JPS61183235A - Production of chlorobenzene - Google Patents

Production of chlorobenzene

Info

Publication number
JPS61183235A
JPS61183235A JP60023577A JP2357785A JPS61183235A JP S61183235 A JPS61183235 A JP S61183235A JP 60023577 A JP60023577 A JP 60023577A JP 2357785 A JP2357785 A JP 2357785A JP S61183235 A JPS61183235 A JP S61183235A
Authority
JP
Japan
Prior art keywords
benzene
catalyst
type zeolite
chlorine
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60023577A
Other languages
Japanese (ja)
Inventor
Toshitaka Kanashiki
金敷 利隆
Sueo Sugano
菅野 末男
Mitsuo Arai
荒井 三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP60023577A priority Critical patent/JPS61183235A/en
Publication of JPS61183235A publication Critical patent/JPS61183235A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To make it possible to reuse a catalyst and improve easily the yield without forming by-products, by chlorinating benzene with chlorine to give the titled compound useful as a raw material compound for agricultural chemicals and various industrial chemicals. CONSTITUTION:Benzene is chlorinated with chlorine in the presence of mordenite type zeolite as a catalyst to give the aimed compound. The chlorination reaction is carried out at about 5-80 deg.C, preferably about 50-70 deg.C. The above-mentioned catalyst is one of crystalline aluminosilicate compounds, and may be synthetic or naturally occurring material. The mordenite type zeolite is a molecular sieve having a very regular and definite diameter and further tunnels or holes of uniform mechanism. Synthetic mordenite type zeolite is particularly preferred. The amount to be used is 0.1-20wt.%, preferably 1-10wt.% based on the benzene.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、染料、農薬および各種工業薬品の原料化合物
または溶剤として有用なりロロベンゼンの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing lolobenzene, which is useful as a raw material compound or solvent for dyes, agricultural chemicals, and various industrial chemicals.

(従来の技術) 従来から、塩素に【ベンゼンを塩素化することによるク
ロロベンゼンの製造において種々の触媒が提案されてい
る。たとえば、塩化第二鉄、三塩化アンチモン、五塩化
アンチモン、塩化アルミニウム、四塩化チタン等のルイ
ス酸を単独にて、または硫化鉄、二硫化炭紫等の硫黄化
合物と組み合わせて使用する方法が知られている。これ
らの触媒を使用してベンゼンを塩素により塩素化すると
ベンゼンへキサクロライド(以下BHCと略す)等の副
生物もなく、高純度のクロロベンゼンなiることが可能
であるが、反応液から使用触媒を除去するため、塩酸水
洗浄等の工程が必要であり、回収した触媒の再使用は一
般に不可能である。
(Prior Art) Various catalysts have been proposed for the production of chlorobenzene by chlorinating benzene to chlorine. For example, methods are known in which Lewis acids such as ferric chloride, antimony trichloride, antimony pentachloride, aluminum chloride, and titanium tetrachloride are used alone or in combination with sulfur compounds such as iron sulfide and carbon disulfide. It is being When benzene is chlorinated using chlorine using these catalysts, it is possible to produce high-purity chlorobenzene without by-products such as benzene hexachloride (hereinafter abbreviated as BHC). In order to remove the catalyst, a process such as washing with hydrochloric acid water is required, and it is generally impossible to reuse the recovered catalyst.

また、近年ゼオライトを触媒とするベンゼンの塩素化に
ついての報告がいくつかなされている。
Furthermore, in recent years, several reports have been made on the chlorination of benzene using zeolite as a catalyst.

例えば、特公昭49−10658号会報では、Y型ゼオ
ライトを触媒の担体として使用し、オΦシ塩素化を行っ
ている。また、特開昭57−77651号公報には、平
均細孔径が5〜13Aのゼオライトを使用して気相反応
によりジクロロベンゼンを製造する方法が報告されてい
るが、液相反応では発生した塩化水素のゼオライトへの
吸着力がベンゼンより大きいためにゼオライトの活性低
下が著しく、実用上問題があるとの記載がある。さらに
、特開昭59−165529号公報には、L型ゼオライ
ト触媒による液相塩素化が報告されているが、’BHC
の副生がみられる。
For example, in Japanese Patent Publication No. 49-10658, Φ chlorination is carried out using Y-type zeolite as a catalyst carrier. In addition, JP-A-57-77651 reports a method for producing dichlorobenzene by gas phase reaction using zeolite with an average pore size of 5 to 13A, but in liquid phase reaction, the chloride generated It is stated that because the adsorption power of hydrogen to zeolite is greater than that of benzene, the activity of zeolite is significantly reduced, which poses a practical problem. Furthermore, JP-A-59-165529 reports liquid phase chlorination using an L-type zeolite catalyst;
By-products are seen.

(発明が解決しようとする問題点) 本発明者らは、ベンゼンの塩素化触媒について鋭意研究
を重ねたところ、驚くべきことに各種ゼオライトの中で
モルデナイト型を使用した場合のみ、クロロベンゼンが
高収率で得られ、しかもBHC等有害な副生物がまった
く生成せず、濾過等簡単な操作により使用した触媒を除
去することができ、さらに回収した触媒を再使用するこ
とも可能なことを見出した。他の一般に入手可能なゼオ
ライトであるA 、 X 、 Y 、 L型を触媒とし
て夏用した場合は、塩素化反応がほとんど進行しないか
、BHCの副生があり製造方法として適切ではない。本
発明はかかる知見に基づいて完成したものである。
(Problems to be Solved by the Invention) The present inventors have conducted extensive research on benzene chlorination catalysts and have surprisingly found that among various zeolites, chlorobenzene can be produced in high yield only when mordenite type is used. It has been found that the catalyst can be obtained at a high yield, without producing any harmful by-products such as BHC, and that the used catalyst can be removed by simple operations such as filtration, and it is also possible to reuse the recovered catalyst. . When other commonly available zeolites such as A, X, Y, and L types are used as catalysts, the chlorination reaction hardly progresses or BHC is produced as a by-product, which is not suitable as a production method. The present invention was completed based on this knowledge.

(問題点を解決するための手段) すなわち本発明はベンゼンと塩素を、モルデナイト型ゼ
オライトの存在のもとに反応させることを特徴とするク
ロロベンゼンの製造方法を提供するものである。
(Means for Solving the Problems) That is, the present invention provides a method for producing chlorobenzene, which is characterized by reacting benzene and chlorine in the presence of mordenite-type zeolite.

本発明に用いるベンゼンは、市販品をそのまま使用する
ことも可能であるが、イオン交換樹脂、モレキュラーシ
ーブ等の脱水剤または共沸脱水操作等を利用して含有水
分量を50 ppm以下にして使用することが望ましい
The benzene used in the present invention can be used as a commercially available product, but it can also be used by reducing the water content to 50 ppm or less by using a dehydrating agent such as an ion exchange resin or molecular sieve, or an azeotropic dehydration operation. It is desirable to do so.

また、本発明に用いるモルデナイト型ゼオライトは結晶
性アルきノ珪酸塩化合物のひとつで、合成品もあれば、
自然発生のものもあり、極めて規則正しく一定した直径
を有する、均一な機構のトンネルもしくは孔を持つ分子
フルイであり、特に合成モルデナイト型ゼオライトが好
ましい。理想的化学式は、NagA/、sS14oOg
g ・24H20または(Na*O)n @ (Aj4
03)4* (8104)4) ・24H20で示され
るが、ゼオライトの一般的な性質としてナトリウムイオ
ンを水素、カリウム、アンモニウムなどの陽イオンに交
換することが可能であり 5iOB/A−t、tos比
をモルデナイト構造を崩壊させない範囲の、たとえば1
0〜150まで変化させることも可能である。
In addition, the mordenite type zeolite used in the present invention is one of crystalline alkinosilicate compounds, and there are also synthetic products,
Molecular sieves, some of which occur naturally, have tunnels or pores of a uniform structure with a very regular and constant diameter, and synthetic mordenite-type zeolites are particularly preferred. The ideal chemical formula is NagA/, sS14oOg
g ・24H20 or (Na*O)n @ (Aj4
03)4* (8104)4) ・24H20 However, as a general property of zeolite, it is possible to exchange sodium ions with cations such as hydrogen, potassium, ammonium, etc. 5iOB/A-t, tos The ratio is within a range that does not collapse the mordenite structure, for example 1.
It is also possible to vary from 0 to 150.

この様にモルデナイトは一般のゼオライトに比較し、シ
リカ対アルミナ比率が高いため、最初のナトリウム・型
から水素型へと完全な酸交換をうける特異な能力をもっ
ており、また極めて耐酸、耐アルカリ安定性にすぐれて
いる。本発明の様に塩素化触媒として部用する場合、特
に耐酸性にすぐれていることは大きな利点であり、繰り
返し再使用できる理由と考えている。
In this way, mordenite has a high silica to alumina ratio compared to general zeolites, so it has a unique ability to undergo complete acid exchange from the initial sodium type to the hydrogen type, and is extremely stable against acids and alkalis. Excellent. When it is used as a chlorination catalyst as in the present invention, it is particularly advantageous that it has excellent acid resistance, and we believe this is the reason why it can be reused repeatedly.

本発明に用いるモルデナイト型ゼオライトのイオン交換
可能な陽イオンは、通常ナトリウムイオンとして入手で
きるが、本質的にはいづれでもよく、−価又は二価の金
属、水素およびアンモニウムイオンから選ばれた少くと
も一種の陽イオンである。特に好ましくはナトリウムま
たは水素イオンである。
The ion-exchangeable cation of the mordenite-type zeolite used in the present invention is usually available as a sodium ion, but essentially any one may be used, and at least one selected from -valent or divalent metals, hydrogen, and ammonium ions may be used. It is a type of cation. Particularly preferred are sodium or hydrogen ions.

これら陽イオンのイオン交換法は結晶性アルミノ珪酸塩
の製造に関する知識を有する当業者には広く知られてお
り、通常はゼオライトに交換しようとする一種又はそれ
以上の陽イオンの硝酸塩水溶液をイオン交換処理液とし
て、ゼオライトに接触させてイオン交換するのが好まし
い。また硝酸塩の代りに塩化物等の他の可溶性塩の水溶
液を用いることも好ましい。またこの陽イオンを一回の
イオン交換液としてイオン交換処理してもよいし、分割
して数回に分けて処理してもよい。その方式はバッチ式
でも連続式でもよい。この時の温度は20〜100℃ま
での範囲であるが、交換速度を速めるためには50〜1
00℃が好ましい。イオン交換処理後には、たとえば;
NO3−やCt−イオンが検出されなくなるまで充分水
洗することが必要である。
Ion exchange methods for these cations are well known to those skilled in the art with knowledge of the production of crystalline aluminosilicates, and typically involve ion exchange of an aqueous nitrate solution of one or more cations to be exchanged into the zeolite. It is preferable that the treatment liquid be brought into contact with zeolite for ion exchange. It is also preferable to use an aqueous solution of other soluble salts such as chlorides in place of nitrates. Further, the cations may be subjected to the ion exchange treatment using a single ion exchange solution, or may be divided and treated several times. The method may be a batch method or a continuous method. The temperature at this time ranges from 20 to 100℃, but in order to speed up the exchange rate, it is necessary to
00°C is preferred. After ion exchange treatment, for example;
It is necessary to wash thoroughly with water until NO3- and Ct- ions are no longer detected.

またゼオライトを触媒として部用する旧にその結晶水を
予め除去しておくことが必要である。通常は100℃以
上で結晶水含量を小さくすることができ、好ましくは′
500〜600℃で加熱すること忙より結晶水をほとん
ど除去することができる。
Furthermore, before using zeolite as a catalyst, it is necessary to remove the water of crystallization in advance. Normally, the crystallization water content can be reduced at temperatures above 100°C, preferably '
Most of the water of crystallization can be removed by heating at 500 to 600°C.

本発明で用いるゼオライトの形状は、粉末状、砕塊状で
もよいし、圧縮成型、押出し成型およびマルメライザー
による成型法などによって得られる成型品であってもよ
い。
The shape of the zeolite used in the present invention may be in the form of a powder, a crushed lump, or a molded product obtained by compression molding, extrusion molding, marmerizer molding, or the like.

本発明の方法によりベンゼンの塩素化を行なうには、ベ
ンゼンに対し、モルデナイト型ゼオライトを0.1〜2
0重量%、好ましくは1〜10重量%の割合で混合し塩
素を導入する。この塩素の反応系への導入量は特に制限
はなく、各種条件に応じて適宜選定すればよいが、通常
はクロロベンゼンが生成するに充分な量、すなわちベン
ゼンと化学量論的に等しい量、あるいはそれ以下として
未反応のベンゼンを回収百聞用すればよい。また反応に
際し、窒素等の不活性ガスを使用してもさしつかえない
。上記反応においては、減圧、加圧のいずれでもよいが
通常は常圧で行う。
In order to chlorinate benzene by the method of the present invention, 0.1 to 2
Chlorine is mixed and introduced in a proportion of 0% by weight, preferably 1 to 10% by weight. The amount of chlorine introduced into the reaction system is not particularly limited and may be selected appropriately depending on various conditions, but it is usually an amount sufficient to produce chlorobenzene, that is, an amount stoichiometrically equivalent to benzene, or If the amount is less than that, unreacted benzene can be recovered. Furthermore, an inert gas such as nitrogen may be used during the reaction. The above reaction may be carried out under reduced pressure or increased pressure, but is usually carried out at normal pressure.

なお本発明における塩素化反応は広範な温度で進行する
が、一般には約5〜80℃の温度範囲であり、より好ま
しくは約50〜70℃である。
Although the chlorination reaction in the present invention proceeds over a wide range of temperatures, the temperature range is generally about 5 to 80°C, more preferably about 50 to 70°C.

本発明の方式はバッチ式、連続式のいずれの方式によっ
ても行なうことができる。また原料であるベンゼンと塩
素ははy全量がクロロ化ベンゼン類に消費され、逸散塩
素もほとんどなく、これと共に生成する塩化水紫以外は
BHC等毒性の強い副生物はまったくなく、そのため目
的とするクロロベンゼンの分離精製が極めて容易である
。なお、反応液からクロロベンゼンを分離する方法は、
特に限定されないが、−穀圧は適当な分離能力を有する
精留塔による蒸留にて必要な純度のものを得ることが出
来る。
The method of the present invention can be carried out by either a batch method or a continuous method. In addition, the raw materials benzene and chlorine are all consumed by chlorobenzenes, and there is almost no chlorine that escapes.There are no highly toxic by-products such as BHC other than the purple chloride that is generated with this, and therefore it is not suitable for the purpose. It is extremely easy to separate and purify chlorobenzene. The method for separating chlorobenzene from the reaction solution is as follows:
Although not particularly limited, - Grain pressure can be obtained at the required purity by distillation using a rectification column having an appropriate separation capacity.

(発明の効果) かくして本発明の方法によれば、ベンゼレの塩素化によ
りクロロベンゼンが高純度、高収率で得られ、触媒の再
使用も可能である。さらには、反応後処理操作が簡単で
あるなど、クロロベンゼンを製造するのに適しており、
その効果は極めて高いものである。
(Effects of the Invention) Thus, according to the method of the present invention, chlorobenzene can be obtained with high purity and high yield by chlorination of benzele, and the catalyst can be reused. Furthermore, it is suitable for producing chlorobenzene, as post-reaction treatment operations are easy.
The effect is extremely high.

(実施例) 以下、実施例によりさらに詳細に本発明を説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 還流冷却器及び攪拌機を備えた200−の四ツロフラス
コに、あらかじめイオン交換樹脂によりs ppmまで
脱水したベンゼン117F(1゜5モル)及びH−モル
デナイト型ゼオライトの粉末7. Of(6,0重量%
)をいれ、窒素ガスを通じつつ70℃に昇温する。つい
で、窒素ガスを止め、同温度に保ちつつ撹拌下塩素ガス
を1α7f/時間の速度にて75時間吹込み、2.5時
間、5,0時間、75時間吹込時の反応液組成をガスク
ロマトグラフにより分析した。その結果を次表に示す。
Example 1 Benzene 117F (1°5 mol) and H-mordenite type zeolite powder, which had been previously dehydrated to sp. Of(6,0% by weight
) and raise the temperature to 70°C while passing nitrogen gas. Next, the nitrogen gas was stopped, and while maintaining the same temperature, chlorine gas was blown in at a rate of 1α7f/hour for 75 hours with stirring, and the composition of the reaction liquid at the time of 2.5 hours, 5.0 hours, and 75 hours was measured using a gas chromatograph. Analyzed by. The results are shown in the table below.

なお、吹込んだ塩素はほぼ100%反応し、未反応塩素
の逸散は滴定分析の結果はとんどなかった。さらに、反
応終了後f別回収したゼオライトの再使用は特に問題な
かった。
It should be noted that almost 100% of the blown chlorine reacted, and titration analysis showed that there was almost no dissipation of unreacted chlorine. Furthermore, there was no particular problem in reusing the zeolite recovered separately after the reaction was completed.

また、反応に使用したH−モルデナイト型ゼオライトは
米国ツートン社製の商品名ゼオロン900H粉末品を5
00℃で3時間加熱し活性化したものを使用した。
In addition, the H-mordenite type zeolite used in the reaction was a powdered product named Zeolon 900H manufactured by Two-Tone Co., Ltd. in the United States.
The product was activated by heating at 00°C for 3 hours.

さらに、四ツロフラスコは学内光の影響によるBI(C
の副生を避けるため、市販黒色塗料により外面を塗りつ
ぶして使用した。
In addition, the Yotsuro flask was affected by BI (C) due to the influence of school lights.
In order to avoid by-products, the outer surface was painted over with commercially available black paint.

実施例2 実施例1と同じ装置、方法で触媒として米国ツートン社
製の商品名がゼオロン90ONaである、Na−モルデ
ナイト型ゼオライト粉末品をzO重九%使用して反応し
た。ガスクロマトグラフにより分析した結果を次表に示
す。なおこの反応においても逸散塩素量は少く、ゼオラ
イトの再使用も可能であった。
Example 2 A reaction was carried out using the same apparatus and method as in Example 1, using as a catalyst a Na-mordenite type zeolite powder product manufactured by Two-Tone Corporation in the United States, whose trade name is Zeolon 90ONa, and containing 9% by weight of zO. The results of gas chromatograph analysis are shown in the table below. In addition, the amount of chlorine released in this reaction was small, and it was possible to reuse the zeolite.

実施例3 実施例1と同じ装置、方法で触媒として米国ツートン社
製の商品名がゼオロン900HであるH−モルデナイト
型ゼオライトを硝酸カリウム水溶液によりイオン交換し
て作製したに一モルデナイト型ゼオライトを10.0重
針%使用して反応した。
Example 3 Using the same equipment and method as in Example 1, H-mordenite type zeolite (product name: Zeolon 900H, manufactured by Two-Tone Corporation, USA) was ion-exchanged with a potassium nitrate aqueous solution as a catalyst to produce a 10.0% H-mordenite type zeolite. The reaction was performed using % heavy needles.

ガスクロマトグラフにより分析した結果を次表に示す。The results of gas chromatograph analysis are shown in the table below.

なおこの反応においては、15時間反応時の逸散塩素量
が吹込塩素量の16%となり若干多かった。
In this reaction, the amount of chlorine escaped during the 15-hour reaction was 16% of the amount of blown chlorine, which was slightly larger.

比較例1〜4 実施例1と同じ装置、方法で触媒としてNa −X型ゼ
オライト(ユニオン昭和社製モレキュラーシープ13X
)、K−Y型ゼオライト(東洋曹達工業部T8Z−52
0KOA)、Na−A型ゼオライト(ユニオン昭和社製
モレキュラーシープ4A)、に−L型セオライト(東洋
曹達工業社′m’rsZ−500KOA)を各&0重量
%使用して5時間反応した。ガスクロマトグラフにより
分析した結果及び吹込塩素の反応率を次表に示すが、は
とんど触媒効果を示さないか、有害なりHC類を副生じ
た。
Comparative Examples 1 to 4 Using the same equipment and method as in Example 1, Na-X type zeolite (Molecular Sheep 13X manufactured by Union Showa Co., Ltd.) was used as a catalyst.
), K-Y type zeolite (Toyo Soda Kogyo Department T8Z-52
0KOA), Na-A type zeolite (Molecular Sheep 4A manufactured by Union Showa Co., Ltd.), and Ni-L type zeolite (Toyo Soda Kogyo Co., Ltd.'m'rsZ-500KOA) were used in amounts of &0% by weight and reacted for 5 hours. The results of analysis by gas chromatography and the reaction rate of blown chlorine are shown in the table below, and the results show that most of the chlorine had no catalytic effect or produced harmful HCs as by-products.

Claims (1)

【特許請求の範囲】[Claims] ベンゼンを塩素により塩素化してクロロベンゼンを製造
する方法において、触媒としてモルデナイト型ゼオライ
トを使用することを特徴とするクロロベンゼンの製造方
法。
A method for producing chlorobenzene by chlorinating benzene with chlorine, the method comprising using mordenite-type zeolite as a catalyst.
JP60023577A 1985-02-12 1985-02-12 Production of chlorobenzene Pending JPS61183235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60023577A JPS61183235A (en) 1985-02-12 1985-02-12 Production of chlorobenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023577A JPS61183235A (en) 1985-02-12 1985-02-12 Production of chlorobenzene

Publications (1)

Publication Number Publication Date
JPS61183235A true JPS61183235A (en) 1986-08-15

Family

ID=12114404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023577A Pending JPS61183235A (en) 1985-02-12 1985-02-12 Production of chlorobenzene

Country Status (1)

Country Link
JP (1) JPS61183235A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063209A (en) * 2005-09-01 2007-03-15 Sumitomo Chemical Co Ltd Method for producing cyclohexanone
WO2009002732A1 (en) * 2007-06-27 2008-12-31 H R D Corporation High shear process for the production of chlorobenzene
US7842184B2 (en) 2007-06-27 2010-11-30 H R D Corporation Process for water treatment using high shear device
US7884250B2 (en) 2007-06-27 2011-02-08 H R D Corporation High shear process for the production of chloral
US7888535B2 (en) 2007-06-27 2011-02-15 H R D Corporation High shear process for the production of acetaldehyde
US7919645B2 (en) 2007-06-27 2011-04-05 H R D Corporation High shear system and process for the production of acetic anhydride
US8022153B2 (en) 2007-06-27 2011-09-20 H R D Corporation System and process for production of polyethylene and polypropylene
US8071046B2 (en) 2007-06-27 2011-12-06 H R D Corporation System and process for gas sweetening
US8080684B2 (en) 2007-06-27 2011-12-20 H R D Corporation Method of producing ethyl acetate
US8133447B2 (en) 2007-06-27 2012-03-13 H R D Corporation System for making linear alkylbenzenes
US8147768B2 (en) 2007-06-27 2012-04-03 H R D Corporation System and process for production of polyvinyl chloride
US8153077B2 (en) 2007-06-27 2012-04-10 H R D Corporation System and process for production of nitrobenzene
US8153076B2 (en) 2007-06-27 2012-04-10 H R D Corporation System and process for production of aniline and toluenediamine
US8168836B2 (en) 2007-06-27 2012-05-01 H R D Corporation Method of hydrogenating aldehydes and ketones
US8212086B2 (en) 2007-06-27 2012-07-03 H R D Corporation Method of making alkylene glycols
US8304584B2 (en) 2007-06-27 2012-11-06 H R D Corporation Method of making alkylene glycols
US8518186B2 (en) 2007-06-27 2013-08-27 H R D Corporation System and process for starch production

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063209A (en) * 2005-09-01 2007-03-15 Sumitomo Chemical Co Ltd Method for producing cyclohexanone
WO2009002732A1 (en) * 2007-06-27 2008-12-31 H R D Corporation High shear process for the production of chlorobenzene
US7842184B2 (en) 2007-06-27 2010-11-30 H R D Corporation Process for water treatment using high shear device
US7884250B2 (en) 2007-06-27 2011-02-08 H R D Corporation High shear process for the production of chloral
US7888535B2 (en) 2007-06-27 2011-02-15 H R D Corporation High shear process for the production of acetaldehyde
US7919645B2 (en) 2007-06-27 2011-04-05 H R D Corporation High shear system and process for the production of acetic anhydride
US7922901B2 (en) 2007-06-27 2011-04-12 H R D Corporation System for water treatment
US7922900B2 (en) 2007-06-27 2011-04-12 H R D Corporation System for water treatment
US8022153B2 (en) 2007-06-27 2011-09-20 H R D Corporation System and process for production of polyethylene and polypropylene
US8071046B2 (en) 2007-06-27 2011-12-06 H R D Corporation System and process for gas sweetening
US8080684B2 (en) 2007-06-27 2011-12-20 H R D Corporation Method of producing ethyl acetate
US8133447B2 (en) 2007-06-27 2012-03-13 H R D Corporation System for making linear alkylbenzenes
US8147768B2 (en) 2007-06-27 2012-04-03 H R D Corporation System and process for production of polyvinyl chloride
US8153077B2 (en) 2007-06-27 2012-04-10 H R D Corporation System and process for production of nitrobenzene
US8153076B2 (en) 2007-06-27 2012-04-10 H R D Corporation System and process for production of aniline and toluenediamine
US8168836B2 (en) 2007-06-27 2012-05-01 H R D Corporation Method of hydrogenating aldehydes and ketones
US8212086B2 (en) 2007-06-27 2012-07-03 H R D Corporation Method of making alkylene glycols
US8217205B2 (en) 2007-06-27 2012-07-10 H R D Corporation Method of making alcohols
US8278494B2 (en) 2007-06-27 2012-10-02 H R D Corporation Method of making linear alkylbenzenes
US8304584B2 (en) 2007-06-27 2012-11-06 H R D Corporation Method of making alkylene glycols
US8329962B2 (en) 2007-06-27 2012-12-11 H R D Corporation Method of making alcohols
US8349269B2 (en) 2007-06-27 2013-01-08 H R D Corporation High shear system and process for the production of acetic anhydride
US8354562B2 (en) 2007-06-27 2013-01-15 H R D Corporation Method of making alkylene glycols
EA017547B1 (en) * 2007-06-27 2013-01-30 ЭйчАДи КОПЭРЕЙШН System and process for the production of chlorobenzene (variants)
US8378155B2 (en) 2007-06-27 2013-02-19 H R D Corporation Method of hydrogenating aldehydes and ketones
US8455706B2 (en) 2007-06-27 2013-06-04 H R D Corporation Method of making linear alkylbenzenes
US8518186B2 (en) 2007-06-27 2013-08-27 H R D Corporation System and process for starch production
US8592620B2 (en) 2007-06-27 2013-11-26 H R D Corporation High shear system and process for the production of acetic anhydride
US8771605B2 (en) 2007-06-27 2014-07-08 H R D Corporation High shear system for the production of chlorobenzene

Similar Documents

Publication Publication Date Title
JPS61183235A (en) Production of chlorobenzene
JPH0248530B2 (en)
EP0118851B1 (en) Process for producing a chlorohalobenzene
GB2095245A (en) Chlorination of alkanes
EP0231133B1 (en) Process for preparing para-substituted halogenobenzene derivatives
JP3191489B2 (en) Method for producing halogenated phthalic anhydride
JP3342916B2 (en) Method for producing pentafluoroethane by disproportionation of tetrafluorochloroethane
EP0046665B1 (en) Process for the isomerization of an ortho-,meta-or para-halotoluene
EP0112722A1 (en) Process for preparation of nuclear halides of monoalkylbenzenes
US3989806A (en) Low temperature catalytic oxidation of chlorinated organic compounds to recover chlorine values
US4777305A (en) Synthesis of 1,4-dichlorobenzene
JP2634217B2 (en) Method for producing iodinated aromatic compound
JPS61183236A (en) Production of dichlorobenzene
EP0163230B2 (en) Process for producing aromatic chlorine compounds
EP0225723B1 (en) Process for producing a halogenated benzene derivative using an improved zeolite catalyst
EP0278680B1 (en) Method for selective isolation of m-dichlorobenzene
JP2000128811A (en) Production of para-chloroethylbenzene
JPH02180843A (en) Production of dichlorobenzene
JP3336767B2 (en) Method for isomerizing polyhalogenated alkylbenzene
JPH01163140A (en) Separation of trihalogenobenzene isomer
JPS6239138B2 (en)
JPS6334132B2 (en)
JPH06321822A (en) Production of p-dichlorobenzene and catalyst for nuclear chlorinating reaction
JP2000128810A (en) Production of para-chloroethylbenzene
JPS6334129B2 (en)