JPH0149336B2 - - Google Patents

Info

Publication number
JPH0149336B2
JPH0149336B2 JP59081151A JP8115184A JPH0149336B2 JP H0149336 B2 JPH0149336 B2 JP H0149336B2 JP 59081151 A JP59081151 A JP 59081151A JP 8115184 A JP8115184 A JP 8115184A JP H0149336 B2 JPH0149336 B2 JP H0149336B2
Authority
JP
Japan
Prior art keywords
benzene
type zeolite
reaction
bromobenzene
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59081151A
Other languages
Japanese (ja)
Other versions
JPS60224645A (en
Inventor
Sada Kai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59081151A priority Critical patent/JPS60224645A/en
Publication of JPS60224645A publication Critical patent/JPS60224645A/en
Publication of JPH0149336B2 publication Critical patent/JPH0149336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はパラジブロムベンゼンの製造法に関す
るものである。 さらに詳しくは、ベンゼン、ブロムベンゼン又
はその両者を臭素、臭化水素又はその両者と酸素
を用いて酸化的にパラジブロムベンゼンを製造す
る際に、触媒として銅イオンをイオン交換容量の
50%以上含むY型ゼオライトを用いる事を特徴と
するパラジブロムベンゼンの製造法に関するもの
である。 〔従来の技術〕 パラジブロムベンゼンは、アラミド系繊維の原
料であるパラフエニレンジアミンの中間原料とし
てや、各種耐熱性樹脂の原料として有用なもので
ある。 このパラジブロムベンゼンは、現在ベンゼン又
はブロムベンゼンを、臭化鉄、臭化アルミニウム
等のルイス酸触媒の存在下、液相で臭素化する事
によつて製造する方法、及びベンゼンまたはブロ
ムベンゼンを液相において酸触媒と酸化触媒を用
いて臭素と酸素から酸化的にジブロムベンゼンに
する方法が提案されている。 〔問題点〕 しかしながら、上記ルイス酸触媒の存在下でパ
ラジブロムベンゼンを製造する方法では、ジブロ
ムベンゼン中のパラ体の割合は60〜70%であり、
各種中間原料として有用なパラジブロムベンゼン
の製法としては満足できるものではなく、また、
反応によつて原料の臭素の半分が臭化水素となる
ため、臭素基準で50%でしかジブロムベンゼンが
得られないという欠点があつた。また、酸触媒と
酸化触媒を用いる方法もパラ体の割合は60〜70%
と満足のいくものではなかつた。 そこで、本発明者は、これらの問題を解決すべ
く鋭意検討を重ねた結果銅イオンをイオン交換容
量の50%以上含むY型ゼオライトを触媒として用
いて気相で反応を行うと、ジブロムベンゼン中の
パラ体の割合が80%以上と高くなる事を見い出
し、本発明を完成するに至つた。 〔構成〕 すなわち、本発明は、ベンゼン、ブロムベンゼ
ン又はその両者を臭素、臭化水素又はその両者と
酸素を用いて酸化的に臭素化してパラジブロムベ
ンゼンを製造する際に、触媒として銅イオンをイ
オン交換容量の50%以上含有するY型ゼオライト
を用いる事を特徴とするパラジブロムベンゼンの
製造法である。 本発明に用いられるY型ゼオライトとは、一般
にフオージヤサイトと呼ばれる結晶構造をもち、
SiO2/Al2O3(モル比)が4〜6のゼオライトで
ある。そして、本発明の方法における触媒として
用いられるY型ゼオライトは、銅イオンをイオン
交換容量の50%以上、好ましくは70%以上含む必
要がある。 ここで言うイオン交換容量とは、ゼオライトの
アニオンサイトであるアルミニウムと当量関係に
あるカチオンサイトの数を表わす量であり、ゼオ
ライトのSiO2/Al2O3比によつて決まる量であ
る。銅イオンの含有量が50%以下ではパラ体の割
合が60〜70%程度となる。 この様な銅イオンを含むY型ゼオライトの製造
方法としては、通常の金属塩水溶液によるイオン
交換法、含浸法が用いられるがイオン交換法が特
に好ましい。又、その場合に用いられる金属塩と
しては、塩化第1銅、硝酸第1銅等の1価の銅
塩、塩化第2銅、硝酸第2銅、硫酸銅等の2価の
銅塩等が用いられるが、好ましいのは2価の銅塩
である。 本発明の臭素化剤としては、臭素、臭化水素が
用いられる。 本発明におけるベンゼン及び又はブロムベンゼ
ン/Br2及び又はHBrのモル比は0.01〜50の範囲、
好ましくは0.1〜10の範囲で行なわれる。 本発明におけるジブロムベンゼン中のパラ体の
割合は、O2/Br2及び又はHBrのモル比によつて
影響を受け、この比が高くなるにつれてパラ体の
割合が上昇する傾向が見られる。しかしながらあ
まり酸素比を上げると原料の酸化等の副反応が起
るため、O2/Br2及び又はHBrのモル比は、0.5
〜5.0の範囲、好ましくは、0.8〜3.0で行う必要が
ある。 これらの原料ガスは、そのまま導入しても、不
活性ガスで希釈してもよい。 本発明における反応温度は、100〜400℃好まし
くは150〜300℃で行なわれる。 本発明は、常圧または加圧で行なわれ、反応方
式は固定床、流動床等を用いた流通反応方式が好
ましい。 次に、本発明を実施例を用いて説明する。 実施例 1〜3 Na―Y型ゼオライト(Linde社製、商品名;
SK―40)を、10wt%Cu Cl2水溶液中で、60℃、
24時間イオン交換を行つたのち、濾過洗浄及び
120℃で6時間の乾燥をした。イオン交換液中の
銅濃度の原子吸光分析より求めたY型ゼオライト
の銅イオン含有率は80%であつた。 このCu―Y型ゼオライトをブロムベンゼンの
酸化的臭素化反応の触媒として用いた。 反応条件は、下記の様にO2/Br2(モル比)を
変えて行つた。 WHSV(ブロムベンゼン基準)=1.4hr-1 反応温度=170℃ 圧力=常圧 反応開始後、3〜4時間の成績を表1に示す。
[Industrial Application Field] The present invention relates to a method for producing paradibromobenzene. More specifically, when producing paradibromobenzene oxidatively from benzene, bromobenzene, or both using bromine, hydrogen bromide, or both and oxygen, copper ions are used as a catalyst to increase the ion exchange capacity.
The present invention relates to a method for producing paradibromobenzene characterized by using Y-type zeolite containing 50% or more. [Prior Art] Paradibromobenzene is useful as an intermediate raw material for paraphenylenediamine, which is a raw material for aramid fibers, and as a raw material for various heat-resistant resins. This paradibromobenzene is currently produced by brominating benzene or bromobenzene in the liquid phase in the presence of a Lewis acid catalyst such as iron bromide or aluminum bromide, and by brominating benzene or bromobenzene in the liquid phase in the presence of a Lewis acid catalyst such as iron bromide or aluminum bromide. A method to oxidatively convert bromine and oxygen to dibromobenzene using an acid catalyst and an oxidation catalyst in the phase has been proposed. [Problem] However, in the method for producing para-dibromobenzene in the presence of a Lewis acid catalyst, the proportion of para-isomer in dibromobenzene is 60 to 70%,
The method for producing paradibromobenzene, which is useful as various intermediate raw materials, is not satisfactory, and
Half of the bromine in the raw material becomes hydrogen bromide during the reaction, so the drawback was that dibromobenzene could only be obtained with 50% bromine. In addition, the percentage of para isomer is 60 to 70% in the method using acid catalyst and oxidation catalyst.
It was not satisfactory. Therefore, as a result of intensive studies to solve these problems, the inventors of the present invention found that dibrobenzene It was discovered that the proportion of para-bodies inside was as high as 80% or more, leading to the completion of the present invention. [Structure] That is, the present invention uses copper ions as a catalyst when producing paradibromobenzene by oxidatively brominating benzene, bromobenzene, or both using bromine, hydrogen bromide, or both and oxygen. This is a method for producing paradibromobenzene, characterized by using Y-type zeolite containing 50% or more of the ion exchange capacity. The Y-type zeolite used in the present invention has a crystal structure generally called faujasite,
The zeolite has a SiO 2 /Al 2 O 3 (molar ratio) of 4 to 6. The Y-type zeolite used as a catalyst in the method of the present invention must contain copper ions in an amount of 50% or more, preferably 70% or more of the ion exchange capacity. The ion exchange capacity referred to here is an amount representing the number of cation sites that have an equivalent relationship with aluminum, which is an anion site of the zeolite, and is determined by the SiO 2 /Al 2 O 3 ratio of the zeolite. When the content of copper ions is 50% or less, the proportion of para isomers is about 60 to 70%. As a method for producing such a Y-type zeolite containing copper ions, an ion exchange method using an ordinary metal salt aqueous solution and an impregnation method are used, but the ion exchange method is particularly preferred. In addition, the metal salts used in that case include monovalent copper salts such as cuprous chloride and cuprous nitrate, and divalent copper salts such as cupric chloride, cupric nitrate, and copper sulfate. Although divalent copper salts are preferred, divalent copper salts are preferred. Bromine and hydrogen bromide are used as the brominating agent in the present invention. The molar ratio of benzene and/or bromobenzene/ Br2 and/or HBr in the present invention is in the range of 0.01 to 50,
It is preferably carried out in the range of 0.1 to 10. The proportion of para-isomer in dibromobenzene in the present invention is influenced by the molar ratio of O 2 /Br 2 and/or HBr, and as this ratio increases, the proportion of para-isomer tends to increase. However, if the oxygen ratio is increased too much, side reactions such as oxidation of the raw materials will occur, so the molar ratio of O 2 /Br 2 and/or HBr is 0.5.
~5.0, preferably 0.8 to 3.0. These raw material gases may be introduced as they are or may be diluted with an inert gas. The reaction temperature in the present invention is 100 to 400°C, preferably 150 to 300°C. The present invention is carried out under normal pressure or increased pressure, and the reaction method is preferably a flow reaction method using a fixed bed, a fluidized bed, or the like. Next, the present invention will be explained using examples. Examples 1 to 3 Na-Y type zeolite (manufactured by Linde, trade name;
SK-40) in a 10wt% Cu Cl 2 aqueous solution at 60℃.
After 24 hours of ion exchange, filter cleaning and
It was dried at 120°C for 6 hours. The copper ion content of the Y-type zeolite was determined to be 80% by atomic absorption spectrometry of the copper concentration in the ion exchange solution. This Cu-Y type zeolite was used as a catalyst for the oxidative bromination reaction of bromobenzene. The reaction conditions were as follows, varying the O 2 /Br 2 (molar ratio). WHSV (based on bromobenzene) = 1.4 hr -1 Reaction temperature = 170°C Pressure = normal pressure Table 1 shows the results for 3 to 4 hours after the start of the reaction.

【表】 実施例 4 実施例1〜3で用いたのと同じCu―Y型ゼオ
ライトを用いて、ベンゼンの酸化的臭素化反応を
下記の条件で行つた。 Br2/C6H6/O2/N2(モル比)=1/1/1/
8 WHSV(ベンゼン基準)=2.0hr-1 反応温度=200℃ 圧力=常圧 反応開始後、2〜3時間の成績は、ベンゼン転
化率=40%、臭素化ベンゼン選択率=98%、臭素
化ベンゼン中の生成物の分布は、表2の通りであ
つた。
[Table] Example 4 Using the same Cu-Y type zeolite used in Examples 1 to 3, an oxidative bromination reaction of benzene was carried out under the following conditions. Br 2 /C 6 H 6 /O 2 /N 2 (molar ratio) = 1/1/1/
8 WHSV (benzene standard) = 2.0hr -1 Reaction temperature = 200℃ Pressure = normal pressure After the start of the reaction, the results for 2 to 3 hours are: benzene conversion rate = 40%, brominated benzene selectivity = 98%, bromination The product distribution in benzene was as shown in Table 2.

【表】 実施例 5 実施例1〜3で用いたのと同じCu―Y型ゼオ
ライトを用いて臭化水素によるブロムベンゼンの
酸化的臭素化反応を下記の条件で行つた。 HBr/C6H5Br/O2/N2(モル比)=1/1/
1.5/7 WHSV(ブロムベンゼン基準)=3.0hr-1 反応温度=250℃、圧力=常圧 反応開始後、4〜5時間の成績は、ブロムベン
ゼン転化率=66%、ジブロムベンゼン選択率=90
%、1,2,4―トリブロムベンゼン選択率=7
%、ジブロムベンゼン中の異性体組成=O−9
%、m−4%、p−87%であつた。 実施例 6 Na―Y型ゼオライト(Linde社製SK―40)を、
10wt%CuCl2水溶液中で60℃、10時間撹拌した
後、濾過洗浄及び120℃で5時間の乾燥をして、
銅イオン含有率=60%のY型ゼオライトを調製し
た。 このCu―Y型ゼオライトを用いて臭化水素に
よるベンゼンの酸化的臭素化反応を下記の条件で
行つた。 HBr/C6H6/O2/N2(モル比)=1/0.5/
1/6 WHSV(ベンゼン基準)=1.5hr-1 反応温度=280℃ 圧力=常圧 反応開始後、2〜3時間の成績は、ベンゼン転
化率=40%、臭素化ベンゼン選択率=98%、 臭素化ベンゼン中の生成物の分布は表3の通り
であつた。
[Table] Example 5 Using the same Cu-Y type zeolite used in Examples 1 to 3, oxidative bromination reaction of bromobenzene with hydrogen bromide was carried out under the following conditions. HBr/C 6 H 5 Br/O 2 /N 2 (mole ratio) = 1/1/
1.5/7 WHSV (based on bromobenzene) = 3.0hr -1 Reaction temperature = 250℃, pressure = normal pressure The results for 4 to 5 hours after the start of the reaction were: bromobenzene conversion rate = 66%, dibromobenzene selectivity = 90
%, 1,2,4-tribromobenzene selectivity = 7
%, isomer composition in dibromobenzene = O-9
%, m-4%, and p-87%. Example 6 Na-Y type zeolite (SK-40 manufactured by Linde),
After stirring in a 10wt% CuCl 2 aqueous solution at 60°C for 10 hours, filtering and washing and drying at 120°C for 5 hours,
A Y-type zeolite with a copper ion content of 60% was prepared. Using this Cu--Y type zeolite, oxidative bromination reaction of benzene with hydrogen bromide was carried out under the following conditions. HBr/C 6 H 6 /O 2 /N 2 (mole ratio) = 1/0.5/
1/6 WHSV (benzene standard) = 1.5hr -1 Reaction temperature = 280℃ Pressure = normal pressure The results for 2 to 3 hours after the start of the reaction are: benzene conversion rate = 40%, brominated benzene selectivity = 98%, The product distribution in brominated benzene was as shown in Table 3.

〔効果〕〔effect〕

本発明方法は、製造されるジブロムベンゼン中
のパラ体の割合が85%以上と非常に高いことであ
る。
The method of the present invention is characterized in that the proportion of para-isomer in dibromobenzene produced is extremely high, at 85% or more.

Claims (1)

【特許請求の範囲】 1 ベンゼン、ブロムベンゼン又はその両者を、
臭素、臭化水素又はその両者と酸素を用いて酸化
的に臭素化してパラジブロムベンゼンを製造する
際に、触媒として銅イオンをイオン交換容量の50
%以上含むY型ゼオライトを用いる事を特徴とす
るパラジブロムベンゼンの製造法。 2 酸素/臭素及び又は臭化水素(モル比)が
0.5〜5.0である事を特徴とする特許請求の範囲第
1項記載の方法。
[Claims] 1. Benzene, bromobenzene, or both,
When producing paradibromobenzene by oxidative bromination using bromine, hydrogen bromide, or both and oxygen, copper ions are used as a catalyst at 50% of the ion exchange capacity.
% or more of Y-type zeolite. 2 Oxygen/bromine and or hydrogen bromide (molar ratio)
The method according to claim 1, characterized in that the ratio is 0.5 to 5.0.
JP59081151A 1984-04-24 1984-04-24 Production of p-dibromobenzene Granted JPS60224645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081151A JPS60224645A (en) 1984-04-24 1984-04-24 Production of p-dibromobenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081151A JPS60224645A (en) 1984-04-24 1984-04-24 Production of p-dibromobenzene

Publications (2)

Publication Number Publication Date
JPS60224645A JPS60224645A (en) 1985-11-09
JPH0149336B2 true JPH0149336B2 (en) 1989-10-24

Family

ID=13738431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081151A Granted JPS60224645A (en) 1984-04-24 1984-04-24 Production of p-dibromobenzene

Country Status (1)

Country Link
JP (1) JPS60224645A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780798B2 (en) * 1985-11-06 1995-08-30 東ソー株式会社 Method for producing halogenated benzene derivative with improved zeolite catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910658A (en) * 1972-04-06 1974-01-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910658A (en) * 1972-04-06 1974-01-30

Also Published As

Publication number Publication date
JPS60224645A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
DE3783918T2 (en) METHOD FOR PRODUCING IODATED AROMATIC COMPOUNDS.
US4822933A (en) Process for producing a chlorohalobenzene
EP0072008B1 (en) Process for the preparation of p-chlorotoluene and/or of m-chlorotoluene
US4754086A (en) Process for preparation of nuclear halides of monoalkylbenzenes
JP2583483B2 (en) Method for producing halogenated benzene derivatives
JPS61183235A (en) Production of chlorobenzene
JPS59219241A (en) Oxyiodination of aromatic compound
JP2634217B2 (en) Method for producing iodinated aromatic compound
JPH0149336B2 (en)
JPS6215051B2 (en)
JPH01502825A (en) Liquid phase isomerization of iodinated aromatic compounds
KR100537444B1 (en) Method for isomerizing halogenated ethylbenzene
JPH0577661B2 (en)
JP3760530B2 (en) Aromatic halide isomerization catalyst and aromatic halide isomerization method
JPH01254633A (en) Isomerization of dichlorotoluene
JPS6293242A (en) Production of p-dibromobenzene
JPS6334129B2 (en)
JPH0437053B2 (en)
JPH0723330B2 (en) Method for producing dichlorobenzene
KR960002592B1 (en) Process for isomerizing trichlorobenzene
JP2595637B2 (en) Highly selective production of p-dichlorobenzene
JPH0359048B2 (en)
JPH01258633A (en) Method for isomerizing dichlorotoluene
JPH03854B2 (en)
JPS59176223A (en) Separation of chlorotoluene isomer