperature was maintained for a predetermined time. The heat-treated pitch was crushed, and about three times the amount of quinoline was added thereto, and the mixture was heated and dissolved at about 90°C. After applying this to a centrifugal precipitator and removing the supernatant,
Fresh quinoline was added, heated, and then centrifuged. After repeating this operation 5 times, benzene was added to the precipitate, which was refluxed for about 1 hour, and then filtered through a glass filter. The filtrate was then thoroughly washed with acetone and dried to collect the quinoline-insoluble matter, which was used as carbonaceous mesophase. Table 1 shows the heat treatment temperature and time of the raw material pitch, as well as the obtained carbonaceous mesophase (30 g) and quinoline (60 g).
The mixture was placed in a 300 ml autoclave, the inside of which was purged with argon, and the mixture was heated to 440°C at a rate of 5°C per minute while stirring, and held for 60 minutes. After cooling to room temperature, the entire contents were washed out with quinoline and filtered through a glass filter. The residue was thoroughly washed with quinoline, then benzene and acetone, and then dried. This was designated as quinoline-treated mesophase. The yield of mesophase obtained by this treatment is also shown in Table 1. The carbonaceous mesophase obtained in the above manner was
Separated with ~42 Tyler mesh sieve and adjusted to particle size of 24 to 42 mesh. 800 ml of this in nitrogen gas.
After firing at ℃, it is heated to 3000℃ in a Tamman furnace.
Graphitized for 30 minutes. Approximately 3 g of the obtained graphitized material was accurately weighed, placed in a 20 ml measuring cylinder, and after filling well, the volume was measured. Next, put it in a 300 ml Erlenmeyer flask and add 30 ml of a mixed acid containing 9 parts of concentrated sulfuric acid (concentration 99.8%) and 1 part of concentrated nitric acid (concentration 64%).
After oxidizing for 60 minutes in an oil bath at 100°C, the reaction was stopped by pouring it into about 500 ml of water. After passing through a glass filter and drying at about 100°C, the volume was measured by weight and using a 20ml measuring cylinder. Repeat this operation 3 times to achieve a total temperature of 100℃ and 180℃.
Oxidized for minutes. The packing density was determined from the weight and volume, and the degree of expansion was expressed as the ratio of the filling density before and after oxidation as the apparent expansion coefficient, as shown by the following formula. Apparent expansion coefficient=packing density before oxidation treatment/packing density after oxidation treatment The obtained results are shown in Table 2. Example 7 Coal tar pitch 500 similar to Examples 1 to 6
g, anthracene oil 500g and as a catalyst
25 g of Fe 2 O 3 was injected into an autoclave with a volume of 2 and hydrogenated at a hydrogen pressure of 100 Kg/cm 2 G at a temperature of 450° C. for 10 minutes, and then the contents were distilled under reduced pressure to obtain a hydrogenated pit. The obtained hydrogenated pitch was used in Example 3.
Heat treatment and solvent treatment were performed in the same manner as above to obtain carbonaceous mesophase as a quinoline-insoluble component. The results are shown in Table 1. The obtained carbonaceous mesophase was then subjected to graphitization treatment and wet oxidation treatment in the same manner as in Examples 1 to 6 to obtain expanded graphite of the present invention. The results are shown in Table 2. Example 8 10 g of the carbonaceous mesophase obtained in Example 3 and 20 g of tetrahydroquinoline were injected into a 300 ml autoclave and placed in an argon atmosphere under autogenous pressure.
Heat treated at 440℃ for 60 minutes (heating rate 5℃/min),
The obtained contents were filtered and washed to obtain hydrogenated carbonaceous mesophase. The amount of decrease in the concentration of tetrahydroquinoline after the heat treatment was measured, and the amount of hydrogen consumed was calculated from the amount of hydrogen in the generated gas. The results are shown in Table 3. The obtained hydrogenated carbonaceous mesophase was subjected to graphitization treatment and wet oxidation treatment in the same manner as in Examples 1 to 6 to obtain expanded graphite of the present invention. The results are shown in Table 2. Comparative Examples 1-2 Commercially available graphite materials and petroleum coke were graphitized at 3000°C for 30 minutes, each having a particle size of 24-42 mesh, and subjected to wet oxidation treatment in the same manner as in Examples 1-6. The results are shown in Table-2. As can be seen from Table 2, the expansion rate of the quinoline-treated mesophase is greater than that of the mesophase collected at about 90°C, and the one with more quinoline-soluble components removed is more effective against expansion. It can be seen that it gives

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の膨張黒鉛の断面構造形状の走
査型電子顕微鏡写真(倍率200倍)、第2図は酸化
処理前の黒鉛化物の断面構造形状の走査型電子顕
微鏡写真(倍率400倍)である。
Figure 1 is a scanning electron micrograph (200x magnification) of the cross-sectional structure of expanded graphite of the present invention, and Figure 2 is a scanning electron micrograph (400x magnification) of the cross-sectional structure of graphitized material before oxidation treatment. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 原料ピツチを350〜500℃で加熱処理して炭素
質メソフエーズを生成させた熱処理ピツチを得、
該炭素質メソフエーズを溶解しない有機溶剤を用
いて該熱処理ピツチを溶剤処理することにより該
炭素質メソフエーズを分離取得し、得られた該炭
素質メソフエーズを2400〜3100℃で黒鉛化処理し
て黒鉛化物を得、次いで該黒鉛化物を湿式酸化処
理することを特徴とする膨張黒鉛の製造方法。
1 Heat-treated raw material pitch at 350 to 500°C to obtain heat-treated pitch to generate carbonaceous mesophase,
The carbonaceous mesophase is separated and obtained by solvent-treating the heat-treated pitch using an organic solvent that does not dissolve the carbonaceous mesophase, and the obtained carbonaceous mesophase is graphitized at 2400 to 3100°C to obtain a graphitized product. 1. A method for producing expanded graphite, which comprises obtaining the following: and then subjecting the graphitized product to a wet oxidation treatment.
JP60075533A 1985-04-10 1985-04-10 Preparation of expanded graphite Granted JPS61236605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075533A JPS61236605A (en) 1985-04-10 1985-04-10 Preparation of expanded graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075533A JPS61236605A (en) 1985-04-10 1985-04-10 Preparation of expanded graphite

Publications (2)

Publication Number Publication Date
JPS61236605A JPS61236605A (en) 1986-10-21
JPH0149641B2 true JPH0149641B2 (en) 1989-10-25

Family

ID=13578943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075533A Granted JPS61236605A (en) 1985-04-10 1985-04-10 Preparation of expanded graphite

Country Status (1)

Country Link
JP (1) JPS61236605A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266294A (en) * 1984-04-30 1993-11-30 Amoco Corporation Continuous, ultrahigh modulus carbon fiber
JPS63139080A (en) * 1986-11-29 1988-06-10 工業技術院長 Graphite body and manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534016A (en) * 1976-07-01 1978-01-14 Hitachi Chemical Co Ltd Molding of carbon materials
JPS5415779A (en) * 1978-06-22 1979-02-05 Toshiba Corp Watch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534016A (en) * 1976-07-01 1978-01-14 Hitachi Chemical Co Ltd Molding of carbon materials
JPS5415779A (en) * 1978-06-22 1979-02-05 Toshiba Corp Watch

Also Published As

Publication number Publication date
JPS61236605A (en) 1986-10-21

Similar Documents

Publication Publication Date Title
JPH0340076B2 (en)
JPH0233679B2 (en)
US4908200A (en) Method for producing elastic graphite structures
JPH0150354B2 (en)
JPH0149641B2 (en)
US4986895A (en) Process for treating coal tar or coal tar pitch
US5017358A (en) Preparation of elastic graphite materials
US4104150A (en) Process for the production of coke from pitch
US5057297A (en) Method for producing elastic graphite structures
JPH0212903B2 (en)
JPS58156023A (en) Production of carbon fiber
DE2116840C3 (en) Process for the production of highly oriented, anisotropic, essentially monocrystalline graphite particles
GB2079306A (en) Production of anisotropic coal
JPS5910717B2 (en) Production method of heavy oil for high-grade carbon material raw material
JPH0624967B2 (en) Method for producing elastic graphite body
TW559628B (en) Process for producing mesophase powders
JPH0114273B2 (en)
JPH10316972A (en) Production of needle coke
US1457030A (en) Method of treating sludge acids and separated sludge acids
JPS6024042B2 (en) Method for producing easily graphitizable carbon material raw material
JPS6049084A (en) Method for treating coal tar or coal tar pitch
JPS6213284B2 (en)
JPS58213609A (en) Preparation of raw material for carbonaceous material
JPH0320431B2 (en)
JPS6158402B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term